Mathyas Giudici, Luca Padalino, Giovanni Paolino, Ilaria Paratici, Alexandru Ionut Pascu, Franca Garzotto
Without any more delay, individuals are urged to adopt more sustainable behaviors to fight climate change. New digital systems mixed with engaging and gamification mechanisms could play an important role in achieving such an objective. In particular, Conversational Agents, like Smart Home Assistants, are a promising tool that encourage sustainable behaviors within household settings. In recent years, large language models (LLMs) have shown great potential in enhancing the capabilities of such assistants, making them more effective in interacting with users. We present the design and implementation of GreenIFTTT, an application empowered by GPT4 to create and control home automation routines. The agent helps users understand which energy consumption optimization routines could be created and applied to make their home appliances more environmentally sustainable. We performed an exploratory study (Italy, December 2023) with N = 13 participants to test our application’s usability and UX. The results suggest that GreenIFTTT is a usable, engaging, easy, and supportive tool, providing insight into new perspectives and usage of LLMs to create more environmentally sustainable home automation.
{"title":"Designing Home Automation Routines Using an LLM-Based Chatbot","authors":"Mathyas Giudici, Luca Padalino, Giovanni Paolino, Ilaria Paratici, Alexandru Ionut Pascu, Franca Garzotto","doi":"10.3390/designs8030043","DOIUrl":"https://doi.org/10.3390/designs8030043","url":null,"abstract":"Without any more delay, individuals are urged to adopt more sustainable behaviors to fight climate change. New digital systems mixed with engaging and gamification mechanisms could play an important role in achieving such an objective. In particular, Conversational Agents, like Smart Home Assistants, are a promising tool that encourage sustainable behaviors within household settings. In recent years, large language models (LLMs) have shown great potential in enhancing the capabilities of such assistants, making them more effective in interacting with users. We present the design and implementation of GreenIFTTT, an application empowered by GPT4 to create and control home automation routines. The agent helps users understand which energy consumption optimization routines could be created and applied to make their home appliances more environmentally sustainable. We performed an exploratory study (Italy, December 2023) with N = 13 participants to test our application’s usability and UX. The results suggest that GreenIFTTT is a usable, engaging, easy, and supportive tool, providing insight into new perspectives and usage of LLMs to create more environmentally sustainable home automation.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"106 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140985874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ergonomics are key in the design and application of Ming-style chairs. However, there are presently few specific design frameworks to guide Ming-style chair design. Under this background, the present study developed a questionnaire on the ergonomic design of Ming-style chairs and assessed its validity and reliability. Fifty-two respondents involved in the design and manufacture of Ming-style chairs participated in this study. The statistics of the questionnaire were analyzed and yielded a significant reliability coefficient (α > 0.70, p < 0.01). This ergonomic design framework study of Ming-style chairs analyzed the domains of Chair Form, Aesthetics, Safety, Comfort, Ease-of-use, and Productivity. To assess the importance of various design elements, we used a five-point Likert scale to score items within each domain. This scoring system enabled us to prioritize features, allowing the designers to focus on the essential elements before beginning the design process. We found that designers and manufacturers focused primarily on the Four-headed Official Chair with Armrests form.
