Annika E. Dechert, Nathan L. Andersen, Josef Dufek, Christine E. Jilly
We present 230Th-238U crystallization ages and trace element compositions for zircons spanning the late Pleistocene to Holocene rhyolite eruptive record at South Sister volcano in the central Oregon Cascade Range. Most zircon ages are between 100 and 20 ka, with very few in secular equilibrium (>350 ka). The weighted mean of zircon ages for the two oldest South Sister rhyolites, 31.5 ± 2.1 and 39.1 ± 2.4 ka, are significantly younger than the associated 40Ar/39Ar ages, 47.4 ± 9.7 and 51.4 ± 9.7 ka. We propose that these 40Ar/39Ar dates, performed on plagioclase separates, are compromised by a subtle amount of excess Ar and therefore the younger weighted mean zircon ages yield more reliable eruption ages. These results imply that the interval of rhyolite eruption at South Sister during the late Pleistocene was both shorter and more productive than previously thought and that eruption at South Sister initiated after Middle Sister. Compositionally, zircons from the Pleistocene rhyolites are broadly similar and show down-temperature zircon and plagioclase crystallization trends. However, we argue that destabilized amphibole and titanite in a common mush also exert leverage on the Pleistocene zircon trace element compositions. Divergence in the Eu/Eu* ratio between the Pleistocene and Holocene lavas implies chemically distinct magma reservoirs originating from the Pleistocene rhyolite eruptive sequence and the Holocene eruptive sequence. This work suggests a higher flux of rhyolite volcanism than previously thought and characterizes magmatic storage distinctions between the Pleistocene and Holocene rhyolites, aiding in the assessment of future eruptive hazards at South Sister volcano.
{"title":"Zircon Constraints on the Eruptive Sequence and Magma Evolution of Rhyolites at South Sister Volcano, Oregon","authors":"Annika E. Dechert, Nathan L. Andersen, Josef Dufek, Christine E. Jilly","doi":"10.1029/2024GC011680","DOIUrl":"https://doi.org/10.1029/2024GC011680","url":null,"abstract":"<p>We present <sup>230</sup>Th-<sup>238</sup>U crystallization ages and trace element compositions for zircons spanning the late Pleistocene to Holocene rhyolite eruptive record at South Sister volcano in the central Oregon Cascade Range. Most zircon ages are between 100 and 20 ka, with very few in secular equilibrium (>350 ka). The weighted mean of zircon ages for the two oldest South Sister rhyolites, 31.5 ± 2.1 and 39.1 ± 2.4 ka, are significantly younger than the associated <sup>40</sup>Ar/<sup>39</sup>Ar ages, 47.4 ± 9.7 and 51.4 ± 9.7 ka. We propose that these <sup>40</sup>Ar/<sup>39</sup>Ar dates, performed on plagioclase separates, are compromised by a subtle amount of excess Ar and therefore the younger weighted mean zircon ages yield more reliable eruption ages. These results imply that the interval of rhyolite eruption at South Sister during the late Pleistocene was both shorter and more productive than previously thought and that eruption at South Sister initiated after Middle Sister. Compositionally, zircons from the Pleistocene rhyolites are broadly similar and show down-temperature zircon and plagioclase crystallization trends. However, we argue that destabilized amphibole and titanite in a common mush also exert leverage on the Pleistocene zircon trace element compositions. Divergence in the Eu/Eu* ratio between the Pleistocene and Holocene lavas implies chemically distinct magma reservoirs originating from the Pleistocene rhyolite eruptive sequence and the Holocene eruptive sequence. This work suggests a higher flux of rhyolite volcanism than previously thought and characterizes magmatic storage distinctions between the Pleistocene and Holocene rhyolites, aiding in the assessment of future eruptive hazards at South Sister volcano.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011680","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. J. Cui, Y. Li, W. Zheng, J. N. Huang, Z. J. Zeng, Z. F. Liu, X. C. Zhou, F. X. Sun, Z. Y. Zou, X. Y. Si, X. Y. Li, J. G. Du
The investigation of tectonic controls on CH4 and CO2 emissions was conducted by measuring the fluxes of the gases in the different tectonic units along the northwestern margin of the Ordos Block in China, a region renowned for its intricate tectonic configuration. The mean fluxes of CH4 ranged from −1.5 to 1.1 mg m−2 d−1, while CO2 fluxes spanned from 2.0 to 29.2 g m−2 d−1. Notably, the Minqin, Ordos, and Haiyuan blocks primarily exhibited absorption characteristics for CH4. In contrast, within the Hetao and Yinchuan grabens, both degassing and absorption processes coexist. A striking observation was that blocks with high internal deformation exhibited significantly higher CH4 and CO2 fluxes compared to those in the stable blocks. Additionally, regions experiencing extensional deformation demonstrated greater gas emission than those undergoing compressional deformation. The spatial distribution of CH4 and CO2 fluxes at the study points exhibited a similar trend to faults in the Yinchuan Graben. Our findings revealed that CH4 and CO2 are mainly of biogenic origin, accompanied by abiotic emissions from underground. And the gas source, migration pathway, and tectonic stress were the primary factors influencing gas emission, with tectonic stress playing a pivotal role. This stress controlled the formation of tectonic structures, changed the degassing pathway, and served as the driving force for gas migration. The results of this study offer valuable insights into the mechanisms governing CH4 and CO2 emission in faulted regions. Furthermore, our results may contribute to future assessments aimed at quantifying the contribution of geological sources to greenhouse gas emissions.
