首页 > 最新文献

EMBO Journal最新文献

英文 中文
Single-nucleotide m⁶A mapping uncovers redundant YTHDF function in planarian progenitor fate selection. 单核苷酸6图谱揭示了在涡虫祖先命运选择中冗余的YTHDF功能。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-01 Epub Date: 2026-01-03 DOI: 10.1038/s44318-025-00662-3
Yarden Yesharim, Ophir Shwarzbard, Jenny Barboy-Smoliarenko, Prakash Varkey Cherian, Ran Shachar, Amrutha Palavalli, Hanh Thi-Kim Vu, Schraga Schwartz, Omri Wurtzel

Cell fate decisions require tight regulation of gene expression. In planarians, highly regenerative flatworms, the mRNA modification N⁶-methyladenosine (m⁶A) modulates progenitor production and fate. However, the mechanisms governing m⁶A deposition in the planarian transcriptome, and the role of their expanded family of YTHDF m⁶A reader proteins in orchestrating biological functions, remain unclear. Here, we generated the first single-nucleotide resolution map of m⁶A in planarians, and revealed that simple sequence rules guide m⁶A deposition, facilitating the flexible evolutionary gain and loss of these marks. Functional analyses of the five YTHDF planarian m⁶A readers revealed that while individual reader expression is dispensable, together, the planarian YTHDF proteins regulate the production of specific progenitor lineages and overall body size. Collectively, our findings uncover a robust, redundant regulatory architecture for cell fate control in planarians, characterized by multiple m⁶A sites per gene and coordinated m⁶A reader expression. This architecture is essential for proper lineage resolution and provides insights into the evolutionary dynamics of the m⁶A landscape.

细胞命运的决定需要基因表达的严格调控。在涡虫,高度再生的扁虫,mRNA修饰N⁶-甲基腺苷(m⁶A)调节祖细胞的产生和命运。然而,控制m 26 A在涡虫转录组中沉积的机制,以及它们扩展的YTHDF m 26 A读卡器蛋白家族在协调生物学功能中的作用仍不清楚。在这里,我们生成了首个纯涡虫中m26 A的单核苷酸分辨率图,并揭示了简单的序列规则指导着m26 A的沉积,促进了这些标记的灵活进化增益和丢失。对5个YTHDF涡虫读卡器的功能分析显示,虽然单个读卡器的表达是不可缺少的,但总的来说,涡虫YTHDF蛋白调节特定祖谱系的产生和整体体型。总的来说,我们的研究结果揭示了涡虫细胞命运控制的一个强大的、冗余的调控结构,其特征是每个基因有多个6个a位点和协调的6个a阅读器表达。这种结构对于正确的谱系解析至关重要,并提供了对m 26 A景观进化动力学的见解。
{"title":"Single-nucleotide m⁶A mapping uncovers redundant YTHDF function in planarian progenitor fate selection.","authors":"Yarden Yesharim, Ophir Shwarzbard, Jenny Barboy-Smoliarenko, Prakash Varkey Cherian, Ran Shachar, Amrutha Palavalli, Hanh Thi-Kim Vu, Schraga Schwartz, Omri Wurtzel","doi":"10.1038/s44318-025-00662-3","DOIUrl":"10.1038/s44318-025-00662-3","url":null,"abstract":"<p><p>Cell fate decisions require tight regulation of gene expression. In planarians, highly regenerative flatworms, the mRNA modification N⁶-methyladenosine (m⁶A) modulates progenitor production and fate. However, the mechanisms governing m⁶A deposition in the planarian transcriptome, and the role of their expanded family of YTHDF m⁶A reader proteins in orchestrating biological functions, remain unclear. Here, we generated the first single-nucleotide resolution map of m⁶A in planarians, and revealed that simple sequence rules guide m⁶A deposition, facilitating the flexible evolutionary gain and loss of these marks. Functional analyses of the five YTHDF planarian m⁶A readers revealed that while individual reader expression is dispensable, together, the planarian YTHDF proteins regulate the production of specific progenitor lineages and overall body size. Collectively, our findings uncover a robust, redundant regulatory architecture for cell fate control in planarians, characterized by multiple m⁶A sites per gene and coordinated m⁶A reader expression. This architecture is essential for proper lineage resolution and provides insights into the evolutionary dynamics of the m⁶A landscape.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"749-788"},"PeriodicalIF":8.3,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12864844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epromoters bind key stress-related transcription factors to regulate clusters of stress response genes. 启动子结合关键的应激相关转录因子调控应激反应基因簇。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-01 Epub Date: 2026-01-03 DOI: 10.1038/s44318-025-00670-3
Juliette Malfait, Jing Wan, Himanshu Narayan Singh, Charbel Souaid, Gaëlle Farah, Junhua Su, Magali Torres, Iris Manosalva, Nathalie Sakakini, Cyril Esnault, Sandrine Sarrazin, Michael Sieweke, Salvatore Spicuglia

