Pub Date : 2025-12-01Epub Date: 2025-11-18DOI: 10.1038/s44318-025-00617-8
Luis Hernández-Huertas, Ismael Moreno-Sánchez, Jesús Crespo-Cuadrado, Ana Vargas-Baco, Gabriel da Silva Pescador, Ying Zhang, Zhihui Wen, Laurence Florens, José M Santos-Pereira, Ariel A Bazzini, Miguel A Moreno-Mateos
The maternal-to-zygotic transition (MZT) is a reprograming process encompassing zygotic genome activation (ZGA) and the clearance of maternally-provided mRNAs. While some factors regulating MZT have been identified, there are thousands of maternal RNAs whose function has not been ascribed yet. Here, we have performed a proof-of-principle CRISPR-RfxCas13d maternal screen, in which we targeted mRNAs encoding kinases and phosphatases or proteins regulating them in zebrafish. This screen identified branched-chain ketoacid dehydrogenase kinase, Bckdk, as a novel post-translational regulator of MZT. Bckdk mRNA knockdown caused epiboly defects, ZGA deregulation, H3K27ac reduction and a partial impairment of miR-430 processing. Phospho-proteomic analysis revealed that Phf10/Baf45a, a chromatin remodeling factor, is less phosphorylated upon Bckdk depletion. Further, phf10 mRNA knockdown also altered ZGA, and expression of a phospho-mimetic mutant of Phf10 rescued the developmental defects observed after bckdk mRNA depletion, as well as restored H3K27ac levels. Altogether, our results demonstrate the competence of CRISPR-RfxCas13d screenings to uncover new regulators of early vertebrate development and shed light on the post-translational control of MZT mediated by protein phosphorylation.
{"title":"CRISPR-RfxCas13d screening uncovers Bckdk as a post-translational regulator of maternal-to-zygotic transition in teleosts.","authors":"Luis Hernández-Huertas, Ismael Moreno-Sánchez, Jesús Crespo-Cuadrado, Ana Vargas-Baco, Gabriel da Silva Pescador, Ying Zhang, Zhihui Wen, Laurence Florens, José M Santos-Pereira, Ariel A Bazzini, Miguel A Moreno-Mateos","doi":"10.1038/s44318-025-00617-8","DOIUrl":"10.1038/s44318-025-00617-8","url":null,"abstract":"<p><p>The maternal-to-zygotic transition (MZT) is a reprograming process encompassing zygotic genome activation (ZGA) and the clearance of maternally-provided mRNAs. While some factors regulating MZT have been identified, there are thousands of maternal RNAs whose function has not been ascribed yet. Here, we have performed a proof-of-principle CRISPR-RfxCas13d maternal screen, in which we targeted mRNAs encoding kinases and phosphatases or proteins regulating them in zebrafish. This screen identified branched-chain ketoacid dehydrogenase kinase, Bckdk, as a novel post-translational regulator of MZT. Bckdk mRNA knockdown caused epiboly defects, ZGA deregulation, H3K27ac reduction and a partial impairment of miR-430 processing. Phospho-proteomic analysis revealed that Phf10/Baf45a, a chromatin remodeling factor, is less phosphorylated upon Bckdk depletion. Further, phf10 mRNA knockdown also altered ZGA, and expression of a phospho-mimetic mutant of Phf10 rescued the developmental defects observed after bckdk mRNA depletion, as well as restored H3K27ac levels. Altogether, our results demonstrate the competence of CRISPR-RfxCas13d screenings to uncover new regulators of early vertebrate development and shed light on the post-translational control of MZT mediated by protein phosphorylation.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"7021-7059"},"PeriodicalIF":8.3,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12669676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145551620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-10-22DOI: 10.1038/s44318-025-00588-w
Yazan Salloum, Gwendoline Gros, Keinis Quintero-Castillo, Camila Garcia-Baudino, Soraya Rabahi, Akshai Janardhana Kurup, Patricia Diabangouaya, David Pérez-Pascual, Rodrigo A Morales Castro, Jos Boekhorst, Eduardo J Villablanca, Jean-Marc Ghigo, Carmen G Feijoo, Sylvia Brugman, Pedro P Hernandez
Animals host symbiotic microbial communities that shape gut health. However, how the host immune system and microbiota interact to regulate epithelial homeostasis, particularly during early development, remains largely unclear. Human interleukin-26 (IL-26) is associated with gut inflammation and has intrinsic bactericidal activity in vitro, yet its in vivo functions are largely unknown, primarily due to its absence in rodents. To examine the role of IL-26 in early life, we used zebrafish and found that gut epithelial cells in il26-/- larvae exhibited increased proliferation, faster turnover, elevated DNA damage, and altered cell population abundance. This epithelial dysregulation occurred independently of the IL-26 canonical receptor and resulted from dysbiosis in il26-/- larvae. Moreover, IL-26 bactericidal activity was conserved in zebrafish, suggesting a potential role of this property in regulating microbiota composition. We further identified innate lymphoid cells (ILCs) as the primary source of IL-26 at this developmental stage. These findings establish IL-26 as a central player in a regulatory circuit linking the microbiota, ILCs, and intestinal epithelial cells to maintain gut homeostasis during early life.
