Nicholas Vandewetering, Uzair Jamil, Joshua M. Pearce
Although solar photovoltaic (PV) system costs have declined, capital cost remains a barrier to widespread adoption. Do-it-yourself (DIY) system designs can significantly reduce labor costs, but if they are not attached to a building structure, they require ground penetrating footings. This is not technically and economically feasible at all sites. To overcome these challenges, this study details systems designed to (1) eliminate drilling holes and pouring concrete, (2) propose solutions for both fixed and variable tilt systems, (3) remain cost effective, and (4) allow for modifications to best fit the user’s needs. The ballast-supported foundations are analyzed for eight systems by proposing two separate ballast designs: one for a single line of post systems, and one for a double line of post systems, both built on a 4-kW basis. The results of the analysis found that both designs are slightly more expensive than typical in-ground concrete systems by 25% (assuming rocks are purchased at a landscaping company), but the overall DIY system’s costs remain economically advantageous. Sensitivity analyses are conducted to show how modifications to the dimensions influence the weight of the system and thus change the economic value of the design, so users can trade dimensional freedom for cost savings, and vice versa. Overall, all wood-based PV racking system designs provide users with cost-effective and easy DIY alternatives to conventional metal racking, and the novel ballast systems presented provide more versatility for PV systems installations.
{"title":"Ballast-Supported Foundation Designs for Low-Cost Open-Source Solar Photovoltaic Racking","authors":"Nicholas Vandewetering, Uzair Jamil, Joshua M. Pearce","doi":"10.3390/designs8010017","DOIUrl":"https://doi.org/10.3390/designs8010017","url":null,"abstract":"Although solar photovoltaic (PV) system costs have declined, capital cost remains a barrier to widespread adoption. Do-it-yourself (DIY) system designs can significantly reduce labor costs, but if they are not attached to a building structure, they require ground penetrating footings. This is not technically and economically feasible at all sites. To overcome these challenges, this study details systems designed to (1) eliminate drilling holes and pouring concrete, (2) propose solutions for both fixed and variable tilt systems, (3) remain cost effective, and (4) allow for modifications to best fit the user’s needs. The ballast-supported foundations are analyzed for eight systems by proposing two separate ballast designs: one for a single line of post systems, and one for a double line of post systems, both built on a 4-kW basis. The results of the analysis found that both designs are slightly more expensive than typical in-ground concrete systems by 25% (assuming rocks are purchased at a landscaping company), but the overall DIY system’s costs remain economically advantageous. Sensitivity analyses are conducted to show how modifications to the dimensions influence the weight of the system and thus change the economic value of the design, so users can trade dimensional freedom for cost savings, and vice versa. Overall, all wood-based PV racking system designs provide users with cost-effective and easy DIY alternatives to conventional metal racking, and the novel ballast systems presented provide more versatility for PV systems installations.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139806161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas Vandewetering, Uzair Jamil, Joshua M. Pearce
Although solar photovoltaic (PV) system costs have declined, capital cost remains a barrier to widespread adoption. Do-it-yourself (DIY) system designs can significantly reduce labor costs, but if they are not attached to a building structure, they require ground penetrating footings. This is not technically and economically feasible at all sites. To overcome these challenges, this study details systems designed to (1) eliminate drilling holes and pouring concrete, (2) propose solutions for both fixed and variable tilt systems, (3) remain cost effective, and (4) allow for modifications to best fit the user’s needs. The ballast-supported foundations are analyzed for eight systems by proposing two separate ballast designs: one for a single line of post systems, and one for a double line of post systems, both built on a 4-kW basis. The results of the analysis found that both designs are slightly more expensive than typical in-ground concrete systems by 25% (assuming rocks are purchased at a landscaping company), but the overall DIY system’s costs remain economically advantageous. Sensitivity analyses are conducted to show how modifications to the dimensions influence the weight of the system and thus change the economic value of the design, so users can trade dimensional freedom for cost savings, and vice versa. Overall, all wood-based PV racking system designs provide users with cost-effective and easy DIY alternatives to conventional metal racking, and the novel ballast systems presented provide more versatility for PV systems installations.