Cellular and environmental stress triggers the rapid and global reprogramming of gene transcription by coordinated recruitment of a limited number of key inducible transcription factors to cis-regulatory elements. Here, we performed a comprehensive analysis of different stress models and observed that co-induced genes are generally located in close genomic proximity. By integrating gene expression and transcription factor binding resources across different stress models, we identify an enrichment for clusters in which only one of the clusters' promoters recruits the key transcription factors, reminiscent of Epromoters-a type of cis-regulatory element that displays both promoter and enhancer function. Epromoter-regulated clusters were frequently found regardless of the stress or inflammatory response. Predicted Epromoters displayed enhancer activity and regulated clusters of stress-response genes independently of their genomic location. These findings imply that Epromoters are central regulatory elements that control gene clusters in response to acute perturbations.

细胞和环境胁迫通过协调募集有限数量的关键诱导转录因子到顺式调控元件,触发基因转录的快速和全局重编程。在这里,我们对不同的胁迫模型进行了综合分析,并观察到共诱导基因通常位于基因组附近。通过整合不同胁迫模式下的基因表达和转录因子结合资源,我们发现了一个富集的集群,其中只有一个集群的启动子招募关键的转录因子,让人想起epromoter——一种同时显示启动子和增强子功能的顺式调控元件。无论应激或炎症反应如何,都经常发现epromoter调控的簇。预测的启动子显示增强子活性,并独立于其基因组位置调节应激反应基因簇。这些发现表明启动子是控制基因簇响应急性扰动的中心调控元件。
{"title":"Epromoters bind key stress-related transcription factors to regulate clusters of stress response genes.","authors":"Juliette Malfait, Jing Wan, Himanshu Narayan Singh, Charbel Souaid, Gaëlle Farah, Junhua Su, Magali Torres, Iris Manosalva, Nathalie Sakakini, Cyril Esnault, Sandrine Sarrazin, Michael Sieweke, Salvatore Spicuglia","doi":"10.1038/s44318-025-00670-3","DOIUrl":"10.1038/s44318-025-00670-3","url":null,"abstract":"<p><p>Cellular and environmental stress triggers the rapid and global reprogramming of gene transcription by coordinated recruitment of a limited number of key inducible transcription factors to cis-regulatory elements. Here, we performed a comprehensive analysis of different stress models and observed that co-induced genes are generally located in close genomic proximity. By integrating gene expression and transcription factor binding resources across different stress models, we identify an enrichment for clusters in which only one of the clusters' promoters recruits the key transcription factors, reminiscent of Epromoters-a type of cis-regulatory element that displays both promoter and enhancer function. Epromoter-regulated clusters were frequently found regardless of the stress or inflammatory response. Predicted Epromoters displayed enhancer activity and regulated clusters of stress-response genes independently of their genomic location. These findings imply that Epromoters are central regulatory elements that control gene clusters in response to acute perturbations.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"901-929"},"PeriodicalIF":8.3,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12864986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TDP-43 directly inhibits mRNA accumulation in neurites through modulation of mRNA stability. TDP-43通过调控mRNA稳定性直接抑制神经突mRNA积累。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-01 Epub Date: 2025-12-15 DOI: 10.1038/s44318-025-00653-4
Charlie Moffatt, Ankita Arora, Katherine F Vaeth, Bryan B Guzman, Gurprit Bhardwaj, Audrey Hoelscher, Levi B Gifford, Holger A Russ, Daniel Dominguez, J Matthew Taliaferro

The subcellular localization of many mRNAs to neuronal projections allows neurons to efficiently and rapidly react to spatially restricted external cues. However, for most of these RNAs, the mechanisms that govern their localization are unknown. Here, using subcellular fractionation and single-molecule RNA FISH, we found that loss of TDP-43 results in increased accumulation of hundreds of mRNAs in neurites. Using high-throughput functional assays in cells and high-throughput binding assays in vitro, we subsequently identified specific regions within these mRNAs that mediate their TDP-43-dependent localization and interaction with TDP-43. We found that the same regions also mediated TDP-43-dependent mRNA instability, suggesting a mechanism by which TDP-43 regulates mRNA localization. ALS-associated mutations in TDP-43 resulted in similar mRNA mislocalization phenotypes as did TDP-43 loss in mouse dorsal root ganglia and human iPS-derived motor neurons. These findings establish TDP-43 as a direct negative regulator of mRNA abundance in neurites and suggest that mislocalization of specific transcripts may occur in ALS patients.

