首页 > 最新文献

EMBO Journal最新文献

英文 中文
Ubiquitin is directly linked via an ester to protein-conjugated mono-ADP-ribose.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-25 DOI: 10.1038/s44318-025-00391-7
Daniel S Bejan, Rachel E Lacoursiere, Jonathan N Pruneda, Michael S Cohen

The prevailing view on post-translational modifications (PTMs) is that a single amino acid is modified with a single PTM at any given time. However, recent work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation. For example, DELTEX E3 ligases were reported to ubiquitylate a hydroxyl group on free NAD+ and ADP-ribose in vitro, generating a noncanonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester. We call this process mono-ADP-ribosyl ubiquitylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that multiple PARPs are MARUbylated and extended with K11-linked polyubiquitin chains when exogenously expressed. Finally, we show that in response to type I interferon stimulation, MARUbylation can occur endogenously on PARP targets. Thus, MARUbylation represents a new dual PTM that broadens our understanding of the function of PARP-mediated ADP-ribosylation in cells.

关于翻译后修饰(PTMs)的普遍看法是,在任何给定时间,单个氨基酸都会被单个 PTMs 修饰。然而,最近的研究表明,不同的 PTM 之间存在相互影响,有些甚至发生在同一残基上。ADP-ribosylation 和泛素化就是这种相互作用的体现。例如,据报道,DELTEX E3 连接酶可在体外泛素化游离 NAD+ 和 ADP-ribose 上的羟基,生成非经典泛素酯连接物种。在本报告中,我们首次发现这种双重 PTM 在细胞中发生在单 ADP-核糖基化(MARylated)PARP10 的 Glu/Asp 位点上,形成 MAR 泛素酯。我们称这一过程为单 ADP 核糖泛素化或 MARUbylation。利用化学和酶处理方法,包括一种新鉴定的具有酯酶特异性活性的细菌去泛素化酶,我们发现当外源表达时,多种 PARPs 被 MARUbylated,并延伸出 K11 链接的多泛素链。最后,我们发现,在 I 型干扰素的刺激下,PARP 靶标上会发生内源性 MARUbylation。因此,MARUbylation 代表了一种新的双重 PTM,它拓宽了我们对细胞中 PARP 介导的 ADP-ribosylation 功能的认识。
{"title":"Ubiquitin is directly linked via an ester to protein-conjugated mono-ADP-ribose.","authors":"Daniel S Bejan, Rachel E Lacoursiere, Jonathan N Pruneda, Michael S Cohen","doi":"10.1038/s44318-025-00391-7","DOIUrl":"10.1038/s44318-025-00391-7","url":null,"abstract":"<p><p>The prevailing view on post-translational modifications (PTMs) is that a single amino acid is modified with a single PTM at any given time. However, recent work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation. For example, DELTEX E3 ligases were reported to ubiquitylate a hydroxyl group on free NAD<sup>+</sup> and ADP-ribose in vitro, generating a noncanonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester. We call this process mono-ADP-ribosyl ubiquitylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that multiple PARPs are MARUbylated and extended with K11-linked polyubiquitin chains when exogenously expressed. Finally, we show that in response to type I interferon stimulation, MARUbylation can occur endogenously on PARP targets. Thus, MARUbylation represents a new dual PTM that broadens our understanding of the function of PARP-mediated ADP-ribosylation in cells.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143505268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure of basal body inner junctions from Tetrahymena revealed by electron cryo-tomography.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-24 DOI: 10.1038/s44318-025-00392-6
Sam Li, Jose-Jesus Fernandez, Marisa D Ruehle, Rachel A Howard-Till, Amy Fabritius, Chad G Pearson, David A Agard, Mark E Winey

The cilium is a microtubule-based eukaryotic organelle critical for many cellular functions. Its assembly initiates at a basal body and continues as an axoneme that projects out of the cell to form a functional cilium. This assembly process is tightly regulated. However, our knowledge of the molecular architecture and the mechanism of assembly is limited. By applying cryo-electron tomography, we obtained structures of the inner junction in three regions of the cilium from Tetrahymena: the proximal, the central core of the basal body, and the axoneme. We identified several protein components in the basal body. While a few proteins are distributed throughout the entire length of the organelle, many are restricted to specific regions, forming intricate local interaction networks in the inner junction and bolstering local structural stability. By examining the inner junction in a POC1 knockout mutant, we found the triplet microtubule was destabilized, resulting in a defective structure. Surprisingly, several axoneme-specific components were found to "infiltrate" into the mutant basal body. Our findings provide molecular insight into cilium assembly at the inner junctions, underscoring its precise spatial regulation.