{"title":"Ballast-Supported Foundation Designs for Low-Cost Open-Source Solar Photovoltaic Racking","authors":"Nicholas Vandewetering, Uzair Jamil, Joshua M. Pearce","doi":"10.3390/designs8010017","DOIUrl":"https://doi.org/10.3390/designs8010017","url":null,"abstract":"Although solar photovoltaic (PV) system costs have declined, capital cost remains a barrier to widespread adoption. Do-it-yourself (DIY) system designs can significantly reduce labor costs, but if they are not attached to a building structure, they require ground penetrating footings. This is not technically and economically feasible at all sites. To overcome these challenges, this study details systems designed to (1) eliminate drilling holes and pouring concrete, (2) propose solutions for both fixed and variable tilt systems, (3) remain cost effective, and (4) allow for modifications to best fit the user’s needs. The ballast-supported foundations are analyzed for eight systems by proposing two separate ballast designs: one for a single line of post systems, and one for a double line of post systems, both built on a 4-kW basis. The results of the analysis found that both designs are slightly more expensive than typical in-ground concrete systems by 25% (assuming rocks are purchased at a landscaping company), but the overall DIY system’s costs remain economically advantageous. Sensitivity analyses are conducted to show how modifications to the dimensions influence the weight of the system and thus change the economic value of the design, so users can trade dimensional freedom for cost savings, and vice versa. Overall, all wood-based PV racking system designs provide users with cost-effective and easy DIY alternatives to conventional metal racking, and the novel ballast systems presented provide more versatility for PV systems installations.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"18 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139865940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this research, a numerical approach is created to assess the effective parameters of power transformer thermal management and, as a result, improve their cooling systems. This study analyzes the radiator’s thermal performance across several arrangements and optimizes the dimensions and configurations for varied cooling loads from a techno-economic perspective. The optimization criteria were the radiator’s height (L), fin spacing (D), and number of fins (N). Due to the great complexity of the generated models, the coupled thermo-hydraulic numerical simulations were carried out on a computer cluster. An in-house radiator test facility was constructed for the experiments in order to verify the numerical model. The simulation findings accord well with the empirically obtained values. A total of 76 radiator sets were investigated. Following that, the generated findings were used to perform an optimization analysis. Finally, the response surface method was used to establish an ideal radiator layout for the specified cooling capacity at the lowest possible cost. These findings reveal that the best cooling performance is obtained when the spacing between the fins is 50 mm. Cooling capacity per unit cost rises as radiator size decreases. The cost factor and geometric details were shown to have strong connections.
{"title":"Techno-Economic Optimization of Radiator Configurations in Power Transformer Cooling","authors":"A. Koca, Oguzkan Senturk, Ömer Akbal, Hakan Özcan","doi":"10.3390/designs8010015","DOIUrl":"https://doi.org/10.3390/designs8010015","url":null,"abstract":"In this research, a numerical approach is created to assess the effective parameters of power transformer thermal management and, as a result, improve their cooling systems. This study analyzes the radiator’s thermal performance across several arrangements and optimizes the dimensions and configurations for varied cooling loads from a techno-economic perspective. The optimization criteria were the radiator’s height (L), fin spacing (D), and number of fins (N). Due to the great complexity of the generated models, the coupled thermo-hydraulic numerical simulations were carried out on a computer cluster. An in-house radiator test facility was constructed for the experiments in order to verify the numerical model. The simulation findings accord well with the empirically obtained values. A total of 76 radiator sets were investigated. Following that, the generated findings were used to perform an optimization analysis. Finally, the response surface method was used to establish an ideal radiator layout for the specified cooling capacity at the lowest possible cost. These findings reveal that the best cooling performance is obtained when the spacing between the fins is 50 mm. Cooling capacity per unit cost rises as radiator size decreases. The cost factor and geometric details were shown to have strong connections.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"13 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139809130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this research, a numerical approach is created to assess the effective parameters of power transformer thermal management and, as a result, improve their cooling systems. This study analyzes the radiator’s thermal performance across several arrangements and optimizes the dimensions and configurations for varied cooling loads from a techno-economic perspective. The optimization criteria were the radiator’s height (L), fin spacing (D), and number of fins (N). Due to the great complexity of the generated models, the coupled thermo-hydraulic numerical simulations were carried out on a computer cluster. An in-house radiator test facility was constructed for the experiments in order to verify the numerical model. The simulation findings accord well with the empirically obtained values. A total of 76 radiator sets were investigated. Following that, the generated findings were used to perform an optimization analysis. Finally, the response surface method was used to establish an ideal radiator layout for the specified cooling capacity at the lowest possible cost. These findings reveal that the best cooling performance is obtained when the spacing between the fins is 50 mm. Cooling capacity per unit cost rises as radiator size decreases. The cost factor and geometric details were shown to have strong connections.