许多mrna对神经元投射的亚细胞定位使神经元能够有效和快速地对空间受限的外部信号做出反应。然而,对于大多数这些rna,控制它们定位的机制是未知的。在这里,使用亚细胞分离和单分子RNA FISH,我们发现TDP-43的缺失导致神经突中数百种mrna的积累增加。通过细胞内高通量功能测定和体外高通量结合测定,我们随后确定了这些mrna中介导TDP-43依赖性定位和与TDP-43相互作用的特定区域。我们发现相同的区域也介导了TDP-43依赖的mRNA不稳定性,提示TDP-43调节mRNA定位的机制。als相关的TDP-43突变导致与小鼠背根神经节和人类ips来源的运动神经元中TDP-43缺失相似的mRNA错定位表型。这些发现证实了TDP-43是神经突mRNA丰度的直接负调控因子,并提示ALS患者可能出现特异性转录本的错定位。
{"title":"TDP-43 directly inhibits mRNA accumulation in neurites through modulation of mRNA stability.","authors":"Charlie Moffatt, Ankita Arora, Katherine F Vaeth, Bryan B Guzman, Gurprit Bhardwaj, Audrey Hoelscher, Levi B Gifford, Holger A Russ, Daniel Dominguez, J Matthew Taliaferro","doi":"10.1038/s44318-025-00653-4","DOIUrl":"10.1038/s44318-025-00653-4","url":null,"abstract":"<p><p>The subcellular localization of many mRNAs to neuronal projections allows neurons to efficiently and rapidly react to spatially restricted external cues. However, for most of these RNAs, the mechanisms that govern their localization are unknown. Here, using subcellular fractionation and single-molecule RNA FISH, we found that loss of TDP-43 results in increased accumulation of hundreds of mRNAs in neurites. Using high-throughput functional assays in cells and high-throughput binding assays in vitro, we subsequently identified specific regions within these mRNAs that mediate their TDP-43-dependent localization and interaction with TDP-43. We found that the same regions also mediated TDP-43-dependent mRNA instability, suggesting a mechanism by which TDP-43 regulates mRNA localization. ALS-associated mutations in TDP-43 resulted in similar mRNA mislocalization phenotypes as did TDP-43 loss in mouse dorsal root ganglia and human iPS-derived motor neurons. These findings establish TDP-43 as a direct negative regulator of mRNA abundance in neurites and suggest that mislocalization of specific transcripts may occur in ALS patients.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"692-721"},"PeriodicalIF":8.3,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12864922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145764520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial ubiquitin ligase engineered for small molecule and protein target identification. 细菌泛素连接酶用于小分子和蛋白靶标鉴定。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-02-01 Epub Date: 2026-01-03 DOI: 10.1038/s44318-025-00665-0
James S Ye, Abir Majumdar, Brenden C Park, Miles H Black, Ting-Sung Hsieh, Adam Osinski, Kelly A Servage, Kartik Kulkarni, Jacinth Naidoo, Neal M Alto, Margaret M Stratton, Dominique Alfandari, Joseph M Ready, Krzysztof Pawłowski, Diana R Tomchick, Vincent S Tagliabracci

The Legionella SidE effectors ubiquitinate host proteins independently of the canonical E1-E2 cascade. Here we engineer the SidE ligases to develop a modular proximity ligation approach for the identification of targets of small molecules and proteins, which we call SidBait. We validate the method with known small molecule-protein interactions and use it to identify CaMKII as an off-target interactor of the breast cancer drug ribociclib. Structural analysis and activity assays confirm that ribociclib binds the CaMKII active site and inhibits its activity. We further customize SidBait to identify protein-protein interactions and discover the F-actin capping protein (CapZ) as a target of the Legionella effector RavB during infection. Structural and biochemical studies indicate that RavB allosterically binds CapZ and decaps actin, thus functionally mimicking eukaryotic CapZ interacting proteins. Collectively, our results establish SidBait as a reliable tool for identifying targets of small molecules and proteins.