纤毛是一种基于微管的真核生物细胞器,对许多细胞功能至关重要。纤毛的组装始于基部体,然后以轴丝的形式伸出细胞外,形成功能性纤毛。这一组装过程受到严格调控。然而,我们对其分子结构和组装机制的了解还很有限。通过应用低温电子断层扫描技术,我们获得了四膜虫纤毛器三个区域的内部连接结构:近端、基体的中央核心和轴丝。我们在基体中发现了几种蛋白质成分。少数蛋白质分布于整个细胞器,而许多蛋白质则局限于特定区域,在内部连接处形成错综复杂的局部相互作用网络,并增强了局部结构的稳定性。通过研究POC1基因敲除突变体的内部连接,我们发现三重微管的稳定性被破坏,从而导致结构缺陷。令人惊讶的是,我们发现有几种轴突特异性成分 "渗入 "了突变体的基底体。我们的发现从分子角度揭示了纤毛在内部连接处的组装,强调了其精确的空间调控。
{"title":"The structure of basal body inner junctions from Tetrahymena revealed by electron cryo-tomography.","authors":"Sam Li, Jose-Jesus Fernandez, Marisa D Ruehle, Rachel A Howard-Till, Amy Fabritius, Chad G Pearson, David A Agard, Mark E Winey","doi":"10.1038/s44318-025-00392-6","DOIUrl":"10.1038/s44318-025-00392-6","url":null,"abstract":"<p><p>The cilium is a microtubule-based eukaryotic organelle critical for many cellular functions. Its assembly initiates at a basal body and continues as an axoneme that projects out of the cell to form a functional cilium. This assembly process is tightly regulated. However, our knowledge of the molecular architecture and the mechanism of assembly is limited. By applying cryo-electron tomography, we obtained structures of the inner junction in three regions of the cilium from Tetrahymena: the proximal, the central core of the basal body, and the axoneme. We identified several protein components in the basal body. While a few proteins are distributed throughout the entire length of the organelle, many are restricted to specific regions, forming intricate local interaction networks in the inner junction and bolstering local structural stability. By examining the inner junction in a POC1 knockout mutant, we found the triplet microtubule was destabilized, resulting in a defective structure. Surprisingly, several axoneme-specific components were found to \"infiltrate\" into the mutant basal body. Our findings provide molecular insight into cilium assembly at the inner junctions, underscoring its precise spatial regulation.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular in vivo assembly of Arabidopsis FCA oligomers into condensates competent for RNA 3' processing.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-24 DOI: 10.1038/s44318-025-00394-4
Geng-Jen Jang, Alex L Payne-Dwyer, Robert Maple, Zhe Wu, Fuquan Liu, Sergio G Lopez, Yanning Wang, Xiaofeng Fang, Mark C Leake, Caroline Dean

Our understanding of the functional requirements underpinning biomolecular condensation in vivo is still relatively poor. The Arabidopsis RNA binding protein FLOWERING CONTROL LOCUS A (FCA) is found in liquid-like nuclear condensates that function in transcription termination, promoting proximal polyadenylation at many target genes in the Arabidopsis genome. To further understand the properties of these condensates in vivo, we used single-particle tracking experiments on FCA reporters stably expressed at endogenous levels in plant nuclei. SEC-MALS analyses suggested that FCA forms a core oligomer consistent with a size of four molecules; in vivo particle tracking indicated that this core molecule multimerizes into higher-order particles. The ensuing assemblies coalesce into macromolecular condensates via the coiled-coil protein FLL2, which is genetically required for FCA function. Accordingly, FLL2 predominately co-localizes with FCA in larger-sized condensates. A missense mutation in the FCA RRM domain, also genetically required for FCA function, reduced average size of both FCA particles and condensates, but did not perturb the core oligomer. Our work points to a modular structure for FCA condensates, involving multimerization of core oligomers assembled into functional macromolecular condensates via associated RNA and FLL2 interactions.