{"title":"A Current Design Approach for Ming Chairs","authors":"Yifan Bai, K. M. Kamarudin, Hassan Alli","doi":"10.3390/designs8030042","DOIUrl":"https://doi.org/10.3390/designs8030042","url":null,"abstract":"Ergonomics are key in the design and application of Ming-style chairs. However, there are presently few specific design frameworks to guide Ming-style chair design. Under this background, the present study developed a questionnaire on the ergonomic design of Ming-style chairs and assessed its validity and reliability. Fifty-two respondents involved in the design and manufacture of Ming-style chairs participated in this study. The statistics of the questionnaire were analyzed and yielded a significant reliability coefficient (α > 0.70, p < 0.01). This ergonomic design framework study of Ming-style chairs analyzed the domains of Chair Form, Aesthetics, Safety, Comfort, Ease-of-use, and Productivity. To assess the importance of various design elements, we used a five-point Likert scale to score items within each domain. This scoring system enabled us to prioritize features, allowing the designers to focus on the essential elements before beginning the design process. We found that designers and manufacturers focused primarily on the Four-headed Official Chair with Armrests form.","PeriodicalId":504821,"journal":{"name":"Designs","volume":" 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140999789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nabil El Bazi, Oussama Laayati, Nouhaila Darkaoui, Adila El Maghraoui, Nasr Guennouni, Ahmed Chebak, Mustapha Mabrouki
While digital twins (DTs) have recently gained prominence as a viable option for creating reliable asset representations, many existing frameworks and architectures in the literature involve the integration of different technologies and paradigms, including the Internet of Things (IoTs), data modeling, and machine learning (ML). This complexity requires the orchestration of these different technologies, often resulting in subsystems and composition frameworks that are difficult to seamlessly align. In this paper, we present a scalable compositional framework designed for the development of a DT-based production management system (PMS) with advanced production monitoring capabilities. The conducted approach used to design the compositional framework utilizes the Factory Design and Improvement (FDI) methodology. Furthermore, the validation of our proposed framework is illustrated through a case study conducted in a phosphate screening station within the context of the mining industry.
{"title":"Scalable Compositional Digital Twin-Based Monitoring System for Production Management: Design and Development in an Experimental Open-Pit Mine","authors":"Nabil El Bazi, Oussama Laayati, Nouhaila Darkaoui, Adila El Maghraoui, Nasr Guennouni, Ahmed Chebak, Mustapha Mabrouki","doi":"10.3390/designs8030040","DOIUrl":"https://doi.org/10.3390/designs8030040","url":null,"abstract":"While digital twins (DTs) have recently gained prominence as a viable option for creating reliable asset representations, many existing frameworks and architectures in the literature involve the integration of different technologies and paradigms, including the Internet of Things (IoTs), data modeling, and machine learning (ML). This complexity requires the orchestration of these different technologies, often resulting in subsystems and composition frameworks that are difficult to seamlessly align. In this paper, we present a scalable compositional framework designed for the development of a DT-based production management system (PMS) with advanced production monitoring capabilities. The conducted approach used to design the compositional framework utilizes the Factory Design and Improvement (FDI) methodology. Furthermore, the validation of our proposed framework is illustrated through a case study conducted in a phosphate screening station within the context of the mining industry.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"8 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David F. Metzger, Christoph Klahn, Roland Dittmeyer
Equipment integrity is an essential aspect of process engineering. Design guidelines facilitate the design and production of safe-to-operate and economic devices. Thin-walled, slit-shaped modules form a subgroup of process engineering devices made via additive manufacturing (AM). Being subject to internal pressure, they have lacked design guidelines until now. We derived a user-centered calculation model for such modules with regular internal structures. It was validated with Finite Element Analysis (FEA) and practical pressure tests for which the modules were manufactured additively. The performance of the calculation could be confirmed, and a design graph was derived. Slit-shaped modules with appropriate internal structures can withstand high pressure at a minimum wall thickness, and they are efficiently fabricated. These structures, being pins, fins, lattice, or heat transfer enhancing fluid-guiding elements (FGEs), occupied approximately 10% of the modules’ internal volume.