{"title":"Techno-Economic Optimization of Radiator Configurations in Power Transformer Cooling","authors":"A. Koca, Oguzkan Senturk, Ömer Akbal, Hakan Özcan","doi":"10.3390/designs8010015","DOIUrl":"https://doi.org/10.3390/designs8010015","url":null,"abstract":"In this research, a numerical approach is created to assess the effective parameters of power transformer thermal management and, as a result, improve their cooling systems. This study analyzes the radiator’s thermal performance across several arrangements and optimizes the dimensions and configurations for varied cooling loads from a techno-economic perspective. The optimization criteria were the radiator’s height (L), fin spacing (D), and number of fins (N). Due to the great complexity of the generated models, the coupled thermo-hydraulic numerical simulations were carried out on a computer cluster. An in-house radiator test facility was constructed for the experiments in order to verify the numerical model. The simulation findings accord well with the empirically obtained values. A total of 76 radiator sets were investigated. Following that, the generated findings were used to perform an optimization analysis. Finally, the response surface method was used to establish an ideal radiator layout for the specified cooling capacity at the lowest possible cost. These findings reveal that the best cooling performance is obtained when the spacing between the fins is 50 mm. Cooling capacity per unit cost rises as radiator size decreases. The cost factor and geometric details were shown to have strong connections.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"16 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139868841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Commercially available cochlear implants are designed to aid profoundly deaf people in understanding speech and environmental sounds. A typical cochlear implant uses a bank of bandpass filters to decompose an audio signal into a set of dynamic signals. These filters’ critical center frequencies f0 imitate the human cochlea’s vibration patterns caused by audio signals. Gammatone filters (GTFs), with two unique characteristics: (a) an appropriate “pseudo resonant” frequency transfer function, mimicking the human cochlea, and (b) realizing efficient hardware implementation, could demonstrate them as unique candidates for cochlear implant design. Although GTFs have recently attracted considerable attention from researchers, a comprehensive exposition of GTFs is still absent in the literature. This paper starts by enumerating the impulse response of GTFs. Then, the magnitude spectrum, |H(f)|, and bandwidth, more specifically, the equivalent rectangular bandwidth (ERB) of GTFs, are derived. The simulation results suggested that optimally chosen filter parameters, e.g., critical center frequencies,f0; temporal decay parameter, b; and order of the filter, n, can minimize the interference of the filter bank frequencies and very likely model the filter bandwidth (ERB), independent of f0b. Finally, these optimized filters are applied to delineate a filter bank for a cochlear implant design based on the Clarion processor model.