{"title":"CH4 and CO2 Emissions From Different Tectonic Settings Along the Western Margin of the Ordos Block in China: Output and Correlation With the Regional Tectonics","authors":"Y. J. Cui, Y. Li, W. Zheng, J. N. Huang, Z. J. Zeng, Z. F. Liu, X. C. Zhou, F. X. Sun, Z. Y. Zou, X. Y. Si, X. Y. Li, J. G. Du","doi":"10.1029/2024GC011661","DOIUrl":"https://doi.org/10.1029/2024GC011661","url":null,"abstract":"<p>The investigation of tectonic controls on CH<sub>4</sub> and CO<sub>2</sub> emissions was conducted by measuring the fluxes of the gases in the different tectonic units along the northwestern margin of the Ordos Block in China, a region renowned for its intricate tectonic configuration. The mean fluxes of CH<sub>4</sub> ranged from −1.5 to 1.1 mg m<sup>−2</sup> d<sup>−1</sup>, while CO<sub>2</sub> fluxes spanned from 2.0 to 29.2 g m<sup>−2</sup> d<sup>−1</sup>. Notably, the Minqin, Ordos, and Haiyuan blocks primarily exhibited absorption characteristics for CH<sub>4</sub>. In contrast, within the Hetao and Yinchuan grabens, both degassing and absorption processes coexist. A striking observation was that blocks with high internal deformation exhibited significantly higher CH<sub>4</sub> and CO<sub>2</sub> fluxes compared to those in the stable blocks. Additionally, regions experiencing extensional deformation demonstrated greater gas emission than those undergoing compressional deformation. The spatial distribution of CH<sub>4</sub> and CO<sub>2</sub> fluxes at the study points exhibited a similar trend to faults in the Yinchuan Graben. Our findings revealed that CH<sub>4</sub> and CO<sub>2</sub> are mainly of biogenic origin, accompanied by abiotic emissions from underground. And the gas source, migration pathway, and tectonic stress were the primary factors influencing gas emission, with tectonic stress playing a pivotal role. This stress controlled the formation of tectonic structures, changed the degassing pathway, and served as the driving force for gas migration. The results of this study offer valuable insights into the mechanisms governing CH<sub>4</sub> and CO<sub>2</sub> emission in faulted regions. Furthermore, our results may contribute to future assessments aimed at quantifying the contribution of geological sources to greenhouse gas emissions.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011661","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Molucca Sea subduction zone is unique for its active divergent double-subducted slab located in the north of the Java and Banda subduction zones. The spatial proximity of these subduction zones would cause a complex mantle flow field. To clarify the mantle dynamics, here we present P-wave tilting-axis anisotropic tomography obtained by inverting a large number of local and teleseismic travel-time data recorded at 254 seismic stations in eastern Southeast Asia. Our results suggest that the mantle structure and dynamics of the western Molucca Sea subduction zone may be remotely controlled by the Java and Banda subduction zones. Mantle convection in the big mantle wedge west of the Molucca Sea subduction zone is possibly influenced by east-west mantle flow associated with compression of the Indo-Australian slab as well as north-south mantle flow related to rollback of the Indo-Australian slab. In contrast, the eastern Molucca Sea subduction zone is virtually unaffected by other subduction zones, probably due to the ongoing slab subduction there.