{"title":"IL-26 from innate lymphoid cells regulates early-life gut epithelial homeostasis by shaping microbiota composition.","authors":"Yazan Salloum, Gwendoline Gros, Keinis Quintero-Castillo, Camila Garcia-Baudino, Soraya Rabahi, Akshai Janardhana Kurup, Patricia Diabangouaya, David Pérez-Pascual, Rodrigo A Morales Castro, Jos Boekhorst, Eduardo J Villablanca, Jean-Marc Ghigo, Carmen G Feijoo, Sylvia Brugman, Pedro P Hernandez","doi":"10.1038/s44318-025-00588-w","DOIUrl":"10.1038/s44318-025-00588-w","url":null,"abstract":"<p><p>Animals host symbiotic microbial communities that shape gut health. However, how the host immune system and microbiota interact to regulate epithelial homeostasis, particularly during early development, remains largely unclear. Human interleukin-26 (IL-26) is associated with gut inflammation and has intrinsic bactericidal activity in vitro, yet its in vivo functions are largely unknown, primarily due to its absence in rodents. To examine the role of IL-26 in early life, we used zebrafish and found that gut epithelial cells in il26-/- larvae exhibited increased proliferation, faster turnover, elevated DNA damage, and altered cell population abundance. This epithelial dysregulation occurred independently of the IL-26 canonical receptor and resulted from dysbiosis in il26-/- larvae. Moreover, IL-26 bactericidal activity was conserved in zebrafish, suggesting a potential role of this property in regulating microbiota composition. We further identified innate lymphoid cells (ILCs) as the primary source of IL-26 at this developmental stage. These findings establish IL-26 as a central player in a regulatory circuit linking the microbiota, ILCs, and intestinal epithelial cells to maintain gut homeostasis during early life.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"6832-6856"},"PeriodicalIF":8.3,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12669248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145349850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-10-29DOI: 10.1038/s44318-025-00611-0
Yanli Wu, Heng Zhang, Jiuyin Xu, Kai Wu, Wen Hu, Xinheng He, Gaoming Wang, Canrong Wu, H Eric Xu
Prostaglandin E2 (PGE2) signaling through EP2 and EP4 receptors is crucial in regulating inflammation, pain, and cancer progression. While selective and dual antagonists for these receptors hold therapeutic potential, their binding mechanisms and selectivity have remained unclear. In this study, we present cryo-electron microscopy (cryo-EM) structures of human EP2 and EP4 receptors in complex with selective antagonists PF-04418948 and grapiprant, as well as with the dual antagonist TG6-129. These structures reveal distinct binding pockets and interaction networks that dictate antagonist selectivity and efficacy. Notably, TG6-129 displays a novel binding mode, engaging deeply with EP2 while interacting more superficially with EP4 in a two-warhead manner. Furthermore, comparisons of active and inactive receptor structures elucidate the mechanisms underlying EP2 activation and antagonism. Overall, these findings provide a structural framework for understanding prostanoid receptor pharmacology and offer valuable insights for the rational design of improved selective and dual antagonists targeting EP2 and EP4 receptors.