{"title":"A Simplified Design Method for the Mechanical Stability of Slit-Shaped Additively Manufactured Reactor Modules","authors":"David F. Metzger, Christoph Klahn, Roland Dittmeyer","doi":"10.3390/designs8030041","DOIUrl":"https://doi.org/10.3390/designs8030041","url":null,"abstract":"Equipment integrity is an essential aspect of process engineering. Design guidelines facilitate the design and production of safe-to-operate and economic devices. Thin-walled, slit-shaped modules form a subgroup of process engineering devices made via additive manufacturing (AM). Being subject to internal pressure, they have lacked design guidelines until now. We derived a user-centered calculation model for such modules with regular internal structures. It was validated with Finite Element Analysis (FEA) and practical pressure tests for which the modules were manufactured additively. The performance of the calculation could be confirmed, and a design graph was derived. Slit-shaped modules with appropriate internal structures can withstand high pressure at a minimum wall thickness, and they are efficiently fabricated. These structures, being pins, fins, lattice, or heat transfer enhancing fluid-guiding elements (FGEs), occupied approximately 10% of the modules’ internal volume.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"28 32","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the era of the competitive environment, the improvement in current products is ensured through activities aimed at increasing a product’s quality level and, consequently, reducing the amount of waste. The dynamically changing production environment and sudden changes in customer expectations force us to take precise and well-thought-out development steps. Furthermore, it is important to anticipate favourable product changes to prepare for market changes over time. This is still an open problem. The aim of this study was to develop a method to predict the quality of potential product prototypes resulting from the proposed modifications of the product features. This methodology takes into account current customer expectations. The method was created based on the principles of creating Quality Function Deployment (QFD) in the context of taking into account current and future customer expectations regarding product features. This is a new approach to analysing product quality within the principles of the traditional QFD method. The originality of the study is the technique used in the method to estimate the expected values of product features and their importance (weights), taking into account current customer expectations. Its originality is also manifested in drawing conclusions supporting the decision-making process of product improvement, because it involves ensuring the pro-quality modification of selected features of current products in the order that is most advantageous from the customer’s point of view. The use of the proposed method allows for the analysis of the impact of modifying the current value of a product feature. The method is illustrated with an example of a vacuum cleaner for home use. However, the proposed method can be applied to the design of any product to predict products that will meet customer expectations.
{"title":"Predicting Quality of Modified Product Attributes to Achieve Customer Satisfaction","authors":"A. Pacana, D. Siwiec","doi":"10.3390/designs8020036","DOIUrl":"https://doi.org/10.3390/designs8020036","url":null,"abstract":"In the era of the competitive environment, the improvement in current products is ensured through activities aimed at increasing a product’s quality level and, consequently, reducing the amount of waste. The dynamically changing production environment and sudden changes in customer expectations force us to take precise and well-thought-out development steps. Furthermore, it is important to anticipate favourable product changes to prepare for market changes over time. This is still an open problem. The aim of this study was to develop a method to predict the quality of potential product prototypes resulting from the proposed modifications of the product features. This methodology takes into account current customer expectations. The method was created based on the principles of creating Quality Function Deployment (QFD) in the context of taking into account current and future customer expectations regarding product features. This is a new approach to analysing product quality within the principles of the traditional QFD method. The originality of the study is the technique used in the method to estimate the expected values of product features and their importance (weights), taking into account current customer expectations. Its originality is also manifested in drawing conclusions supporting the decision-making process of product improvement, because it involves ensuring the pro-quality modification of selected features of current products in the order that is most advantageous from the customer’s point of view. The use of the proposed method allows for the analysis of the impact of modifying the current value of a product feature. The method is illustrated with an example of a vacuum cleaner for home use. However, the proposed method can be applied to the design of any product to predict products that will meet customer expectations.","PeriodicalId":504821,"journal":{"name":"Designs","volume":" 928","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140682053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NiCoCrAlY high entropy alloy (HEA) coating (47.1 wt.% Ni, 23 wt.% Co, 17 wt.% Cr, 12.5 wt.% Al, and 0.4 wt.% Y) was deposited on a stainless steel subtract by atmospheric plasma spraying (APS). The as-deposited coating was about 300 μm thickness with <1% porosity. The microstructure of the coating consisted of dispersed secondary phases/intermetallics in the solid solution. The stress–strain behaviour of this coating was investigated in micro-scale with the help of in situ micro-pillar compression. The experimental results show that yield and compressive stress in the cross-section of the coating was higher (1.27 ± 0.10 MPa and 2.19 ± 0.10 GPa, respectively) than that of the planar direction (0.85 ± 0.09 MPa and 1.20 ± 0.08 GPa, respectively). The various secondary/intermetallic phases (γ′–Ni3Al, β–NiAl) that were present in the coating microstructure hinder the lattice movement during compression, according to Orowan mechanism. In addition to that, the direction of the loading to that of the orientation of the phase/splat boundaries dictate the crack propagation architecture, which results in difference in the micro-mechanical properties.