{"title":"Investigating the Performance of Gammatone Filters and Their Applicability to Design Cochlear Implant Processing System","authors":"R. Islam, Mohammed Tarique","doi":"10.3390/designs8010016","DOIUrl":"https://doi.org/10.3390/designs8010016","url":null,"abstract":"Commercially available cochlear implants are designed to aid profoundly deaf people in understanding speech and environmental sounds. A typical cochlear implant uses a bank of bandpass filters to decompose an audio signal into a set of dynamic signals. These filters’ critical center frequencies f0 imitate the human cochlea’s vibration patterns caused by audio signals. Gammatone filters (GTFs), with two unique characteristics: (a) an appropriate “pseudo resonant” frequency transfer function, mimicking the human cochlea, and (b) realizing efficient hardware implementation, could demonstrate them as unique candidates for cochlear implant design. Although GTFs have recently attracted considerable attention from researchers, a comprehensive exposition of GTFs is still absent in the literature. This paper starts by enumerating the impulse response of GTFs. Then, the magnitude spectrum, |H(f)|, and bandwidth, more specifically, the equivalent rectangular bandwidth (ERB) of GTFs, are derived. The simulation results suggested that optimally chosen filter parameters, e.g., critical center frequencies,f0; temporal decay parameter, b; and order of the filter, n, can minimize the interference of the filter bank frequencies and very likely model the filter bandwidth (ERB), independent of f0b. Finally, these optimized filters are applied to delineate a filter bank for a cochlear implant design based on the Clarion processor model.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139810082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Commercially available cochlear implants are designed to aid profoundly deaf people in understanding speech and environmental sounds. A typical cochlear implant uses a bank of bandpass filters to decompose an audio signal into a set of dynamic signals. These filters’ critical center frequencies f0 imitate the human cochlea’s vibration patterns caused by audio signals. Gammatone filters (GTFs), with two unique characteristics: (a) an appropriate “pseudo resonant” frequency transfer function, mimicking the human cochlea, and (b) realizing efficient hardware implementation, could demonstrate them as unique candidates for cochlear implant design. Although GTFs have recently attracted considerable attention from researchers, a comprehensive exposition of GTFs is still absent in the literature. This paper starts by enumerating the impulse response of GTFs. Then, the magnitude spectrum, |H(f)|, and bandwidth, more specifically, the equivalent rectangular bandwidth (ERB) of GTFs, are derived. The simulation results suggested that optimally chosen filter parameters, e.g., critical center frequencies,f0; temporal decay parameter, b; and order of the filter, n, can minimize the interference of the filter bank frequencies and very likely model the filter bandwidth (ERB), independent of f0b. Finally, these optimized filters are applied to delineate a filter bank for a cochlear implant design based on the Clarion processor model.
{"title":"Investigating the Performance of Gammatone Filters and Their Applicability to Design Cochlear Implant Processing System","authors":"R. Islam, Mohammed Tarique","doi":"10.3390/designs8010016","DOIUrl":"https://doi.org/10.3390/designs8010016","url":null,"abstract":"Commercially available cochlear implants are designed to aid profoundly deaf people in understanding speech and environmental sounds. A typical cochlear implant uses a bank of bandpass filters to decompose an audio signal into a set of dynamic signals. These filters’ critical center frequencies f0 imitate the human cochlea’s vibration patterns caused by audio signals. Gammatone filters (GTFs), with two unique characteristics: (a) an appropriate “pseudo resonant” frequency transfer function, mimicking the human cochlea, and (b) realizing efficient hardware implementation, could demonstrate them as unique candidates for cochlear implant design. Although GTFs have recently attracted considerable attention from researchers, a comprehensive exposition of GTFs is still absent in the literature. This paper starts by enumerating the impulse response of GTFs. Then, the magnitude spectrum, |H(f)|, and bandwidth, more specifically, the equivalent rectangular bandwidth (ERB) of GTFs, are derived. The simulation results suggested that optimally chosen filter parameters, e.g., critical center frequencies,f0; temporal decay parameter, b; and order of the filter, n, can minimize the interference of the filter bank frequencies and very likely model the filter bandwidth (ERB), independent of f0b. Finally, these optimized filters are applied to delineate a filter bank for a cochlear implant design based on the Clarion processor model.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139869746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jens Kaeske, L. Fiscarelli, Albert Albers, S. Russenschuck
Development challenges in the domain of superconducting magnets are concentrated on technical problems in the current literature. Organizational, domain-specific challenges are often seen as secondary but must be considered with new holistic development approaches like Model-Based Systems Engineering (MBSE) becoming more popular. This work quantifies the domain challenges and gives the foundation to derive success criteria for design support in the future. A systematic literature review has been conducted to identify the overall domain challenges, and extensive interviews in the CERN technology department have been carried out to identify the development challenges on a practical level. Problems in knowledge management have been identified as a major challenge in the development process and the general literature. The paper concludes by picking up the most important challenges from the interviews and literature and puts them into the context of the authors’ knowledge of electrical magnet design.