{"title":"Structural insights into selective and dual antagonism of EP2 and EP4 prostaglandin receptors.","authors":"Yanli Wu, Heng Zhang, Jiuyin Xu, Kai Wu, Wen Hu, Xinheng He, Gaoming Wang, Canrong Wu, H Eric Xu","doi":"10.1038/s44318-025-00611-0","DOIUrl":"10.1038/s44318-025-00611-0","url":null,"abstract":"<p><p>Prostaglandin E2 (PGE2) signaling through EP2 and EP4 receptors is crucial in regulating inflammation, pain, and cancer progression. While selective and dual antagonists for these receptors hold therapeutic potential, their binding mechanisms and selectivity have remained unclear. In this study, we present cryo-electron microscopy (cryo-EM) structures of human EP2 and EP4 receptors in complex with selective antagonists PF-04418948 and grapiprant, as well as with the dual antagonist TG6-129. These structures reveal distinct binding pockets and interaction networks that dictate antagonist selectivity and efficacy. Notably, TG6-129 displays a novel binding mode, engaging deeply with EP2 while interacting more superficially with EP4 in a two-warhead manner. Furthermore, comparisons of active and inactive receptor structures elucidate the mechanisms underlying EP2 activation and antagonism. Overall, these findings provide a structural framework for understanding prostanoid receptor pharmacology and offer valuable insights for the rational design of improved selective and dual antagonists targeting EP2 and EP4 receptors.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"7242-7262"},"PeriodicalIF":8.3,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12669672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145402657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-11-10DOI: 10.1038/s44318-025-00634-7
Priyanka Das, Ravi, Jogender Singh
Gut microbes play a crucial role in modulating host lifespan. However, the microbial factors that influence host longevity and their mechanisms of action remain poorly understood. Using the expression of Caenorhabditis elegans FAT-7, a stearoyl-CoA 9-desaturase, as a proxy for lifespan modulation, we conduct a genome-wide bacterial mutant screen and identify 26 Escherichia coli mutants that enhance host lifespan. Transcriptomic and biochemical analyses reveal that these mutant diets induce oxidative stress and activate the mitochondrial unfolded protein response (UPRmt). Antioxidant supplementation abolishes lifespan extension, confirming that oxidative stress drives these effects. The extension of lifespan requires the oxidative stress response regulators SKN-1, SEK-1, and HLH-30. Mechanistically, these effects are linked to reduced iron availability, as iron supplementation restores FAT-7 expression, suppresses UPRmt activation, and abolishes lifespan extension. Iron chelation mimics the pro-longevity effects of the mutant diets, highlighting dietary iron as a key modulator of aging. Our findings reveal a bacterial-host metabolic axis that links oxidative stress, iron homeostasis, and longevity in C. elegans.
{"title":"Iron-deplete diet enhances Caenorhabditis elegans lifespan via oxidative stress response pathways.","authors":"Priyanka Das, Ravi, Jogender Singh","doi":"10.1038/s44318-025-00634-7","DOIUrl":"10.1038/s44318-025-00634-7","url":null,"abstract":"<p><p>Gut microbes play a crucial role in modulating host lifespan. However, the microbial factors that influence host longevity and their mechanisms of action remain poorly understood. Using the expression of Caenorhabditis elegans FAT-7, a stearoyl-CoA 9-desaturase, as a proxy for lifespan modulation, we conduct a genome-wide bacterial mutant screen and identify 26 Escherichia coli mutants that enhance host lifespan. Transcriptomic and biochemical analyses reveal that these mutant diets induce oxidative stress and activate the mitochondrial unfolded protein response (UPRmt). Antioxidant supplementation abolishes lifespan extension, confirming that oxidative stress drives these effects. The extension of lifespan requires the oxidative stress response regulators SKN-1, SEK-1, and HLH-30. Mechanistically, these effects are linked to reduced iron availability, as iron supplementation restores FAT-7 expression, suppresses UPRmt activation, and abolishes lifespan extension. Iron chelation mimics the pro-longevity effects of the mutant diets, highlighting dietary iron as a key modulator of aging. Our findings reveal a bacterial-host metabolic axis that links oxidative stress, iron homeostasis, and longevity in C. elegans.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"7565-7589"},"PeriodicalIF":8.3,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12706066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145490918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-11-24DOI: 10.1038/s44318-025-00646-3
Nicolas L Fawzi
{"title":"Solid trouble: tau and TDP-43 interaction in aggregation and pathology.","authors":"Nicolas L Fawzi","doi":"10.1038/s44318-025-00646-3","DOIUrl":"10.1038/s44318-025-00646-3","url":null,"abstract":"","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"7327-7329"},"PeriodicalIF":8.3,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12705644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145598115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-11-05DOI: 10.1038/s44318-025-00626-7
Archit Garg, Ewa Niedzialkowska, Jeffrey J Zhou, Jasper Moh, Edward H Egelman, Jungsan Sohn
In response to various intracellular stress or damage-associated signals, inflammasomes can be activated and trigger a pyroptotic cell death process through the sequential assembly of structurally compatible and interacting filamentous oligomers involving the pyrin domains (PYD) of important inflammasome components. The PYD-containing interferon-inducible protein 16 (IFI16) has been suggested as a viral DNA sensor that can induce inflammasome formation, but it also has other inflammasome-independent functions, including interferon production. Here, the cryo-EM structure of the filament assembled by the PYD of human IFI16 reveals a helical architecture distinct from inflammasome PYD filaments. In silico interface energy calculations suggest that the helical architecture of the IFI16PYD filament prevents interactions with inflammasome PYD filaments. Biochemical and cell biology experiments consistently demonstrate that IFI16 does not directly interact with inflammasome pyrin domains. Together, our results provide insights into the structural basis of the inflammasome-independent functions of IFI16, and also show that strict architectural compatibility requirements for interactions contribute to the signal transduction specificity in inflammasome signaling.