军团菌SidE效应独立于典型的E1-E2级联使宿主蛋白泛素化。在这里,我们设计了SidE连接酶,以开发一种模块化的接近连接方法,用于识别小分子和蛋白质的靶标,我们称之为SidBait。我们用已知的小分子-蛋白相互作用验证了该方法,并用它来鉴定CaMKII作为乳腺癌药物核糖环尼的脱靶相互作用。结构分析和活性分析证实,ribociclib结合CaMKII活性位点并抑制其活性。我们进一步定制了SidBait来鉴定蛋白质之间的相互作用,并发现F-actin capping蛋白(CapZ)是军团菌效应物RavB在感染过程中的靶标。结构和生化研究表明,RavB变构结合CapZ和脱帽肌动蛋白,从而在功能上模仿真核CapZ相互作用蛋白。总的来说,我们的结果确立了SidBait作为鉴定小分子和蛋白质靶标的可靠工具。
{"title":"Bacterial ubiquitin ligase engineered for small molecule and protein target identification.","authors":"James S Ye, Abir Majumdar, Brenden C Park, Miles H Black, Ting-Sung Hsieh, Adam Osinski, Kelly A Servage, Kartik Kulkarni, Jacinth Naidoo, Neal M Alto, Margaret M Stratton, Dominique Alfandari, Joseph M Ready, Krzysztof Pawłowski, Diana R Tomchick, Vincent S Tagliabracci","doi":"10.1038/s44318-025-00665-0","DOIUrl":"10.1038/s44318-025-00665-0","url":null,"abstract":"<p><p>The Legionella SidE effectors ubiquitinate host proteins independently of the canonical E1-E2 cascade. Here we engineer the SidE ligases to develop a modular proximity ligation approach for the identification of targets of small molecules and proteins, which we call SidBait. We validate the method with known small molecule-protein interactions and use it to identify CaMKII as an off-target interactor of the breast cancer drug ribociclib. Structural analysis and activity assays confirm that ribociclib binds the CaMKII active site and inhibits its activity. We further customize SidBait to identify protein-protein interactions and discover the F-actin capping protein (CapZ) as a target of the Legionella effector RavB during infection. Structural and biochemical studies indicate that RavB allosterically binds CapZ and decaps actin, thus functionally mimicking eukaryotic CapZ interacting proteins. Collectively, our results establish SidBait as a reliable tool for identifying targets of small molecules and proteins.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"1024-1050"},"PeriodicalIF":8.3,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TORC1-dependent translation drives chromatin remodeling during the germ-cell-to-maternal transition in Drosophila. 在果蝇从生殖细胞到母体的转变过程中,torc1依赖的翻译驱动染色质重塑。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-26 DOI: 10.1038/s44318-026-00697-0
Noor M Kotb, Gulay Ulukaya, Anupriya Ramamoorthy, Lina Seojin Park, Julia Tang, Dan Hasson, Prashanth Rangan

Proper oogenesis requires a programmed transition from an undifferentiated germ-cell gene expression program to a maternal gene-expression state. While this process depends on the heterochromatin-mediated silencing of germ-cell genes, the upstream mechanisms that enforce this transcriptional shift remain unclear. Here, we uncover a translation-driven chromatin remodeling program that promotes oocyte fate in Drosophila. Through a loss of function screen, we identify TORC1 activity (Mio, Raptor), ribosome biogenesis (Zfrp8, Bystin, Aramis), and a translation factor (eEF1α1) as essential for silencing the germ-cell program. We show that TORC1 activity increases during oocyte specification, and that disruption of TORC1 activity, translation, or ribosome biogenesis during this window impairs heterochromatin maintenance at germ-cell gene loci. Polysome profiling reveals that Zfrp8 promotes translation of the nuclear pore component Nucleoporin 44A (Nup44A), whose function is independently required for chromatin organization and repression of a cohort of germ-cell genes. Taken together, our findings reveal that a transient increase in translation orchestrates chromatin remodeling to ensure commitment to oocyte fate.

正常的卵子发生需要从未分化的生殖细胞基因表达程序到母体基因表达状态的程序化过渡。虽然这一过程依赖于异染色质介导的生殖细胞基因沉默,但强制这种转录转变的上游机制尚不清楚。在这里,我们发现了一个翻译驱动的染色质重塑程序,促进了果蝇卵母细胞的命运。通过功能缺失筛选,我们确定了TORC1活性(Mio, Raptor),核糖体生物发生(Zfrp8, Bystin, Aramis)和翻译因子(eEF1α1)对于沉默生殖细胞程序至关重要。我们发现,TORC1活性在卵母细胞分化过程中增加,在此窗口期TORC1活性、翻译或核糖体生物发生的中断会损害生殖细胞基因位点的异染色质维持。多体分析表明,Zfrp8促进核孔成分核孔蛋白44A (Nup44A)的翻译,其功能独立于染色质组织和一系列生殖细胞基因的抑制。综上所述,我们的研究结果揭示了翻译的短暂增加协调染色质重塑以确保对卵母细胞命运的承诺。
{"title":"TORC1-dependent translation drives chromatin remodeling during the germ-cell-to-maternal transition in Drosophila.","authors":"Noor M Kotb, Gulay Ulukaya, Anupriya Ramamoorthy, Lina Seojin Park, Julia Tang, Dan Hasson, Prashanth Rangan","doi":"10.1038/s44318-026-00697-0","DOIUrl":"10.1038/s44318-026-00697-0","url":null,"abstract":"<p><p>Proper oogenesis requires a programmed transition from an undifferentiated germ-cell gene expression program to a maternal gene-expression state. While this process depends on the heterochromatin-mediated silencing of germ-cell genes, the upstream mechanisms that enforce this transcriptional shift remain unclear. Here, we uncover a translation-driven chromatin remodeling program that promotes oocyte fate in Drosophila. Through a loss of function screen, we identify TORC1 activity (Mio, Raptor), ribosome biogenesis (Zfrp8, Bystin, Aramis), and a translation factor (eEF1α1) as essential for silencing the germ-cell program. We show that TORC1 activity increases during oocyte specification, and that disruption of TORC1 activity, translation, or ribosome biogenesis during this window impairs heterochromatin maintenance at germ-cell gene loci. Polysome profiling reveals that Zfrp8 promotes translation of the nuclear pore component Nucleoporin 44A (Nup44A), whose function is independently required for chromatin organization and repression of a cohort of germ-cell genes. Taken together, our findings reveal that a transient increase in translation orchestrates chromatin remodeling to ensure commitment to oocyte fate.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146054770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A non-canonical ARMS-GABARAP interaction modulates dendritic spine formation and synaptic development. 非规范的ARMS-GABARAP相互作用调节树突棘的形成和突触的发育。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-08 DOI: 10.1038/s44318-025-00669-w
Wenli Jiang, Jin Ye, Jiasheng Chen, Xinyu Wang, Yahong Li, Jianchao Li, Yide Mei, Yanlu Lyu, Wei Hu, Chao Wang