{"title":"Modular in vivo assembly of Arabidopsis FCA oligomers into condensates competent for RNA 3' processing.","authors":"Geng-Jen Jang, Alex L Payne-Dwyer, Robert Maple, Zhe Wu, Fuquan Liu, Sergio G Lopez, Yanning Wang, Xiaofeng Fang, Mark C Leake, Caroline Dean","doi":"10.1038/s44318-025-00394-4","DOIUrl":"https://doi.org/10.1038/s44318-025-00394-4","url":null,"abstract":"<p><p>Our understanding of the functional requirements underpinning biomolecular condensation in vivo is still relatively poor. The Arabidopsis RNA binding protein FLOWERING CONTROL LOCUS A (FCA) is found in liquid-like nuclear condensates that function in transcription termination, promoting proximal polyadenylation at many target genes in the Arabidopsis genome. To further understand the properties of these condensates in vivo, we used single-particle tracking experiments on FCA reporters stably expressed at endogenous levels in plant nuclei. SEC-MALS analyses suggested that FCA forms a core oligomer consistent with a size of four molecules; in vivo particle tracking indicated that this core molecule multimerizes into higher-order particles. The ensuing assemblies coalesce into macromolecular condensates via the coiled-coil protein FLL2, which is genetically required for FCA function. Accordingly, FLL2 predominately co-localizes with FCA in larger-sized condensates. A missense mutation in the FCA RRM domain, also genetically required for FCA function, reduced average size of both FCA particles and condensates, but did not perturb the core oligomer. Our work points to a modular structure for FCA condensates, involving multimerization of core oligomers assembled into functional macromolecular condensates via associated RNA and FLL2 interactions.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A one-two punch against cancer: combining CDK4 inhibitors with lysosomotropic agents.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-24 DOI: 10.1038/s44318-025-00396-2
Gerardo Ferbeyre
{"title":"A one-two punch against cancer: combining CDK4 inhibitors with lysosomotropic agents.","authors":"Gerardo Ferbeyre","doi":"10.1038/s44318-025-00396-2","DOIUrl":"https://doi.org/10.1038/s44318-025-00396-2","url":null,"abstract":"","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different Ras isoforms regulate synaptic plasticity in opposite directions.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-21 DOI: 10.1038/s44318-025-00390-8
Esperanza López-Merino, Alba Fernández-Rodrigo, Jessie G Jiang, Silvia Gutiérrez-Eisman, David Fernández de Sevilla, Alberto Fernández-Medarde, Eugenio Santos, Carmen Guerra, Mariano Barbacid, José A Esteban, Víctor Briz

The small GTPase Ras is an intracellular signaling hub required for long-term potentiation (LTP) in the hippocampus and for memory formation. Genetic alterations in Ras signaling (i.e., RASopathies) are linked to cognitive disorders in humans. However, it remains unclear how Ras controls synaptic plasticity, and whether different Ras isoforms play overlapping or distinct roles in neurons. Using genetically modified mice, we show here that H-Ras (the most abundant isoform in the brain) does not promote LTP, but instead long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). Mechanistically, H-Ras is activated locally in spines during mGluR-LTD via c-Src, and is required to trigger Erk activation and de novo protein synthesis. Furthermore, H-Ras deletion impairs object recognition as well as social and spatial memory. Conversely, K-Ras is the isoform specifically required for LTP. This functional specialization correlates with a differential synaptic distribution of the two isoforms H-Ras and K-Ras, which may have important implications for RASopathies and cognitive function.