{"title":"Structural insights into the atypical filament assembly of pyrin domain-containing IFI16.","authors":"Archit Garg, Ewa Niedzialkowska, Jeffrey J Zhou, Jasper Moh, Edward H Egelman, Jungsan Sohn","doi":"10.1038/s44318-025-00626-7","DOIUrl":"10.1038/s44318-025-00626-7","url":null,"abstract":"<p><p>In response to various intracellular stress or damage-associated signals, inflammasomes can be activated and trigger a pyroptotic cell death process through the sequential assembly of structurally compatible and interacting filamentous oligomers involving the pyrin domains (PYD) of important inflammasome components. The PYD-containing interferon-inducible protein 16 (IFI16) has been suggested as a viral DNA sensor that can induce inflammasome formation, but it also has other inflammasome-independent functions, including interferon production. Here, the cryo-EM structure of the filament assembled by the PYD of human IFI16 reveals a helical architecture distinct from inflammasome PYD filaments. In silico interface energy calculations suggest that the helical architecture of the IFI16<sup>PYD</sup> filament prevents interactions with inflammasome PYD filaments. Biochemical and cell biology experiments consistently demonstrate that IFI16 does not directly interact with inflammasome pyrin domains. Together, our results provide insights into the structural basis of the inflammasome-independent functions of IFI16, and also show that strict architectural compatibility requirements for interactions contribute to the signal transduction specificity in inflammasome signaling.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"7702-7720"},"PeriodicalIF":8.3,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12705702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145453780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-13DOI: 10.1038/s44318-025-00631-w
Xinyu Xiang, Anni Gao, Dominik Handler, Francisco Falcon, Diego Rodriguez-Terrones, Sergej Nowoshilow, Wanlu Liu, Elly M Tanaka, Dónal O'Carroll
The piRNA pathway protects animal germlines from active transposons. Mammals employ a cytoplasmic pathway to destroy transposon transcripts during germline reprogramming. This post-transcriptional mechanism is ancient and found throughout the animal kingdom. A nuclear piRNA pathway mediates transposon DNA re-methylation, which is believed to be bespoke to mammals. However, when exactly piRNA-directed DNA methylation evolved remains unknown. We found that a mammalian-like piRNA pathway evolved early in tetrapod evolution and is found and expressed in its current configuration in the axolotl salamander. Analysis of axolotl testes and oocytes revealed diverse repertoires of piRNAs and pervasive post-transcriptional targeting of young transposons. We identified high levels of genome methylation in axolotl spermatozoa, with full-length transposons being heavily methylated. Our findings reveal that the mammalian nuclear piRNA pathway has ancient vertebrate origins, and it has likely been safeguarding the germline throughout most of tetrapod evolution. Thus, the emergence of piRNA-directed DNA methylation is a pivotal epigenetic evolutionary event that may have laid the foundation for germline reprogramming and genomic imprinting.