摩鹿加海俯冲带位于爪哇岛和班达岛俯冲带的北部,是一个独特的活跃发散双俯冲板块。这些俯冲带在空间上的接近会造成复杂的地幔流场。为了阐明地幔动力学,我们在此介绍了通过反演东南亚东部 254 个地震台站记录的大量本地和远震走时数据而获得的 P 波倾轴各向异性层析成像。我们的研究结果表明,摩鹿加海西俯冲带的地幔结构和动力学可能受到爪哇和班达俯冲带的遥控。摩鹿加海俯冲带西部大地幔楔中的地幔对流可能受到与印澳板块压缩有关的东西向地幔流以及与印澳板块回滚有关的南北向地幔流的影响。相比之下,摩鹿加海东部俯冲带几乎不受其他俯冲带的影响,这可能是由于那里正在进行板块俯冲。
{"title":"Multiple Slabs and Complex Mantle Flows in the Molucca Sea Subduction Zone","authors":"Tianmeng Yuan, Zewei Wang, Dapeng Zhao, Rui Gao, Xiaofei Chen","doi":"10.1029/2024GC011500","DOIUrl":"https://doi.org/10.1029/2024GC011500","url":null,"abstract":"<p>The Molucca Sea subduction zone is unique for its active divergent double-subducted slab located in the north of the Java and Banda subduction zones. The spatial proximity of these subduction zones would cause a complex mantle flow field. To clarify the mantle dynamics, here we present P-wave tilting-axis anisotropic tomography obtained by inverting a large number of local and teleseismic travel-time data recorded at 254 seismic stations in eastern Southeast Asia. Our results suggest that the mantle structure and dynamics of the western Molucca Sea subduction zone may be remotely controlled by the Java and Banda subduction zones. Mantle convection in the big mantle wedge west of the Molucca Sea subduction zone is possibly influenced by east-west mantle flow associated with compression of the Indo-Australian slab as well as north-south mantle flow related to rollback of the Indo-Australian slab. In contrast, the eastern Molucca Sea subduction zone is virtually unaffected by other subduction zones, probably due to the ongoing slab subduction there.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xubin Wang, Lin Dong, Tong Li, Kun Ling, Changhu Zhang, Yijie Bin, Ziyi Wang, Zhijun Jin, Jinhua Fu
Euxinia, a crucial geological condition, usually signifies more severe extinction events attributed to deoxygenation in Earth's history. Despite extensive exploration of various proxies in paleoredox studies, most are primarily utilized to reconstruct atmospheric pO2, the proportion of anoxic water relative to the entire basin, and broader trends in redox states. Few, however, hold the capacity to precisely delineate local euxinia within confined areas. To address this gap and gain insights into the temporal and spatial extent of benthic euxinia, we propose leveraging the synergistic analysis of total nitrogen isotopes (δ15NTN) and pyrite sulfur isotopes (δ34Spy). Our study focuses on the Triassic Chang 7 Member from the Yanchang Formation, Ordos Basin, North China. Through coupling the δ15NTN and δ34Spy systematics on 11 drill cores within the Ordos Basin, we reconstruct the temporal and spatial distribution of the benthic euxinia zone during the Chang-7 period. Our results suggest strong spatial heterogeneity of benthic redox conditions, with the euxinia boundary shifting from the central lake to the southwestern sections. Moreover, we identify redox-controlling factors, including organic carbon loading, water depth, and potential water circulation, and evaluate their interplay with benthic euxinia. Furthermore, the discernment of water circulation patterns may provide an innovative approach to restore the paleowind direction. These findings highlight the effectiveness of coupling δ15NTN and δ34Spy in reconstructing the local benthic redox landscape of benthic environments, and enrich our understanding of biogeochemical processes.
{"title":"Reconstructing Redox Landscape With Coupled Nitrogen-Sulfur Isotopes: A Case Study From Middle-Late Triassic Chang 7 Member of the Yanchang Formation in the Ordos Basin (North China)","authors":"Xubin Wang, Lin Dong, Tong Li, Kun Ling, Changhu Zhang, Yijie Bin, Ziyi Wang, Zhijun Jin, Jinhua Fu","doi":"10.1029/2024GC011656","DOIUrl":"https://doi.org/10.1029/2024GC011656","url":null,"abstract":"<p>Euxinia, a crucial geological condition, usually signifies more severe extinction events attributed to deoxygenation in Earth's history. Despite extensive exploration of various proxies in paleoredox studies, most are primarily utilized to reconstruct atmospheric <i>p</i>O<sub>2</sub>, the proportion of anoxic water relative to the entire basin, and broader trends in redox states. Few, however, hold the capacity to precisely delineate local euxinia within confined areas. To address this gap and gain insights into the temporal and spatial extent of benthic euxinia, we propose leveraging the synergistic analysis of total nitrogen isotopes (δ<sup>15</sup>N<sub>TN</sub>) and pyrite sulfur isotopes (δ<sup>34</sup>S<sub>py</sub>). Our study focuses on the Triassic Chang 7 Member from the Yanchang Formation, Ordos Basin, North China. Through coupling the δ<sup>15</sup>N<sub>TN</sub> and δ<sup>34</sup>S<sub>py</sub> systematics on 11 drill cores within the Ordos Basin, we reconstruct the temporal and spatial distribution of the benthic euxinia zone during the Chang-7 period. Our results suggest strong spatial heterogeneity of benthic redox conditions, with the euxinia boundary shifting from the central lake to the southwestern sections. Moreover, we identify redox-controlling factors, including organic carbon loading, water depth, and potential water circulation, and evaluate their interplay with benthic euxinia. Furthermore, the discernment of water circulation patterns may provide an innovative approach to restore the paleowind direction. These findings highlight the effectiveness of coupling δ<sup>15</sup>N<sub>TN</sub> and δ<sup>34</sup>S<sub>py</sub> in reconstructing the local benthic redox landscape of benthic environments, and enrich our understanding of biogeochemical processes.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011656","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boda Liu, Chao Qi, Ross N. Mitchell, Cin-Ty A. Lee, Chuan-Zhou Liu
In a deforming partially molten rock, melt concentrates into a grain-scale melt pocket aligned at a preferred orientation (melt-preferred orientation, or MPO). However, observing this texture alone provides limited information on the 3D orientation and geometry of these melt pockets, which are critical parameters for estimating permeability. Here, we modeled the MPO of experimentally deformed peridotites by simulating melt streaks arising from melt pockets of various shapes and 3D orientations. The model aims to identify 3D distribution and characteristics of melt pockets that could account for the observed length, thickness, and the probability of melt streaks. Results show that melt pockets at preferred orientation exhibit greater length, thickness, and number density compared to those perpendicular. These results can be incorporated into the simulation of melt flow through individual melt pockets, which allows us to estimate the permeability corresponding to the observed MPO. We found that the permeability of vertically compressed peridotites increases with increasing compressive strain and a more elongated and thickened shape for melt pocket aligned at preferred orientation. The vertical permeability in the sample with 30% compressive strain is at least 40 times larger than that of an undeformed sample. For peridotites deformed under simple shear, the permeability exhibits an anisotropy of at least three. Such anisotropic permeability, coupled with the formation of melt-rich bands and other melt channels, is believed to cause lateral melt focusing beneath mid-ocean ridges.