ARMS (ankyrin repeat-rich membrane spanning) is a scaffold protein essential for neurotrophic signaling, synaptic development, and cytoskeletal remodeling. Despite its central role in neuronal function, how ARMS is regulated at the molecular level remains poorly understood. Here, we identify GABARAP, an Atg8-family autophagy adaptor, as a novel ARMS-binding protein that directly interacts with its N-terminal ankyrin repeats. We present the crystal structure of the ARMS-GABARAP complex, revealing an atypical interaction mode distinct from canonical LIR-dependent Atg8 interactions. Remarkably, ARMS specifically binds to the GABARAP subfamily of Atg8 proteins, setting it apart from the LC3 subfamily. Functional analysis demonstrates that GABARAP negatively regulates ARMS-mediated dendritic spine development and maturation in hippocampal neurons. Additionally, disrupting the ARMS-GABARAP complex using ankyrin-derived peptides alters ARMS subcellular localization, increasing its accumulation in the soma of neurons. Collectively, our findings uncover a novel ARMS-GABARAP interaction mechanism, establish the regulatory role of this complex in neuronal protein homeostasis, and suggest potential therapeutic strategies for targeting scaffold protein interactions in neurodevelopmental and neurodegenerative disorders.

ARMS(锚蛋白重复富膜跨越)是神经营养信号,突触发育和细胞骨架重塑所必需的支架蛋白。尽管ARMS在神经元功能中起着核心作用,但人们对其在分子水平上的调控机制仍知之甚少。在这里,我们确定了GABARAP,一个atg8家族的自噬适配器,作为一种新的arms结合蛋白,直接与其n端锚蛋白重复序列相互作用。我们展示了ARMS-GABARAP复合物的晶体结构,揭示了一种不同于典型的依赖于lir的at8相互作用的非典型相互作用模式。值得注意的是,ARMS特异性结合at8蛋白的GABARAP亚家族,将其与LC3亚家族区分开来。功能分析表明,GABARAP负向调节arms介导的海马神经元树突棘发育和成熟。此外,使用锚蛋白衍生肽破坏ARMS- gabarap复合物会改变ARMS亚细胞定位,增加其在神经元体细胞中的积累。总之,我们的研究结果揭示了一种新的ARMS-GABARAP相互作用机制,确立了该复合物在神经元蛋白稳态中的调节作用,并提出了针对神经发育和神经退行性疾病中支架蛋白相互作用的潜在治疗策略。
{"title":"A non-canonical ARMS-GABARAP interaction modulates dendritic spine formation and synaptic development.","authors":"Wenli Jiang, Jin Ye, Jiasheng Chen, Xinyu Wang, Yahong Li, Jianchao Li, Yide Mei, Yanlu Lyu, Wei Hu, Chao Wang","doi":"10.1038/s44318-025-00669-w","DOIUrl":"https://doi.org/10.1038/s44318-025-00669-w","url":null,"abstract":"<p><p>ARMS (ankyrin repeat-rich membrane spanning) is a scaffold protein essential for neurotrophic signaling, synaptic development, and cytoskeletal remodeling. Despite its central role in neuronal function, how ARMS is regulated at the molecular level remains poorly understood. Here, we identify GABARAP, an Atg8-family autophagy adaptor, as a novel ARMS-binding protein that directly interacts with its N-terminal ankyrin repeats. We present the crystal structure of the ARMS-GABARAP complex, revealing an atypical interaction mode distinct from canonical LIR-dependent Atg8 interactions. Remarkably, ARMS specifically binds to the GABARAP subfamily of Atg8 proteins, setting it apart from the LC3 subfamily. Functional analysis demonstrates that GABARAP negatively regulates ARMS-mediated dendritic spine development and maturation in hippocampal neurons. Additionally, disrupting the ARMS-GABARAP complex using ankyrin-derived peptides alters ARMS subcellular localization, increasing its accumulation in the soma of neurons. Collectively, our findings uncover a novel ARMS-GABARAP interaction mechanism, establish the regulatory role of this complex in neuronal protein homeostasis, and suggest potential therapeutic strategies for targeting scaffold protein interactions in neurodevelopmental and neurodegenerative disorders.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145936039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual pathways via CENP-C and Mis18C recruit HJURP for CENP-A deposition into vertebrate centromeres. 通过CENP-C和Mis18C的双重途径招募HJURP,使CENP-A沉积到脊椎动物着丝粒中。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-08 DOI: 10.1038/s44318-025-00674-z
Tetsuya Hori, Yutaka Mahana, Mariko Ariyoshi, Tatsuo Fukagawa