{"title":"Overview of Identified Challenges in the Development Process of Superconducting Accelerator Magnets","authors":"Jens Kaeske, L. Fiscarelli, Albert Albers, S. Russenschuck","doi":"10.3390/designs8010013","DOIUrl":"https://doi.org/10.3390/designs8010013","url":null,"abstract":"Development challenges in the domain of superconducting magnets are concentrated on technical problems in the current literature. Organizational, domain-specific challenges are often seen as secondary but must be considered with new holistic development approaches like Model-Based Systems Engineering (MBSE) becoming more popular. This work quantifies the domain challenges and gives the foundation to derive success criteria for design support in the future. A systematic literature review has been conducted to identify the overall domain challenges, and extensive interviews in the CERN technology department have been carried out to identify the development challenges on a practical level. Problems in knowledge management have been identified as a major challenge in the development process and the general literature. The paper concludes by picking up the most important challenges from the interviews and literature and puts them into the context of the authors’ knowledge of electrical magnet design.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"15 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139597334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Bagherian, Gulshan Chauhan, A. Srivastav, Rajiv Kumar Sharma
Flexible Manufacturing Systems (FMSs) provide a competitive edge in the ever-evolving manufacturing landscape, offering the agility to swiftly adapt to changing customer demands and product lifecycles. Nevertheless, the complex and interconnected nature of FMSs presents a distinct challenge: the evaluation and prioritization of performance variables. This study clarifies a conspicuous research gap by introducing a pioneering approach to evaluating and ranking FMS performance variables. The Best-Worst Method (BWM), a multicriteria decision-making (MCDM) approach, is employed to tackle this challenge. Notably, the BWM excels at resolving intricate issues with limited pairwise comparisons, making it an innovative tool in this context. To implement the BWM, a comprehensive survey of FMS experts from the German manufacturing industry was conducted. The survey, which contained 34 key performance variables identified through an exhaustive literature review and bibliometric analysis, invited experts to assess the variables by comparing the best and worst in terms of their significance to overall FMS performance. The outcomes of the BWM analysis not only offer insights into the factors affecting FMS performance but, more importantly, convey a nuanced ranking of these factors. The findings reveal a distinct hierarchy: the “Quality (Q)” factor emerges as the most critical, followed by “Productivity (P)” and “Flexibility (F)”. In terms of contributions, this study pioneers a novel and comprehensive approach to evaluating and ranking FMS performance variables. It bridges an evident research gap and contributes to the existing literature by offering practical insights that can guide manufacturing companies in identifying and prioritizing the most crucial performance variables for enhancing their FMS competitiveness. Our research acknowledges the potential introduction of biases through expert opinion, delineating the need for further exploration and comparative analyses in diverse industrial contexts. The outcomes of this study bear the potential for cross-industry applicability, laying the groundwork for future investigations in the domain of performance evaluation in manufacturing systems.