{"title":"A Model for Melt-Preferred Orientation and Permeabilities in Deformed Partially Molten Peridotites","authors":"Boda Liu, Chao Qi, Ross N. Mitchell, Cin-Ty A. Lee, Chuan-Zhou Liu","doi":"10.1029/2024GC011588","DOIUrl":"https://doi.org/10.1029/2024GC011588","url":null,"abstract":"<p>In a deforming partially molten rock, melt concentrates into a grain-scale melt pocket aligned at a preferred orientation (melt-preferred orientation, or MPO). However, observing this texture alone provides limited information on the 3D orientation and geometry of these melt pockets, which are critical parameters for estimating permeability. Here, we modeled the MPO of experimentally deformed peridotites by simulating melt streaks arising from melt pockets of various shapes and 3D orientations. The model aims to identify 3D distribution and characteristics of melt pockets that could account for the observed length, thickness, and the probability of melt streaks. Results show that melt pockets at preferred orientation exhibit greater length, thickness, and number density compared to those perpendicular. These results can be incorporated into the simulation of melt flow through individual melt pockets, which allows us to estimate the permeability corresponding to the observed MPO. We found that the permeability of vertically compressed peridotites increases with increasing compressive strain and a more elongated and thickened shape for melt pocket aligned at preferred orientation. The vertical permeability in the sample with 30% compressive strain is at least 40 times larger than that of an undeformed sample. For peridotites deformed under simple shear, the permeability exhibits an anisotropy of at least three. Such anisotropic permeability, coupled with the formation of melt-rich bands and other melt channels, is believed to cause lateral melt focusing beneath mid-ocean ridges.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011588","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. J. Lawson, Y. Rosenthal, S. C. Bova, J. Lambert, B. K. Linsley, K. Bu, V. J. Clementi, A. Elmore, E. L. McClymont
Boron to calcium (B/Ca) records in benthic foraminifera, used for reconstructing the carbonate ion saturation state (ΔCO3) of the deep ocean, suggest that carbon sequestration in the Southern Pacific contributed to lowering atmospheric CO2 during the last glacial interval. However, the spatial and temporal extent of this storage is debated due to limited ΔCO3 records. To increase available ΔCO3 records, we explored using strontium and sulfur to calcium (Sr/Ca, S/Ca) in Planulina wuellerstorfi as additional proxies for ΔCO3 based on comparison with paired B/Ca down-core records from Pacific Sites U1486 (1,332 m depth) and U1487 (874 m depth) cored during the International Ocean Discovery Program Expedition 363. The Sr/Ca and S/Ca records from P. wuellerstorfi closely covary with the B/Ca-derived ΔCO3 records. Temperature, reconstructed using Uvigerina peregrina magnesium to calcium (Mg/Ca), has no discernible effect on Sr/Ca, whereas S/Ca also varies with Mg/Ca in both U. peregrina and P. wuellerstorfi, suggesting an additional temperature effect. Mg/Ca records from P. wuellerstorfi are affected by both temperature and ΔCO3. We assess calibrations of Sr/Ca to ΔCO3 for the Atlantic, Pacific, and Indian Oceans and recommend using the down-core rather than core-top calibrations as they yield consistent sensitivity, though with offsets, in all ocean basins. Reconstructing Pacific ΔCO3 records from sites U1486, U1487, and DSDP 593, we demonstrate the benefit of using Sr/Ca as an additional ΔCO3 proxy to assess the contribution of the Southern Pacific to the increase of atmospheric CO2 at glacial terminations.