Centromere position is specified and maintained by sequence-independent epigenetic mechanisms in vertebrate cells, with the incorporation of the centromere-specific histone H3 variant CENP-A into chromatin being a key event for centromere specification. Although many models for CENP-A incorporation have been proposed, much remains unknown. In this study, we reveal that the CENP-A chaperone HJURP directly binds to the C-terminal domain of chicken CENP-C in vitro and that this interaction is essential for new CENP-A incorporation in chicken DT40 cells. While existing models have suggested that HJURP is recruited by the Mis18 complex (Mis18C), here, we propose that CENP-C and Mis18C provide dual recruitment pathways for HJURP localization to centromeres in DT40 cells. We demonstrate that both HJURP localization and new CENP-A incorporation are completely abolished in Mis18C knockout cells expressing an HJURP mutant lacking CENP-C binding ability. Furthermore, co-immunoprecipitation experiments reveal that CENP-C, HJURP and Mis18C form a tight association in the chromatin fraction. These two pathways are critical for robust CENP-A incorporation to maintain centromere position in vertebrate cells.

在脊椎动物细胞中,着丝粒位置是由序列无关的表观遗传机制指定和维持的,着丝粒特异性组蛋白H3变体CENP-A与染色质的结合是着丝粒指定的关键事件。虽然已经提出了许多与CENP-A结合的模型,但仍有许多是未知的。在这项研究中,我们发现在体外,CENP-A的伴侣HJURP直接结合到鸡CENP-C的c端结构域,这种相互作用对于新的CENP-A在鸡DT40细胞中的结合是必不可少的。虽然现有的模型表明HJURP被Mis18复合体(Mis18C)招募,但在这里,我们提出CENP-C和Mis18C为HJURP定位到DT40细胞中的着丝粒提供了双重招募途径。我们证明,在表达缺乏CENP-C结合能力的HJURP突变体的Mis18C敲除细胞中,HJURP定位和新的CENP-A结合都被完全消除。此外,共免疫沉淀实验显示,CENP-C、HJURP和Mis18C在染色质部分形成紧密关联。这两种途径对于在脊椎动物细胞中保持着丝粒位置的强大的CENP-A结合至关重要。
{"title":"Dual pathways via CENP-C and Mis18C recruit HJURP for CENP-A deposition into vertebrate centromeres.","authors":"Tetsuya Hori, Yutaka Mahana, Mariko Ariyoshi, Tatsuo Fukagawa","doi":"10.1038/s44318-025-00674-z","DOIUrl":"10.1038/s44318-025-00674-z","url":null,"abstract":"<p><p>Centromere position is specified and maintained by sequence-independent epigenetic mechanisms in vertebrate cells, with the incorporation of the centromere-specific histone H3 variant CENP-A into chromatin being a key event for centromere specification. Although many models for CENP-A incorporation have been proposed, much remains unknown. In this study, we reveal that the CENP-A chaperone HJURP directly binds to the C-terminal domain of chicken CENP-C in vitro and that this interaction is essential for new CENP-A incorporation in chicken DT40 cells. While existing models have suggested that HJURP is recruited by the Mis18 complex (Mis18C), here, we propose that CENP-C and Mis18C provide dual recruitment pathways for HJURP localization to centromeres in DT40 cells. We demonstrate that both HJURP localization and new CENP-A incorporation are completely abolished in Mis18C knockout cells expressing an HJURP mutant lacking CENP-C binding ability. Furthermore, co-immunoprecipitation experiments reveal that CENP-C, HJURP and Mis18C form a tight association in the chromatin fraction. These two pathways are critical for robust CENP-A incorporation to maintain centromere position in vertebrate cells.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145936019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epimutations: raw material for evolution? 演化:进化的原料?
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-06 DOI: 10.1038/s44318-025-00682-z
Nabeel S Ganem, Peter Sarkies

Epigenetics is fundamental to cell differentiation as it enables cells with identical genomes to adopt distinct fates. Some epigenetic information can also be transmitted between generations, in a process known as transgenerational epigenetic inheritance. This means that potentially epigenetic differences between individuals could contribute to diversity and thus be acted upon by evolution. These epigenetic differences are termed epimutations by analogy to the well-characterized DNA sequence mutations that underpin the standard model of evolution. Here, we evaluate the properties of epimutation, discussing their rate, genome-wide distribution, stability, and effects. Focusing on epimutations in animals, particularly the nematode C. elegans, we explore how epimutations compare to DNA sequence mutations in their potential to influence the processes of drift and natural selection that characterize evolution.