{"title":"Different Ras isoforms regulate synaptic plasticity in opposite directions.","authors":"Esperanza López-Merino, Alba Fernández-Rodrigo, Jessie G Jiang, Silvia Gutiérrez-Eisman, David Fernández de Sevilla, Alberto Fernández-Medarde, Eugenio Santos, Carmen Guerra, Mariano Barbacid, José A Esteban, Víctor Briz","doi":"10.1038/s44318-025-00390-8","DOIUrl":"https://doi.org/10.1038/s44318-025-00390-8","url":null,"abstract":"<p><p>The small GTPase Ras is an intracellular signaling hub required for long-term potentiation (LTP) in the hippocampus and for memory formation. Genetic alterations in Ras signaling (i.e., RASopathies) are linked to cognitive disorders in humans. However, it remains unclear how Ras controls synaptic plasticity, and whether different Ras isoforms play overlapping or distinct roles in neurons. Using genetically modified mice, we show here that H-Ras (the most abundant isoform in the brain) does not promote LTP, but instead long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). Mechanistically, H-Ras is activated locally in spines during mGluR-LTD via c-Src, and is required to trigger Erk activation and de novo protein synthesis. Furthermore, H-Ras deletion impairs object recognition as well as social and spatial memory. Conversely, K-Ras is the isoform specifically required for LTP. This functional specialization correlates with a differential synaptic distribution of the two isoforms H-Ras and K-Ras, which may have important implications for RASopathies and cognitive function.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel biosensor for the spatiotemporal analysis of STING activation during innate immune responses to dsDNA.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-21 DOI: 10.1038/s44318-025-00370-y
Steve Smarduch, Sergio David Moreno-Velasquez, Doroteja Ilic, Shashank Dadsena, Ryan Morant, Anja Ciprinidis, Gislene Pereira, Marco Binder, Ana J García-Sáez, Sergio P Acebrón

The cGAS-STING signalling pathway has a central role in the innate immune response to extrinsic and intrinsic sources of cytoplasmic dsDNA. At the core of this pathway is cGAS-dependent production of the intra- and extra-cellular messenger cGAMP, which activates STING and leads to IRF3-dependent expression of cytokines and interferons. Despite its relevance to viral and bacterial infections, cell death, and genome instability, the lack of specific live-cell reporters has precluded spatiotemporal analyses of cGAS-STING signalling. Here, we generate a fluorescent biosensor termed SIRF (STING-IRF3), which reports on the functional interaction between activated STING and IRF3 at the Golgi. We show that cells harbouring SIRF react in a time- and concentration-dependent manner both to STING agonists and to microenvironmental cGAMP. We demonstrate that the new biosensor is suitable for single-cell characterisation of immune responses to HSV-1 infection, mtDNA release upon apoptosis, or other sources of cytoplasmic dsDNA. Furthermore, our results indicate that STING signalling is not activated by ruptured micronuclei, suggesting that other cytosolic pattern recognition receptors underlie the interferon responses to chromosomal instability.

{"title":"A novel biosensor for the spatiotemporal analysis of STING activation during innate immune responses to dsDNA.","authors":"Steve Smarduch, Sergio David Moreno-Velasquez, Doroteja Ilic, Shashank Dadsena, Ryan Morant, Anja Ciprinidis, Gislene Pereira, Marco Binder, Ana J García-Sáez, Sergio P Acebrón","doi":"10.1038/s44318-025-00370-y","DOIUrl":"https://doi.org/10.1038/s44318-025-00370-y","url":null,"abstract":"<p><p>The cGAS-STING signalling pathway has a central role in the innate immune response to extrinsic and intrinsic sources of cytoplasmic dsDNA. At the core of this pathway is cGAS-dependent production of the intra- and extra-cellular messenger cGAMP, which activates STING and leads to IRF3-dependent expression of cytokines and interferons. Despite its relevance to viral and bacterial infections, cell death, and genome instability, the lack of specific live-cell reporters has precluded spatiotemporal analyses of cGAS-STING signalling. Here, we generate a fluorescent biosensor termed SIRF (STING-IRF3), which reports on the functional interaction between activated STING and IRF3 at the Golgi. We show that cells harbouring SIRF react in a time- and concentration-dependent manner both to STING agonists and to microenvironmental cGAMP. We demonstrate that the new biosensor is suitable for single-cell characterisation of immune responses to HSV-1 infection, mtDNA release upon apoptosis, or other sources of cytoplasmic dsDNA. Furthermore, our results indicate that STING signalling is not activated by ruptured micronuclei, suggesting that other cytosolic pattern recognition receptors underlie the interferon responses to chromosomal instability.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic and antagonistic activities of IRF8 and FOS enhancer pairs during an immune-cell fate switch.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-19 DOI: 10.1038/s44318-025-00380-w
Antonios Klonizakis, Marc Alcoverro-Bertran, Pere Massó, Joanna Thomas, Luisa de Andrés-Aguayo, Xiao Wei, Vassiliki Varamogianni-Mamatsi, Christoforos Nikolaou, Thomas Graf