{"title":"Controls on Sr/Ca, S/Ca, and Mg/Ca in Benthic Foraminifera: Implications for the Carbonate Chemistry of the Pacific Ocean Over the Last 350 ky","authors":"V. J. Lawson, Y. Rosenthal, S. C. Bova, J. Lambert, B. K. Linsley, K. Bu, V. J. Clementi, A. Elmore, E. L. McClymont","doi":"10.1029/2024GC011508","DOIUrl":"https://doi.org/10.1029/2024GC011508","url":null,"abstract":"<p>Boron to calcium (B/Ca) records in benthic foraminifera, used for reconstructing the carbonate ion saturation state (ΔCO<sub>3</sub>) of the deep ocean, suggest that carbon sequestration in the Southern Pacific contributed to lowering atmospheric CO<sub>2</sub> during the last glacial interval. However, the spatial and temporal extent of this storage is debated due to limited ΔCO<sub>3</sub> records. To increase available ΔCO<sub>3</sub> records, we explored using strontium and sulfur to calcium (Sr/Ca, S/Ca) in <i>Planulina wuellerstorfi</i> as additional proxies for ΔCO<sub>3</sub> based on comparison with paired B/Ca down-core records from Pacific Sites U1486 (1,332 m depth) and U1487 (874 m depth) cored during the International Ocean Discovery Program Expedition 363. The Sr/Ca and S/Ca records from <i>P. wuellerstorfi</i> closely covary with the B/Ca-derived ΔCO<sub>3</sub> records. Temperature, reconstructed using <i>Uvigerina peregrina</i> magnesium to calcium (Mg/Ca), has no discernible effect on Sr/Ca, whereas S/Ca also varies with Mg/Ca in both <i>U. peregrina</i> and <i>P. wuellerstorfi</i>, suggesting an additional temperature effect. Mg/Ca records from <i>P. wuellerstorfi</i> are affected by both temperature and ΔCO<sub>3</sub>. We assess calibrations of Sr/Ca to ΔCO<sub>3</sub> for the Atlantic, Pacific, and Indian Oceans and recommend using the down-core rather than core-top calibrations as they yield consistent sensitivity, though with offsets, in all ocean basins. Reconstructing Pacific ΔCO<sub>3</sub> records from sites U1486, U1487, and DSDP 593, we demonstrate the benefit of using Sr/Ca as an additional ΔCO<sub>3</sub> proxy to assess the contribution of the Southern Pacific to the increase of atmospheric CO<sub>2</sub> at glacial terminations.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wyn Williams, Roberto Moreno, Adrian R. Muxworthy, Greig A. Paterson, Lesleis Nagy, Lisa Tauxe, Ualisson Donardelli Bellon, Alison A. Cowan, Idenildo Ferreira
The ability of rocks to hold a reliable record of the ancient geomagnetic field depends on the structure and stability of magnetic domain-states contained within constituent particles. In paleomagnetic studies, the Day plot is an easily constructed graph of magnetic hysteresis parameters that is frequently used to estimate the likely magnetic recording stability of samples. Often samples plot in the region of the Day plot attributed to so-called pseudo-single-domain particles with little understanding of the implications for domain-states or recording fidelity. Here we use micromagnetic models to explore the hysteresis parameters of magnetite particles with idealized prolate and oblate truncated-octahedral geometries containing single domain (SD), single-vortex and occasionally multi-vortex states. We show that these domain states exhibit a well-defined trend in the Day plot that extends from the SD region well into the multi-domain region, all of which are likely to be stable remanence carriers. We suggest that although the interpretation of the Day plot and its variants might be subject to ambiguities, if the magnetic mineralogy is known, it can still provide some useful insights about paleomagnetic specimens' dominant domain state, average particle sizes and, consequently, their paleomagnetic stability.