{"title":"Investigation on the Microstructure and Micro-Mechanical Properties of Thermal-Sprayed NiCoCrAlY High Entropy Alloy Coating","authors":"A. Basak, N. Radhika, C. Prakash, A. Pramanik","doi":"10.3390/designs8020037","DOIUrl":"https://doi.org/10.3390/designs8020037","url":null,"abstract":"NiCoCrAlY high entropy alloy (HEA) coating (47.1 wt.% Ni, 23 wt.% Co, 17 wt.% Cr, 12.5 wt.% Al, and 0.4 wt.% Y) was deposited on a stainless steel subtract by atmospheric plasma spraying (APS). The as-deposited coating was about 300 μm thickness with <1% porosity. The microstructure of the coating consisted of dispersed secondary phases/intermetallics in the solid solution. The stress–strain behaviour of this coating was investigated in micro-scale with the help of in situ micro-pillar compression. The experimental results show that yield and compressive stress in the cross-section of the coating was higher (1.27 ± 0.10 MPa and 2.19 ± 0.10 GPa, respectively) than that of the planar direction (0.85 ± 0.09 MPa and 1.20 ± 0.08 GPa, respectively). The various secondary/intermetallic phases (γ′–Ni3Al, β–NiAl) that were present in the coating microstructure hinder the lattice movement during compression, according to Orowan mechanism. In addition to that, the direction of the loading to that of the orientation of the phase/splat boundaries dictate the crack propagation architecture, which results in difference in the micro-mechanical properties.","PeriodicalId":504821,"journal":{"name":"Designs","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140681854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Mahbubur Rahman, Md. Tanzil Shahria, M. S. H. Sunny, Md. Mahafuzur Rahaman Khan, Emroze Islam, Asif Al Zubayer Swapnil, David Bedolla-Martínez, M. H. Rahman
A significant number of individuals in the United States use assistive devices to enhance their mobility, and a considerable portion of those who depend on such aids require assistance from another individual in performing daily living activities. The introduction of robotic grippers has emerged as a transformative intervention, significantly contributing to the cultivation of independence. However, there are few grippers in the fields, which help with mimicking human hand-like movements (mostly grasping and pinching, with adoptive force control) to grasp and carry objects. Additionally, the data are not available even on how many Activities of Daily Living (ADL) objects they can handle. The goal of the research is to offer a new three-fingered gripper for daily living assistance, which can both grasp and pinch with adaptive force, enabling the capabilities of handling wide-ranging ADL objects with a minimal footprint. It is designed to handle 90 selective essential ADL objects of different shapes (cylindrical, irregular, rectangular, and round), sizes, weights, and textures (smooth, rough, bumpy, and rubbery). The gripper boasts a meticulously engineered yet simple design, facilitating seamless manufacturing through 3D printing technology without compromising its operational efficacy. The gripper extends its functionality beyond conventional grasping, featuring the capability to pinch (such as holding a credit card) and securely hold lightweight objects. Moreover, the gripper is adaptable to grasping various objects with different shapes and weights with controlled forces. In evaluation, the developed gripper went through rigorous load tests and usability tests. The results demonstrated that the users picked and placed 75 objects out of 90 daily objects. The gripper held and manipulated objects with dimensions from 25 mm to 80 mm and up to 2.9 kg. For heavy-weight objects (like books) where the centroid is far apart from the grasping areas, it is difficult to hold them due to high torque. However, objects’ textures have no significant effect on grasping performance. Users perceived the simplicity of the gripper. Further investigation is required to assess the utility and longevity of grippers. This study contributes to developing assistive robots designed to enhance object manipulation, thereby improving individuals’ independence and overall quality of life.