表观遗传学是细胞分化的基础,因为它使具有相同基因组的细胞采用不同的命运。一些表观遗传信息也可以在代与代之间传递,这一过程被称为跨代表观遗传。这意味着个体之间潜在的表观遗传差异可能有助于多样性,从而被进化所影响。这些表观遗传差异被称为表观突变,类似于支撑进化标准模型的具有良好特征的DNA序列突变。在这里,我们评估了演化的特性,讨论了它们的速率、全基因组分布、稳定性和效应。重点关注动物的演化,特别是线虫C.秀丽隐杆线虫,我们探讨了演化与DNA序列突变在影响进化特征的漂变和自然选择过程的潜力方面的比较。
{"title":"Epimutations: raw material for evolution?","authors":"Nabeel S Ganem, Peter Sarkies","doi":"10.1038/s44318-025-00682-z","DOIUrl":"https://doi.org/10.1038/s44318-025-00682-z","url":null,"abstract":"<p><p>Epigenetics is fundamental to cell differentiation as it enables cells with identical genomes to adopt distinct fates. Some epigenetic information can also be transmitted between generations, in a process known as transgenerational epigenetic inheritance. This means that potentially epigenetic differences between individuals could contribute to diversity and thus be acted upon by evolution. These epigenetic differences are termed epimutations by analogy to the well-characterized DNA sequence mutations that underpin the standard model of evolution. Here, we evaluate the properties of epimutation, discussing their rate, genome-wide distribution, stability, and effects. Focusing on epimutations in animals, particularly the nematode C. elegans, we explore how epimutations compare to DNA sequence mutations in their potential to influence the processes of drift and natural selection that characterize evolution.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145913789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pervasive phenotypic effects of FBXO42 are promoted by regulation of PP4 phosphatase. FBXO42的普遍表型效应是通过调控PP4磷酸酶来促进的。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-03 DOI: 10.1038/s44318-025-00675-y
Hongbin Yang, Paul Smith, Yingying Ma, Emily Southworth, Varun Gopala Krishna, Beatrice Salerno, Joseph Rowland, Alexander E P Loftus, Domenico Grieco, Iolanda Vendrell, Roman Fischer, Benedikt M Kessler, Vincenzo D'Angiolella

F-box proteins are the substrate recognition modules of the SCF (SKP1-Cullin-F-box) E3 ubiquitin ligase complex. FBXO42, an understudied member of this family, has recently emerged as a modulator of key cellular processes, including cell cycle progression, the DNA damage response, and glioma stem cell survival. In this study, we define the function of FBXO42 as a major regulator of the protein phosphatase PP4. Phosphoprotein phosphatases (PPPs) have a broad array of substrates, hence necessitating tight regulation. We observe that FBXO42 ubiquitinates the PP4 complex to govern the assembly of regulatory and catalytic subunits, with the net effect of restraining the latter's phosphatase activity. FBXO42 depletion unleashes PP4 activity, with broad cellular effects, highlighting FBXO42 as a novel regulatory node in ubiquitin-mediated signalling for future therapeutic exploitation.

F-box蛋白是SCF (SKP1-Cullin-F-box) E3泛素连接酶复合物的底物识别模块。FBXO42是该家族的一个未被充分研究的成员,最近被发现是关键细胞过程的调节剂,包括细胞周期进程、DNA损伤反应和胶质瘤干细胞存活。在本研究中,我们将FBXO42的功能定义为蛋白磷酸酶PP4的主要调节因子。磷酸蛋白磷酸酶(PPPs)具有广泛的底物,因此需要严格的调控。我们观察到FBXO42泛素化PP4复合物来控制调节和催化亚基的组装,具有抑制后者磷酸酶活性的净效应。FBXO42缺失释放PP4活性,具有广泛的细胞效应,突出FBXO42作为泛素介导信号传导的新调控节点,可用于未来的治疗开发。
{"title":"Pervasive phenotypic effects of FBXO42 are promoted by regulation of PP4 phosphatase.","authors":"Hongbin Yang, Paul Smith, Yingying Ma, Emily Southworth, Varun Gopala Krishna, Beatrice Salerno, Joseph Rowland, Alexander E P Loftus, Domenico Grieco, Iolanda Vendrell, Roman Fischer, Benedikt M Kessler, Vincenzo D'Angiolella","doi":"10.1038/s44318-025-00675-y","DOIUrl":"https://doi.org/10.1038/s44318-025-00675-y","url":null,"abstract":"<p><p>F-box proteins are the substrate recognition modules of the SCF (SKP1-Cullin-F-box) E3 ubiquitin ligase complex. FBXO42, an understudied member of this family, has recently emerged as a modulator of key cellular processes, including cell cycle progression, the DNA damage response, and glioma stem cell survival. In this study, we define the function of FBXO42 as a major regulator of the protein phosphatase PP4. Phosphoprotein phosphatases (PPPs) have a broad array of substrates, hence necessitating tight regulation. We observe that FBXO42 ubiquitinates the PP4 complex to govern the assembly of regulatory and catalytic subunits, with the net effect of restraining the latter's phosphatase activity. FBXO42 depletion unleashes PP4 activity, with broad cellular effects, highlighting FBXO42 as a novel regulatory node in ubiquitin-mediated signalling for future therapeutic exploitation.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homeostatic control of energy metabolism by monocyte-derived macrophages. 单核细胞源性巨噬细胞能量代谢的稳态控制。
IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 Epub Date: 2025-11-17 DOI: 10.1038/s44318-025-00622-x
Rui Martins, Birte Blankehaus, Faouzi Braza, Miguel Mesquita, Pedro Ventura, Sumnima Singh, Sebastian Weis, Maria Pires, Sara Pagnotta, Qian Wu, Sílvia Cardoso, Elisa Jentho, Ana Figueiredo, Pedro Faísca, Ana Nóvoa, Vanessa Alexandra Morais, Stefanie K Wculek, David Sancho, Moises Mallo, Miguel P Soares