岩石能否保存古代地磁场的可靠记录,取决于组成颗粒所含磁畴态的结构和稳定性。在古地磁研究中,戴伊图是一种很容易绘制的磁滞参数图,常用来估计样本可能的磁记录稳定性。通常情况下,样品在戴氏图区域内的变化归因于所谓的伪单域颗粒,而对其对域态或记录保真度的影响却知之甚少。在此,我们使用微磁模型来探索磁铁矿颗粒的磁滞参数,这些颗粒具有理想化的长方体和扁圆截八面体几何结构,包含单域(SD)、单涡和偶尔多涡状态。我们的研究表明,这些畴态在 Day 图中呈现出明确的趋势,从单畴区一直延伸到多畴区,所有这些畴态都可能是稳定的剩磁载体。我们认为,尽管戴伊图及其变体的解释可能会有歧义,但如果磁性矿物学是已知的,它仍然可以提供一些关于古地磁标本的主导畴态、平均粒度以及古地磁稳定性的有用信息。
{"title":"Vortex Magnetic Domain State Behavior in the Day Plot","authors":"Wyn Williams, Roberto Moreno, Adrian R. Muxworthy, Greig A. Paterson, Lesleis Nagy, Lisa Tauxe, Ualisson Donardelli Bellon, Alison A. Cowan, Idenildo Ferreira","doi":"10.1029/2024GC011462","DOIUrl":"https://doi.org/10.1029/2024GC011462","url":null,"abstract":"<p>The ability of rocks to hold a reliable record of the ancient geomagnetic field depends on the structure and stability of magnetic domain-states contained within constituent particles. In paleomagnetic studies, the Day plot is an easily constructed graph of magnetic hysteresis parameters that is frequently used to estimate the likely magnetic recording stability of samples. Often samples plot in the region of the Day plot attributed to so-called pseudo-single-domain particles with little understanding of the implications for domain-states or recording fidelity. Here we use micromagnetic models to explore the hysteresis parameters of magnetite particles with idealized prolate and oblate truncated-octahedral geometries containing single domain (SD), single-vortex and occasionally multi-vortex states. We show that these domain states exhibit a well-defined trend in the Day plot that extends from the SD region well into the multi-domain region, all of which are likely to be stable remanence carriers. We suggest that although the interpretation of the Day plot and its variants might be subject to ambiguities, if the magnetic mineralogy is known, it can still provide some useful insights about paleomagnetic specimens' dominant domain state, average particle sizes and, consequently, their paleomagnetic stability.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011462","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julius Jara-Muñoz, Amotz Agnon, Jens Fohlmeister, Sara Tomás, Jürgen Mey, Norbert Frank, Birgit Schröder, Andrea Schröder-Ritzrau, Yannick Garcin, Yaniv Darvasi, Daniel Melnick, Maria Mutti, Manfred R. Strecker
To date, the most complete paleolake-level reconstructions for the late Pleistocene water bodies that once occupied the Dead Sea depression have been based on the combination of dating of lake sediments and terrestrial materials. However, despite these major accomplishments, there is still limited spatial control regarding the water levels, suggesting some degree of uncertainty concerning the magnitude and rate of lake-level changes. Here, we re-examine the late Pleistocene lake-level changes in the Dead Sea during the transition from paleolake Lisan to the present-day Dead Sea. We rely on systematic dating of fossil stromatolites including 84 radiocarbon and 15 U-series ages, stable-isotope measurements, paleobiology, high-resolution topography, and numerical modeling to assess lake-level changes. Our results indicate that the highstand of paleolake Lisan was of shorter duration and the transition between Lake Lisan and the Dead Sea occurred at least 5 Kyrs earlier than previously indicated. By refining the timeline and accuracy of lake-level positions during the transition paleolake Lisan—Dead Sea, our study offers new insights into the regional and local paleo-climatic conditions during the last glacial period in this region.
迄今为止,对曾经占据过死海洼地的晚更新世水体进行的最完整的古湖泊水位重建是基于对湖泊沉积物和陆地材料的测年相结合。然而,尽管取得了这些重大成就,有关水位的空间控制仍然有限,这表明湖泊水位变化的幅度和速度存在一定程度的不确定性。在此,我们重新研究了死海晚更新世从古湖利桑湖向今天的死海过渡期间的湖面变化。我们依靠对化石叠层石的系统测年(包括 84 个放射性碳年龄和 15 个 U 系列年龄)、稳定同位素测量、古生物学、高分辨率地形学和数值建模来评估湖面变化。我们的研究结果表明,古利山湖高地的持续时间较短,利山湖与死海之间的过渡至少比以前所指出的要早 5 个纪元。通过完善古湖里桑-死海过渡期间湖面位置的时间线和准确性,我们的研究为了解该地区末次冰川期的区域和地方古气候条件提供了新的视角。
{"title":"Unveiling the Transition From Paleolake Lisan to Dead Sea Through the Analysis of Lake Paleoshorelines and Radiometric Dating of Fossil Stromatolites","authors":"Julius Jara-Muñoz, Amotz Agnon, Jens Fohlmeister, Sara Tomás, Jürgen Mey, Norbert Frank, Birgit Schröder, Andrea Schröder-Ritzrau, Yannick Garcin, Yaniv Darvasi, Daniel Melnick, Maria Mutti, Manfred R. Strecker","doi":"10.1029/2024GC011541","DOIUrl":"https://doi.org/10.1029/2024GC011541","url":null,"abstract":"<p>To date, the most complete paleolake-level reconstructions for the late Pleistocene water bodies that once occupied the Dead Sea depression have been based on the combination of dating of lake sediments and terrestrial materials. However, despite these major