{"title":"A mammalian-like piRNA pathway in Axolotl reveals the origins of piRNA-directed DNA methylation.","authors":"Xinyu Xiang, Anni Gao, Dominik Handler, Francisco Falcon, Diego Rodriguez-Terrones, Sergej Nowoshilow, Wanlu Liu, Elly M Tanaka, Dónal O'Carroll","doi":"10.1038/s44318-025-00631-w","DOIUrl":"10.1038/s44318-025-00631-w","url":null,"abstract":"<p><p>The piRNA pathway protects animal germlines from active transposons. Mammals employ a cytoplasmic pathway to destroy transposon transcripts during germline reprogramming. This post-transcriptional mechanism is ancient and found throughout the animal kingdom. A nuclear piRNA pathway mediates transposon DNA re-methylation, which is believed to be bespoke to mammals. However, when exactly piRNA-directed DNA methylation evolved remains unknown. We found that a mammalian-like piRNA pathway evolved early in tetrapod evolution and is found and expressed in its current configuration in the axolotl salamander. Analysis of axolotl testes and oocytes revealed diverse repertoires of piRNAs and pervasive post-transcriptional targeting of young transposons. We identified high levels of genome methylation in axolotl spermatozoa, with full-length transposons being heavily methylated. Our findings reveal that the mammalian nuclear piRNA pathway has ancient vertebrate origins, and it has likely been safeguarding the germline throughout most of tetrapod evolution. Thus, the emergence of piRNA-directed DNA methylation is a pivotal epigenetic evolutionary event that may have laid the foundation for germline reprogramming and genomic imprinting.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7618676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145514759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-10-20DOI: 10.1038/s44318-025-00585-z
Rebecca K Spangler, Kathrin Braun, Guinevere E Ashley, Marit van der Does, Daniel Wruck, Andrea Ramos Coronado, James Matthew Ragle, Vytautas Iesmantavicius, Lucas J Morales Moya, Keya Daly, Carrie L Partch, Helge Großhans, Jordan D Ward
The mammalian protein PERIOD (PER) and its C. elegans orthologue LIN-42 have been proposed to constitute an evolutionary link between two distinct, circadian and developmental, timing systems. While the function of PER in animal circadian rhythms is well understood molecularly and mechanistically, this is not true for LIN-42's function in timing rhythmic development, reflected in C. elegans molting cycles. We observed arrhythmic molts upon combined deletion of a region comprising two distinct sequence elements previously termed SYQ and LT. This region functions as a casein kinase I (CK1)-binding domain (CK1BD) mediating stable binding to KIN-20, the C. elegans CK1δ/ε orthologue. CK1 phosphorylates LIN-42, and the CK1BD sub-domains SYQ/CKBD-A and LT/CKBD-B play distinct roles in controlling CK1-binding and kinase activity in vitro. KIN-20 and the LIN-42 CK1BD are required for proper molt timing in vivo, and loss of LIN-42 binding or of the phosphorylated LIN-42 tail impairs nuclear accumulation of KIN-20. These findings indicate that LIN-42/PER and KIN-20/CK1 form a functionally conserved signaling module of two distinct chronobiological systems.
{"title":"A conserved chronobiological complex times C. elegans development.","authors":"Rebecca K Spangler, Kathrin Braun, Guinevere E Ashley, Marit van der Does, Daniel Wruck, Andrea Ramos Coronado, James Matthew Ragle, Vytautas Iesmantavicius, Lucas J Morales Moya, Keya Daly, Carrie L Partch, Helge Großhans, Jordan D Ward","doi":"10.1038/s44318-025-00585-z","DOIUrl":"10.1038/s44318-025-00585-z","url":null,"abstract":"<p><p>The mammalian protein PERIOD (PER) and its C. elegans orthologue LIN-42 have been proposed to constitute an evolutionary link between two distinct, circadian and developmental, timing systems. While the function of PER in animal circadian rhythms is well understood molecularly and mechanistically, this is not true for LIN-42's function in timing rhythmic development, reflected in C. elegans molting cycles. We observed arrhythmic molts upon combined deletion of a region comprising two distinct sequence elements previously termed SYQ and LT. This region functions as a casein kinase I (CK1)-binding domain (CK1BD) mediating stable binding to KIN-20, the C. elegans CK1δ/ε orthologue. CK1 phosphorylates LIN-42, and the CK1BD sub-domains SYQ/CKBD-A and LT/CKBD-B play distinct roles in controlling CK1-binding and kinase activity in vitro. KIN-20 and the LIN-42 CK1BD are required for proper molt timing in vivo, and loss of LIN-42 binding or of the phosphorylated LIN-42 tail impairs nuclear accumulation of KIN-20. These findings indicate that LIN-42/PER and KIN-20/CK1 form a functionally conserved signaling module of two distinct chronobiological systems.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"6368-6396"},"PeriodicalIF":8.3,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12624140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145337869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}