{"title":"Development of a Three-Finger Adaptive Robotic Gripper to Assist Activities of Daily Living","authors":"Md Mahbubur Rahman, Md. Tanzil Shahria, M. S. H. Sunny, Md. Mahafuzur Rahaman Khan, Emroze Islam, Asif Al Zubayer Swapnil, David Bedolla-Martínez, M. H. Rahman","doi":"10.3390/designs8020035","DOIUrl":"https://doi.org/10.3390/designs8020035","url":null,"abstract":"A significant number of individuals in the United States use assistive devices to enhance their mobility, and a considerable portion of those who depend on such aids require assistance from another individual in performing daily living activities. The introduction of robotic grippers has emerged as a transformative intervention, significantly contributing to the cultivation of independence. However, there are few grippers in the fields, which help with mimicking human hand-like movements (mostly grasping and pinching, with adoptive force control) to grasp and carry objects. Additionally, the data are not available even on how many Activities of Daily Living (ADL) objects they can handle. The goal of the research is to offer a new three-fingered gripper for daily living assistance, which can both grasp and pinch with adaptive force, enabling the capabilities of handling wide-ranging ADL objects with a minimal footprint. It is designed to handle 90 selective essential ADL objects of different shapes (cylindrical, irregular, rectangular, and round), sizes, weights, and textures (smooth, rough, bumpy, and rubbery). The gripper boasts a meticulously engineered yet simple design, facilitating seamless manufacturing through 3D printing technology without compromising its operational efficacy. The gripper extends its functionality beyond conventional grasping, featuring the capability to pinch (such as holding a credit card) and securely hold lightweight objects. Moreover, the gripper is adaptable to grasping various objects with different shapes and weights with controlled forces. In evaluation, the developed gripper went through rigorous load tests and usability tests. The results demonstrated that the users picked and placed 75 objects out of 90 daily objects. The gripper held and manipulated objects with dimensions from 25 mm to 80 mm and up to 2.9 kg. For heavy-weight objects (like books) where the centroid is far apart from the grasping areas, it is difficult to hold them due to high torque. However, objects’ textures have no significant effect on grasping performance. Users perceived the simplicity of the gripper. Further investigation is required to assess the utility and longevity of grippers. This study contributes to developing assistive robots designed to enhance object manipulation, thereby improving individuals’ independence and overall quality of life.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"66 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140705104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The realm of Additive Manufacturing (AM), often referred to as 3D printing, encompasses a broad spectrum of applications and methodologies, each contributing distinctively to the progress of this dynamic field [...]
增材制造(AM)通常被称为 3D 打印,它涵盖了广泛的应用和方法,每种方法都对这一充满活力的领域的进步做出了独特的贡献 [...]
{"title":"Additive Manufacturing—Process Optimisation","authors":"M. Obeidi","doi":"10.3390/designs8020034","DOIUrl":"https://doi.org/10.3390/designs8020034","url":null,"abstract":"The realm of Additive Manufacturing (AM), often referred to as 3D printing, encompasses a broad spectrum of applications and methodologies, each contributing distinctively to the progress of this dynamic field [...]","PeriodicalId":504821,"journal":{"name":"Designs","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140717197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In many applications, such as space navigation, metrology, testing, and geodesy, it is necessary to measure accelerations with frequencies ranging from fractions of a hertz to several kilohertz. For this purpose, optomechanical sensors are used. The natural frequency of such sensors should be approximately ten times greater than the frequency of the measured acceleration. In the case of triaxial acceleration measurements, a planar design with two sensors that measure accelerations in two perpendicular in-plane directions and a third sensor that measures out-of-plane acceleration is effective. The mechanical characteristics of the existing designs of both in-plane and out-of-plane types of sensors were analyzed, and the improved designs were elaborated. Using numerical simulation, the dependencies of the natural frequency level in the range from several hertz to tens of kilohertz on the designs and geometric parameters of opto-mechanical accelerometers were modeled. This allows one to select the accelerometer design and its parameters to measure the acceleration at the assigned frequency. It is shown that the opto-mechanical accelerometers of the proposed designs have reduced dissipation losses and crosstalk.
