The paper presents a methodology that integrates Quality-Function Deployment (QFD) and the Theory of Inventive Problem Solving (TRIZ) used for generating innovative solutions to design problems. It proposes a modified analytical House of Quality (HoQ) to reveal and prioritize contradictions between design parameters and between customer requirements. The proposed methodology extends the traditional HoQ and eliminates the need for the TRIZ’s Function Analysis (FA) procedure. Function Analysis involves identifying the functions of a product or process elements and trying to find contradictions between the system elements. The usability of the proposed method is illustrated through the redesign of an assembly workshop to overcome major problems addressed by the various stakeholders of the process. The new design of the assembly workshop helps reduce the number of work stages from 3 to 1, reduce the number of workers from 4 to 2, decrease rework, decrease the percentage of damaged products, enhance workplace ergonomics and improve the overall system efficiency.
{"title":"An Integrated QFD and TRIZ Methodology for Innovative Product Design","authors":"Abdullah Al-Dwairi, O. Al-Araidah, S. Hamasha","doi":"10.3390/designs7060132","DOIUrl":"https://doi.org/10.3390/designs7060132","url":null,"abstract":"The paper presents a methodology that integrates Quality-Function Deployment (QFD) and the Theory of Inventive Problem Solving (TRIZ) used for generating innovative solutions to design problems. It proposes a modified analytical House of Quality (HoQ) to reveal and prioritize contradictions between design parameters and between customer requirements. The proposed methodology extends the traditional HoQ and eliminates the need for the TRIZ’s Function Analysis (FA) procedure. Function Analysis involves identifying the functions of a product or process elements and trying to find contradictions between the system elements. The usability of the proposed method is illustrated through the redesign of an assembly workshop to overcome major problems addressed by the various stakeholders of the process. The new design of the assembly workshop helps reduce the number of work stages from 3 to 1, reduce the number of workers from 4 to 2, decrease rework, decrease the percentage of damaged products, enhance workplace ergonomics and improve the overall system efficiency.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"82 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139269831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}