{"title":"Evaluating the Ranking of Performance Variables in Flexible Manufacturing System through the Best-Worst Method","authors":"A. Bagherian, Gulshan Chauhan, A. Srivastav, Rajiv Kumar Sharma","doi":"10.3390/designs8010012","DOIUrl":"https://doi.org/10.3390/designs8010012","url":null,"abstract":"Flexible Manufacturing Systems (FMSs) provide a competitive edge in the ever-evolving manufacturing landscape, offering the agility to swiftly adapt to changing customer demands and product lifecycles. Nevertheless, the complex and interconnected nature of FMSs presents a distinct challenge: the evaluation and prioritization of performance variables. This study clarifies a conspicuous research gap by introducing a pioneering approach to evaluating and ranking FMS performance variables. The Best-Worst Method (BWM), a multicriteria decision-making (MCDM) approach, is employed to tackle this challenge. Notably, the BWM excels at resolving intricate issues with limited pairwise comparisons, making it an innovative tool in this context. To implement the BWM, a comprehensive survey of FMS experts from the German manufacturing industry was conducted. The survey, which contained 34 key performance variables identified through an exhaustive literature review and bibliometric analysis, invited experts to assess the variables by comparing the best and worst in terms of their significance to overall FMS performance. The outcomes of the BWM analysis not only offer insights into the factors affecting FMS performance but, more importantly, convey a nuanced ranking of these factors. The findings reveal a distinct hierarchy: the “Quality (Q)” factor emerges as the most critical, followed by “Productivity (P)” and “Flexibility (F)”. In terms of contributions, this study pioneers a novel and comprehensive approach to evaluating and ranking FMS performance variables. It bridges an evident research gap and contributes to the existing literature by offering practical insights that can guide manufacturing companies in identifying and prioritizing the most crucial performance variables for enhancing their FMS competitiveness. Our research acknowledges the potential introduction of biases through expert opinion, delineating the need for further exploration and comparative analyses in diverse industrial contexts. The outcomes of this study bear the potential for cross-industry applicability, laying the groundwork for future investigations in the domain of performance evaluation in manufacturing systems.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"85 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139606183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruengwit Khwanrit, Yuto Lim, S. Javaid, C. Charoenlarpnopparut, Yasuo Tan
In today’s power system landscape, renewable energy (RE) resources play a pivotal role, particularly within the residential sector. Despite the significance of these resources, the intermittent nature of RE resources, influenced by variable weather conditions, poses challenges to their reliability as energy resources. Addressing this challenge, the integration of an energy storage system (ESS) emerges as a viable solution, enabling the storage of surplus energy during peak-generation periods and subsequent release during shortages. One of the great challenges of ESSs is how to design ESSs efficiently. This paper focuses on a distributed power-flow system within a smart home environment, comprising uncontrollable power generators, uncontrollable loads, and multiple energy storage units. To address the challenge of minimizing energy loss in ESSs, this paper proposes a novel approach, called energy-efficient storage capacity with loss reduction (SCALE) scheme, that combines multiple-load power-flow assignment with a load-shifting algorithm to minimize energy loss and determine the optimal energy storage capacity. The optimization problem for optimal energy storage capacity is formalized using linear programming techniques. To validate the proposed scheme, real experimental data from a smart home environment during winter and summer seasons are employed. The results demonstrate the efficacy of the proposed algorithm in significantly reducing energy loss, particularly under winter conditions, and determining optimal energy storage capacity, with reductions of up to 11.4% in energy loss and up to 62.1% in optimal energy storage capacity.