{"title":"Designs of Optomechanical Acceleration Sensors with the Natural Frequency from 5 Hz to 50 kHz","authors":"Marina Rezinkina, C. Braxmaier","doi":"10.3390/designs8020033","DOIUrl":"https://doi.org/10.3390/designs8020033","url":null,"abstract":"In many applications, such as space navigation, metrology, testing, and geodesy, it is necessary to measure accelerations with frequencies ranging from fractions of a hertz to several kilohertz. For this purpose, optomechanical sensors are used. The natural frequency of such sensors should be approximately ten times greater than the frequency of the measured acceleration. In the case of triaxial acceleration measurements, a planar design with two sensors that measure accelerations in two perpendicular in-plane directions and a third sensor that measures out-of-plane acceleration is effective. The mechanical characteristics of the existing designs of both in-plane and out-of-plane types of sensors were analyzed, and the improved designs were elaborated. Using numerical simulation, the dependencies of the natural frequency level in the range from several hertz to tens of kilohertz on the designs and geometric parameters of opto-mechanical accelerometers were modeled. This allows one to select the accelerometer design and its parameters to measure the acceleration at the assigned frequency. It is shown that the opto-mechanical accelerometers of the proposed designs have reduced dissipation losses and crosstalk.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"55 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140733686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The environmental impact of wind turbine rotor blades, both during manufacturing and at the end of their life cycle, can be significant. The aim of this study was to define and test a methodology for recycling the waste resulting from their production. Particles of waste from the mechanical machining of rotor blades, which were made up of a glass fibre/epoxy matrix mixture, were used to produce toe caps for use by the footwear industry. The addition of 1 wt.% of particles improved the mechanical properties of the epoxy matrix, with a 5.50% improvement in tension and an 8% improvement in stiffness. Characterisation of the laminates, manufactured by hand lay-up technique, revealed that in the three-point bending tests, the additive laminates showed improvements of 18.60% in tension, 7.50% in stiffness, and 10% in deformation compared to the control laminate. The compression test showed that the additive glass fibre toe cap had greater resistance to compression than the control glass fibre toe cap, with a reduction in deformation of 23.10%. The toe caps are suitable for use in protective footwear according to European standard EN ISO 20346:2022. They guaranteed protection against low-velocity impacts at an energy level of at least 100 J and against compression when tested at a compression load of at least 10 kN.
风力涡轮机转子叶片在生产过程中和生命周期结束时都会对环境产生重大影响。本研究的目的是确定并测试一种回收生产过程中产生的废料的方法。由玻璃纤维/环氧基质混合物组成的转子叶片机械加工废料颗粒被用于生产鞋类行业使用的鞋头盖。添加 1 重量百分比的颗粒后,环氧基质的机械性能得到改善,拉力提高了 5.50%,刚度提高了 8%。通过手糊技术制造的层压板的特性分析表明,在三点弯曲测试中,与对照层压板相比,添加剂层压板的拉伸性能提高了 18.60%,刚度提高了 7.50%,变形量提高了 10%。压缩测试表明,添加剂玻璃纤维趾盖比对照玻璃纤维趾盖具有更强的抗压缩性,变形减少了 23.10%。根据欧洲标准 EN ISO 20346:2022,这种趾盖适用于防护鞋。在能量水平至少为 100 J 的低速撞击和至少 10 kN 的压缩负荷测试中,它们都能保证提供保护。
{"title":"From Generation to Reuse: A Circular Economy Strategy Applied to Wind Turbine Production","authors":"Ana Rita Caramelo, P. Santos, Tânia M. Lima","doi":"10.3390/designs8020032","DOIUrl":"https://doi.org/10.3390/designs8020032","url":null,"abstract":"The environmental impact of wind turbine rotor blades, both during manufacturing and at the end of their life cycle, can be significant. The aim of this study was to define and test a methodology for recycling the waste resulting from their production. Particles of waste from the mechanical machining of rotor blades, which were made up of a glass fibre/epoxy matrix mixture, were used to produce toe caps for use by the footwear industry. The addition of 1 wt.% of particles improved the mechanical properties of the epoxy matrix, with a 5.50% improvement in tension and an 8% improvement in stiffness. Characterisation of the laminates, manufactured by hand lay-up technique, revealed that in the three-point bending tests, the additive laminates showed improvements of 18.60% in tension, 7.50% in stiffness, and 10% in deformation compared to the control laminate. The compression test showed that the additive glass fibre toe cap had greater resistance to compression than the control glass fibre toe cap, with a reduction in deformation of 23.10%. The toe caps are suitable for use in protective footwear according to European standard EN ISO 20346:2022. They guaranteed protection against low-velocity impacts at an energy level of at least 100 J and against compression when tested at a compression load of at least 10 kN.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"765 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140749311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}