Cell fate instructive genes tend to be regulated by large clusters of enhancers. Whether and how individual enhancers within such clusters cooperate in regulating gene expression is poorly understood. We have previously developed a computational method, SEGCOND, which identifies hubs that we termed Putative Transcriptional Condensates (PTCs), consisting of enhancer clusters and associated target genes. Here, we use SEGCOND to identify PTCs in a CEBPA-induced B-cell-to-macrophage transdifferentiation system. We find that PTCs are enriched for highly expressed, lineage-restricted genes and associate with BRD4, a component of transcriptional condensates. Further, we performed single and combinatorial deletions of enhancers within two PTCs active during induced transdifferentiation, harboring IRF8 and FOS. Two enhancers within the IRF8 PTC were found to provide a backup mechanism when combined, safeguarding IRF8 expression and efficient transdifferentiation. Unexpectedly, two individual enhancers within the FOS PTC antagonize each other on day 1 of transdifferentiation, delaying the conversion of B-cells into macrophages and reducing FOS expression, while on day 7, they cooperate to increase FOS levels induced cells. Our results reveal complex, differentiation-stage-specific interactions between individual enhancers within enhancer clusters.

{"title":"Synergistic and antagonistic activities of IRF8 and FOS enhancer pairs during an immune-cell fate switch.","authors":"Antonios Klonizakis, Marc Alcoverro-Bertran, Pere Massó, Joanna Thomas, Luisa de Andrés-Aguayo, Xiao Wei, Vassiliki Varamogianni-Mamatsi, Christoforos Nikolaou, Thomas Graf","doi":"10.1038/s44318-025-00380-w","DOIUrl":"https://doi.org/10.1038/s44318-025-00380-w","url":null,"abstract":"<p><p>Cell fate instructive genes tend to be regulated by large clusters of enhancers. Whether and how individual enhancers within such clusters cooperate in regulating gene expression is poorly understood. We have previously developed a computational method, SEGCOND, which identifies hubs that we termed Putative Transcriptional Condensates (PTCs), consisting of enhancer clusters and associated target genes. Here, we use SEGCOND to identify PTCs in a CEBPA-induced B-cell-to-macrophage transdifferentiation system. We find that PTCs are enriched for highly expressed, lineage-restricted genes and associate with BRD4, a component of transcriptional condensates. Further, we performed single and combinatorial deletions of enhancers within two PTCs active during induced transdifferentiation, harboring IRF8 and FOS. Two enhancers within the IRF8 PTC were found to provide a backup mechanism when combined, safeguarding IRF8 expression and efficient transdifferentiation. Unexpectedly, two individual enhancers within the FOS PTC antagonize each other on day 1 of transdifferentiation, delaying the conversion of B-cells into macrophages and reducing FOS expression, while on day 7, they cooperate to increase FOS levels induced cells. Our results reveal complex, differentiation-stage-specific interactions between individual enhancers within enhancer clusters.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The MAST kinase KIN-4 carries out mitotic entry functions of Greatwall in C. elegans.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-17 DOI: 10.1038/s44318-025-00364-w
Ludivine Roumbo, Batool Ossareh-Nazari, Suzanne Vigneron, Ioanna Stefani, Lucie Van Hove, Véronique Legros, Guillaume Chevreux, Benjamin Lacroix, Anna Castro, Nicolas Joly, Thierry Lorca, Lionel Pintard

MAST-like, or Greatwall (Gwl), an atypical protein kinase related to the evolutionarily conserved MAST kinase family, is crucial for cell cycle control during mitotic entry. Mechanistically, Greatwall is activated by Cyclin B-Cdk1 phosphorylation of a 550 amino acids-long insertion in its atypical activation segment. Subsequently, Gwl phosphorylates Endosulfine and Arpp19 to convert them into inhibitors of PP2A-B55 phosphatase, thereby preventing early dephosphorylation of M-phase targets of Cyclin B-Cdk1. Here, searching for an elusive Gwl-like activity in C. elegans, we show that the single worm MAST kinase, KIN-4, fulfills this function in worms and can functionally replace Greatwall in the heterologous Xenopus system. Compared to Greatwall, the short activation segment of KIN-4 lacks a phosphorylation site, and KIN-4 is active even when produced in E. coli. We also show that a balance between Cyclin B-Cdk1 and PP2A-B55 activity, regulated by KIN-4, is essential to ensure asynchronous cell divisions in the early worm embryo. These findings resolve a long-standing puzzle related to the supposed absence of a Greatwall pathway in C. elegans, and highlight a novel aspect of PP2A-B55 regulation by MAST kinases.