Multicellular organisms rely on inter-organ communication networks to maintain vital parameters within a dynamic physiological range. Macrophages are central to this homeostatic control system, sensing and responding to deviations of those parameters to sustain organismal homeostasis. Here, we demonstrate that dysregulation of iron (Fe) metabolism, imposed by the deletion of ferritin H chain (FTH) in mouse parenchymal cells, is sensed by monocyte-derived macrophages. In response, monocyte-derived macrophages support tissue function, energy metabolism, and thermoregulation via a mechanism that sustains the mitochondria of parenchymal cells. Mechanistically, FTH supports a transcriptional program promoting mitochondrial biogenesis in macrophages, involving mitochondrial transcription factor A (TFAM). Moreover, FTH sustains macrophage viability and supports intercellular mitochondrial transfer from donor parenchymal cells. In conclusion, monocyte-derived macrophages cross-regulate iron and energy metabolism to support tissue function and organismal homeostasis.

多细胞生物依靠器官间通讯网络来维持动态生理范围内的重要参数。巨噬细胞是这个体内平衡控制系统的核心,感知和响应这些参数的偏差来维持生物体的体内平衡。本研究表明,小鼠实质细胞中铁蛋白H链(FTH)缺失导致的铁(Fe)代谢失调可被单核细胞来源的巨噬细胞感知。因此,单核细胞来源的巨噬细胞通过维持实质细胞线粒体的机制来支持组织功能、能量代谢和体温调节。从机制上讲,FTH支持巨噬细胞中促进线粒体生物发生的转录程序,包括线粒体转录因子a (TFAM)。此外,FTH维持巨噬细胞活力并支持来自供体实质细胞的细胞间线粒体转移。综上所述,单核细胞来源的巨噬细胞交叉调节铁和能量代谢以支持组织功能和机体稳态。
{"title":"Homeostatic control of energy metabolism by monocyte-derived macrophages.","authors":"Rui Martins, Birte Blankehaus, Faouzi Braza, Miguel Mesquita, Pedro Ventura, Sumnima Singh, Sebastian Weis, Maria Pires, Sara Pagnotta, Qian Wu, Sílvia Cardoso, Elisa Jentho, Ana Figueiredo, Pedro Faísca, Ana Nóvoa, Vanessa Alexandra Morais, Stefanie K Wculek, David Sancho, Moises Mallo, Miguel P Soares","doi":"10.1038/s44318-025-00622-x","DOIUrl":"10.1038/s44318-025-00622-x","url":null,"abstract":"<p><p>Multicellular organisms rely on inter-organ communication networks to maintain vital parameters within a dynamic physiological range. Macrophages are central to this homeostatic control system, sensing and responding to deviations of those parameters to sustain organismal homeostasis. Here, we demonstrate that dysregulation of iron (Fe) metabolism, imposed by the deletion of ferritin H chain (FTH) in mouse parenchymal cells, is sensed by monocyte-derived macrophages. In response, monocyte-derived macrophages support tissue function, energy metabolism, and thermoregulation via a mechanism that sustains the mitochondria of parenchymal cells. Mechanistically, FTH supports a transcriptional program promoting mitochondrial biogenesis in macrophages, involving mitochondrial transcription factor A (TFAM). Moreover, FTH sustains macrophage viability and supports intercellular mitochondrial transfer from donor parenchymal cells. In conclusion, monocyte-derived macrophages cross-regulate iron and energy metabolism to support tissue function and organismal homeostasis.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"106-150"},"PeriodicalIF":8.3,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12759084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145543900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EMBO Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1