accomplishments, there is still limited spatial control regarding the water levels, suggesting some degree of uncertainty concerning the magnitude and rate of lake-level changes. Here, we re-examine the late Pleistocene lake-level changes in the Dead Sea during the transition from paleolake Lisan to the present-day Dead Sea. We rely on systematic dating of fossil stromatolites including 84 radiocarbon and 15 U-series ages, stable-isotope measurements, paleobiology, high-resolution topography, and numerical modeling to assess lake-level changes. Our results indicate that the highstand of paleolake Lisan was of shorter duration and the transition between Lake Lisan and the Dead Sea occurred at least 5 Kyrs earlier than previously indicated. By refining the timeline and accuracy of lake-level positions during the transition paleolake Lisan—Dead Sea, our study offers new insights into the regional and local paleo-climatic conditions during the last glacial period in this region.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011541","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael T. Macnaughtan, Ingo A. Pecher, Lorna J. Strachan, Gareth J. Crutchley
Subduction zones serve as carbon recycling centers, where vast amassments of geologic carbon accrete or subduct through thermogenic gas windows over millions of years. We focus on New Zealand's Chatham Rise, a fossilized accretionary wedge remnant of the ∼400 Myr-active East Gondwanan margin. We undertake an amplitude-variation-with-offset (AVO)-based seismic analysis of the abiogenic Mesozoic sedimentary sequence (MES) and overlying Sequence Y chalk interval, which span the Chatham Rise's northwestern slope. Two-term AVO attribute analysis resulted in the interpretation of distinct AVO Class III–IV reflection anomalies, which demarcate the siliciclastic MES from overlying Sequence Y chalks. Unified through their strong negative intercept amplitudes, Class III anomalies increase in absolute amplitude with angle, while Class IV anomalies decrease in absolute amplitude with angle of incidence. Simultaneous AVO inversion of seismic data highlighted the presence of P-impedance anomalies, which directly underlie the regionally occurring Sequence Y chalk interval. Class III anomalies are modeled and interpreted as the result of a previously undefined coarse-grained lithofacies, bearing low saturations (2%–10%) of free gas. Co-occurring ClassIV AVO anomalies are modeled to provide evidence for a fine-grained upper MES, bearing similarly low saturations of free-gas in pore space. We speculate on the gas' origin, which could be from the Hikurangi subduction margin, in situ ancient microbial activity, or a new undetermined source related to the ancient East Gondwanan subduction margin and accretionary wedge.
俯冲带是碳回收中心,数百万年来,大量的地质碳通过热成岩气体窗口吸积或俯冲到这里。我们的研究重点是新西兰的查塔姆隆起,它是∼400 Myr活动的东冈瓦纳边缘的化石增生楔残留物。我们对横跨查塔姆海隆西北斜坡的非生中生代沉积序列(MES)和上覆序列 Y 白垩层间进行了基于偏移的振幅变化(AVO)地震分析。通过两期反相位属性分析,解释了不同的反相位 III-IV 级反射异常,这些异常将硅质中生代沉积序列与上覆的 Y 白垩系划分开来。III类异常通过其强烈的负截距振幅统一起来,其绝对振幅随角度的变化而增加,而IV类异常的绝对振幅则随入射角度的变化而减小。同时进行的地震数据反演(AVO)突出显示了 P-阻抗异常的存在,该异常直接位于区域性出现的 Y 顺序白垩系区间的下部。III 类异常被建模并解释为以前未定义的粗粒岩性的结果,含有低饱和度(2%-10%)的游离气体。同时出现的 IV 类反渗透异常被建模为细粒度的上部 MES 提供了证据,孔隙中的游离气体饱和度同样很低。我们推测气体的来源可能来自希库兰芝俯冲边缘、原位古微生物活动或与古东贡得瓦纳俯冲边缘和增生楔有关的新的未确定来源。
{"title":"Deep Free-Gas Accumulation Beneath the Chatham Rise, New Zealand—An AVO Study","authors":"Michael T. Macnaughtan, Ingo A. Pecher, Lorna J. Strachan, Gareth J. Crutchley","doi":"10.1029/2023GC011360","DOIUrl":"https://doi.org/10.1029/2023GC011360","url":null,"abstract":"<p>Subduction zones serve as carbon recycling centers, where vast amassments of geologic carbon accrete or subduct through thermogenic gas windows over millions of years. We focus on New Zealand's Chatham Rise, a fossilized accretionary wedge remnant of the ∼400 Myr-active East Gondwanan margin. We undertake an amplitude-variation-with-offset (AVO)-based seismic analysis of the abiogenic Mesozoic sedimentary sequence (MES) and overlying Sequence Y chalk interval, which span the Chatham Rise's northwestern slope. Two-term AVO attribute analysis resulted in the interpretation of distinct AVO Class III–IV reflection anomalies, which demarcate the siliciclastic MES from overlying Sequence Y chalks. Unified through their strong negative intercept amplitudes, Class III anomalies increase in absolute amplitude with angle, while Class IV anomalies decrease in absolute amplitude with angle of incidence. Simultaneous AVO inversion of seismic data highlighted the presence of P-impedance anomalies, which directly underlie the regionally occurring Sequence Y chalk interval. Class III anomalies are modeled and interpreted as the result of a previously undefined coarse-grained lithofacies, bearing low saturations (2%–10%) of free gas. Co-occurring ClassIV AVO anomalies are modeled to provide evidence for a fine-grained upper MES, bearing similarly low saturations of free-gas in pore space. We speculate on the gas' origin, which could be from the Hikurangi subduction margin, in situ ancient microbial activity, or a new undetermined source related to the ancient East Gondwanan subduction margin and accretionary wedge.