{"title":"The MAST kinase KIN-4 carries out mitotic entry functions of Greatwall in C. elegans.","authors":"Ludivine Roumbo, Batool Ossareh-Nazari, Suzanne Vigneron, Ioanna Stefani, Lucie Van Hove, Véronique Legros, Guillaume Chevreux, Benjamin Lacroix, Anna Castro, Nicolas Joly, Thierry Lorca, Lionel Pintard","doi":"10.1038/s44318-025-00364-w","DOIUrl":"https://doi.org/10.1038/s44318-025-00364-w","url":null,"abstract":"<p><p>MAST-like, or Greatwall (Gwl), an atypical protein kinase related to the evolutionarily conserved MAST kinase family, is crucial for cell cycle control during mitotic entry. Mechanistically, Greatwall is activated by Cyclin B-Cdk1 phosphorylation of a 550 amino acids-long insertion in its atypical activation segment. Subsequently, Gwl phosphorylates Endosulfine and Arpp19 to convert them into inhibitors of PP2A-B55 phosphatase, thereby preventing early dephosphorylation of M-phase targets of Cyclin B-Cdk1. Here, searching for an elusive Gwl-like activity in C. elegans, we show that the single worm MAST kinase, KIN-4, fulfills this function in worms and can functionally replace Greatwall in the heterologous Xenopus system. Compared to Greatwall, the short activation segment of KIN-4 lacks a phosphorylation site, and KIN-4 is active even when produced in E. coli. We also show that a balance between Cyclin B-Cdk1 and PP2A-B55 activity, regulated by KIN-4, is essential to ensure asynchronous cell divisions in the early worm embryo. These findings resolve a long-standing puzzle related to the supposed absence of a Greatwall pathway in C. elegans, and highlight a novel aspect of PP2A-B55 regulation by MAST kinases.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local weakening of cell-extracellular matrix adhesion triggers basal epithelial tissue folding.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-17 DOI: 10.1038/s44318-025-00384-6
Andrea Valencia-Expósito, Nargess Khalilgharibi, Ana Martínez-Abarca Millán, Yanlan Mao, María D Martín-Bermudo

During development, epithelial sheets sculpt organs by folding, either apically or basally, into complex 3D structures. Given the presence of actomyosin networks and cell adhesion sites on both sides of cells, a common machinery mediating apical and basal epithelial tissue folding has been proposed. However, unlike for apical folding, little is known about the mechanisms that regulate epithelial folding towards the basal side. Here, using the Drosophila wing imaginal disc and combining genetic perturbations and computational modeling, we demonstrate opposing roles for cell-cell and cell-extracellular matrix (ECM) adhesion systems during epithelial folding. While cadherin-mediated adhesion, linked to actomyosin network, regulates apical folding, a localized reduction on integrin-dependent adhesion, followed by changes in cell shape and reorganization of the basal actomyosin cytoskeleton and E-Cadherin (E-Cad) levels, is necessary and sufficient to trigger basal folding. These results suggest that modulation of the cell mechanical landscape through the crosstalk between integrins and cadherins is essential for correct epithelial folding.