{"title":"Incorporating a Load-Shifting Algorithm for Optimal Energy Storage Capacity Design in Smart Homes","authors":"Ruengwit Khwanrit, Yuto Lim, S. Javaid, C. Charoenlarpnopparut, Yasuo Tan","doi":"10.3390/designs8010011","DOIUrl":"https://doi.org/10.3390/designs8010011","url":null,"abstract":"In today’s power system landscape, renewable energy (RE) resources play a pivotal role, particularly within the residential sector. Despite the significance of these resources, the intermittent nature of RE resources, influenced by variable weather conditions, poses challenges to their reliability as energy resources. Addressing this challenge, the integration of an energy storage system (ESS) emerges as a viable solution, enabling the storage of surplus energy during peak-generation periods and subsequent release during shortages. One of the great challenges of ESSs is how to design ESSs efficiently. This paper focuses on a distributed power-flow system within a smart home environment, comprising uncontrollable power generators, uncontrollable loads, and multiple energy storage units. To address the challenge of minimizing energy loss in ESSs, this paper proposes a novel approach, called energy-efficient storage capacity with loss reduction (SCALE) scheme, that combines multiple-load power-flow assignment with a load-shifting algorithm to minimize energy loss and determine the optimal energy storage capacity. The optimization problem for optimal energy storage capacity is formalized using linear programming techniques. To validate the proposed scheme, real experimental data from a smart home environment during winter and summer seasons are employed. The results demonstrate the efficacy of the proposed algorithm in significantly reducing energy loss, particularly under winter conditions, and determining optimal energy storage capacity, with reductions of up to 11.4% in energy loss and up to 62.1% in optimal energy storage capacity.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"51 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139606627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A comprehensive review of uncertainties in power systems, covering modeling, impact, and mitigation, is essential to understand and manage the challenges faced by the electric grid. Uncertainties in power systems can arise from various sources and can have significant implications for grid reliability, stability, and economic efficiency. Australia, susceptible to extreme weather such as wildfires and heavy rainfall, faces vulnerabilities in its power network assets. The decentralized distribution of population centers poses economic challenges in supplying power to remote areas, which is a crucial consideration for the emerging technologies emphasized in this paper. In addition, the evolution of modern power grids, facilitated by deploying the advanced metering infrastructure (AMI), has also brought new challenges to the system due to the risk of cyber-attacks via communication links. However, the existing literature lacks a comprehensive review and analysis of uncertainties in modern power systems, encompassing uncertainties related to weather events, cyber-attacks, and asset management, as well as the advantages and limitations of various mitigation approaches. To fill this void, this review covers a broad spectrum of uncertainties considering their impacts on the power system and explores conventional robust control as well as modern probabilistic and data-driven approaches for modeling and correlating the uncertainty events to the state of the grid for optimal decision making. This article also investigates the development of robust and scenario-based operations, control technologies for microgrids (MGs) and energy storage systems (ESSs), and demand-side frequency control ancillary service (D-FCAS) and reserve provision for frequency regulation to ensure a design of uncertainty-tolerance power system. This review delves into the trade-offs linked with the implementation of mitigation strategies, such as reliability, computational speed, and economic efficiency. It also explores how these strategies may influence the planning and operation of future power grids.
{"title":"A Review of Uncertainties in Power Systems—Modeling, Impact, and Mitigation","authors":"Hongji Hu, S. Yu, Hieu Trinh","doi":"10.3390/designs8010010","DOIUrl":"https://doi.org/10.3390/designs8010010","url":null,"abstract":"A comprehensive review of uncertainties in power systems, covering modeling, impact, and mitigation, is essential to understand and manage the challenges faced by the electric grid. Uncertainties in power systems can arise from various sources and can have significant implications for grid reliability, stability, and economic efficiency. Australia, susceptible to extreme weather such as wildfires and heavy rainfall, faces vulnerabilities in its power network assets. The decentralized distribution of population centers poses economic challenges in supplying power to remote areas, which is a crucial consideration for the emerging technologies emphasized in this paper. In addition, the evolution of modern power grids, facilitated by deploying the advanced metering infrastructure (AMI), has also brought new challenges to the system due to the risk of cyber-attacks via communication links. However, the existing literature lacks a comprehensive review and analysis of uncertainties in modern power systems, encompassing uncertainties related to weather events, cyber-attacks, and asset management, as well as the advantages and limitations of various mitigation approaches. To fill this void, this review covers a broad spectrum of uncertainties considering their impacts on the power system and explores conventional robust control as well as modern probabilistic and data-driven approaches for modeling and correlating the uncertainty events to the state of the grid for optimal decision making. This article also investigates the development of robust and scenario-based operations, control technologies for microgrids (MGs) and energy storage systems (ESSs), and demand-side frequency control ancillary service (D-FCAS) and reserve provision for frequency regulation to ensure a design of uncertainty-tolerance power system. This review delves into the trade-offs linked with the implementation of mitigation strategies, such as reliability, computational speed, and economic efficiency. It also explores how these strategies may influence the planning and operation of future power grids.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"70 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139526450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}