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011360","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on U-Pb dating of zircon crystals and petrographic analysis, this study provides new insights into the paleogeographic and accretion evolution along SW Japan. Our data are consistent with an older submarine fan identified from drilling in the Shikoku Basin (Kyushu Fan ∼14.7–12.2 Ma), having a mixed sand provenance from the paleo-Yangtze/Yellow rivers and the Shimanto Belt, and the younger Zenisu Fan (∼9.2–7.6 Ma), which is mainly sourced from the Shimanto Belt and the Izu-Bonin/Honshu arc collision. Our results are in agreement with the hypothesis of very oblique subduction or strike-slip motion between the northern Shikoku Basin and mainland Honshu from ∼12.2 to 9.2 Ma, after which essentially orthogonal subduction occurred after ∼8 Ma. The two main sandbodies drilled at IODP Site C0002 within the inner Nankai Accretionary Prism have similar petrographic signatures to those of the Zenisu and Kyushu submarine fans in the Shikoku Basin. The incorporation of the Shikoku Basin deposits most likely resulted from the seaward propagation of in-sequence thrusts forming an outer accretionary wedge. The incorporation of the Kyushu Fan into the inner accretionary prism implies that the décollement was located in the hemipelagic interval beneath the Kyushu Fan at least until ∼2 Ma, whereas it is now located in the hemipelagic intervals below the Zenisu Fan. Such shifts in décollement location are most likely related to changes in physical properties of the hemipelagic interval due to significant compaction and diagenesis during subduction.
这项研究基于锆石晶体的 U-Pb 定年和岩石学分析,为了解日本西南部的古地理和增生演化提供了新的视角。我们的数据与四国盆地钻探发现的较古老的海底扇(九州扇∼14.7-12.2Ma)和较年轻的善洲扇(∼9.2-7.6Ma)相一致,前者的砂源来自古长江/黄河和岛山东带,后者的砂源主要来自岛山东带和伊豆-波宁/本州弧碰撞。我们的研究结果与四国盆地北部和本州大陆之间在 12.2 ∼ 9.2 Ma 期间发生非常倾斜的俯冲或撞击滑动运动的假说相一致,之后在 8 Ma ∼ 8 Ma 期间发生了基本上正交的俯冲运动。IODP C0002站点在南海内侧断积棱岩中钻探到的两个主要沙体与四国海盆中的天须和九州海底扇的岩相特征相似。四国海盆沉积物的形成很可能是由形成外增生楔的内序推力向海传播的结果。九州扇被纳入内增生棱柱意味着,至少在 ∼2 Ma 之前,地壳位于九州扇下方的半深海层间,而现在则位于 Zenisu 扇下方的半深海层间。这种沉积物位置的变化很可能与半沉积层的物理特性变化有关,因为在俯冲过程中,半沉积层发生了严重的压实和成岩作用。
{"title":"Sediment Provenance Along the Middle Miocene-Pleistocene Nankai Subduction Zone From Sediment Transport to Accretion: Implications for Stratigraphy in the Accretionary Prism","authors":"P. H. Cornard, H. L. Dawson, K. T. Pickering","doi":"10.1029/2023GC011393","DOIUrl":"https://doi.org/10.1029/2023GC011393","url":null,"abstract":"<p>Based on U-Pb dating of zircon crystals and petrographic analysis, this study provides new insights into the paleogeographic and accretion evolution along SW Japan. Our data are consistent with an older submarine fan identified from drilling in the Shikoku Basin (Kyushu Fan ∼14.7–12.2 Ma), having a mixed sand provenance from the paleo-Yangtze/Yellow rivers and the Shimanto Belt, and the younger Zenisu Fan (∼9.2–7.6 Ma), which is mainly sourced from the Shimanto Belt and the Izu-Bonin/Honshu arc collision. Our results are in agreement with the hypothesis of very oblique subduction or strike-slip motion between the northern Shikoku Basin and mainland Honshu from ∼12.2 to 9.2 Ma, after which essentially orthogonal subduction occurred after ∼8 Ma. The two main sandbodies drilled at IODP Site C0002 within the inner Nankai Accretionary Prism have similar petrographic signatures to those of the Zenisu and Kyushu submarine fans in the Shikoku Basin. The incorporation of the Shikoku Basin deposits most likely resulted from the seaward propagation of in-sequence thrusts forming an outer accretionary wedge. The incorporation of the Kyushu Fan into the inner accretionary prism implies that the décollement was located in the hemipelagic interval beneath the Kyushu Fan at least until ∼2 Ma, whereas it is now located in the hemipelagic intervals below the Zenisu Fan. Such shifts in décollement location are most likely related to changes in physical properties of the hemipelagic interval due to significant compaction and diagenesis during subduction.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011393","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}