Algorithms using swarming collective motion can solve coverage problems in unknown environments by reacting to unknown obstacles in real-time when they are encountered. However, these algorithms face two key challenges when deployed on real robots. First, hand-tuning efficient collective motion parameters is both time-consuming and difficult. Second, predicting the time required for a swarm to solve a particular problem is not straightforward. This paper introduces a novel evolutionary framework to address both problems by proposing a methodology that autonomously tunes collective motion parameters for coverage problems while predicting the time required for real robots to complete the task. Our approach utilizes a simulation–optimization framework that employs a genetic algorithm to optimize the parameters of a frontier-led swarming algorithm. Results indicate that the optimized parameters are transferable to real robots, achieving 100% coverage while maintaining 84% connectivity between them. Compared to state-of-the-art swarm methods, our system reduced turnaround time by 50% and 57% in different environments while maintaining collective motion. It also achieved a 55% reduction in turnaround time on average across five scenarios compared to budget-constrained path planning, with a 10% increase in coverage. Furthermore, our framework outperformed both hand-tuned and learned collective motion approaches, reducing turnaround time by 73% in non-collective motion scenarios and by 63% while maintaining 85% connectivity in collective motion scenarios. This approach effectively combines the adaptability of swarm behavior with the predictive reliability of planning methods.