{"title":"Local weakening of cell-extracellular matrix adhesion triggers basal epithelial tissue folding.","authors":"Andrea Valencia-Expósito, Nargess Khalilgharibi, Ana Martínez-Abarca Millán, Yanlan Mao, María D Martín-Bermudo","doi":"10.1038/s44318-025-00384-6","DOIUrl":"https://doi.org/10.1038/s44318-025-00384-6","url":null,"abstract":"<p><p>During development, epithelial sheets sculpt organs by folding, either apically or basally, into complex 3D structures. Given the presence of actomyosin networks and cell adhesion sites on both sides of cells, a common machinery mediating apical and basal epithelial tissue folding has been proposed. However, unlike for apical folding, little is known about the mechanisms that regulate epithelial folding towards the basal side. Here, using the Drosophila wing imaginal disc and combining genetic perturbations and computational modeling, we demonstrate opposing roles for cell-cell and cell-extracellular matrix (ECM) adhesion systems during epithelial folding. While cadherin-mediated adhesion, linked to actomyosin network, regulates apical folding, a localized reduction on integrin-dependent adhesion, followed by changes in cell shape and reorganization of the basal actomyosin cytoskeleton and E-Cadherin (E-Cad) levels, is necessary and sufficient to trigger basal folding. These results suggest that modulation of the cell mechanical landscape through the crosstalk between integrins and cadherins is essential for correct epithelial folding.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The barley MLA13-AVRA13 heterodimer reveals principles for immunoreceptor recognition of RNase-like powdery mildew effectors.
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-13 DOI: 10.1038/s44318-025-00373-9
Aaron W Lawson, Andrea Flores-Ibarra, Yu Cao, Chunpeng An, Ulla Neumann, Monika Gunkel, Isabel M L Saur, Jijie Chai, Elmar Behrmann, Paul Schulze-Lefert

Co-evolution between cereals and pathogenic grass powdery mildew fungi is exemplified by sequence diversification of an allelic series of barley resistance genes encoding Mildew Locus A (MLA) nucleotide-binding leucine-rich repeat (NLR) immunoreceptors with an N-terminal coiled-coil domain (CNLs). Each immunoreceptor recognises a matching, strain-specific powdery mildew effector encoded by an avirulence gene (AVRa). We present here the cryo-EM structure of barley MLA13 in complex with its cognate effector AVRA13-1. The effector adopts an RNase-like fold when bound to MLA13 in planta, similar to crystal structures of other RNase-like AVRA effectors unbound to receptors. AVRA13-1 interacts via its basal loops with MLA13 C-terminal leucine-rich repeats (LRRs) and the central winged helix domain (WHD). Co-expression of structure-guided MLA13 and AVRA13-1 substitution variants show that the receptor-effector interface plays an essential role in mediating immunity-associated plant cell death. Furthermore, by combining structural information from the MLA13-AVRA13-1 heterocomplex with sequence alignments of other MLA receptors, we engineered a single amino acid substitution in MLA7 that enables expanded effector detection of AVRA13-1 and the virulent variant AVRA13-V2. In contrast to the pentameric conformation of previously reported effector-activated CNL resistosomes, MLA13 was purified and resolved as a stable heterodimer from an in planta expression system. Our study suggests a common structural principle for RNase-like effector binding to MLAs and highlights the utility of structure-guided engineering of plant immune receptors for broadening their pathogen effector recognition capabilities.

{"title":"The barley MLA13-AVR<sub>A13</sub> heterodimer reveals principles for immunoreceptor recognition of RNase-like powdery mildew effectors.","authors":"Aaron W Lawson, Andrea Flores-Ibarra, Yu Cao, Chunpeng An, Ulla Neumann, Monika Gunkel, Isabel M L Saur, Jijie Chai, Elmar Behrmann, Paul Schulze-Lefert","doi":"10.1038/s44318-025-00373-9","DOIUrl":"https://doi.org/10.1038/s44318-025-00373-9","url":null,"abstract":"<p><p>Co-evolution between cereals and pathogenic grass powdery mildew fungi is exemplified by sequence diversification of an allelic series of barley resistance genes encoding Mildew Locus A (MLA) nucleotide-binding leucine-rich repeat (NLR) immunoreceptors with an N-terminal coiled-coil domain (CNLs). Each immunoreceptor recognises a matching, strain-specific powdery mildew effector encoded by an avirulence gene (AVR<sub>a</sub>). We present here the cryo-EM structure of barley MLA13 in complex with its cognate effector AVR<sub>A13</sub>-1. The effector adopts an RNase-like fold when bound to MLA13 in planta, similar to crystal structures of other RNase-like AVR<sub>A</sub> effectors unbound to receptors. AVR<sub>A13</sub>-1 interacts via its basal loops with MLA13 C-terminal leucine-rich repeats (LRRs) and the central winged helix domain (WHD). Co-expression of structure-guided MLA13 and AVR<sub>A13</sub>-1 substitution variants show that the receptor-effector interface plays an essential role in mediating immunity-associated plant cell death. Furthermore, by combining structural information from the MLA13-AVR<sub>A13</sub>-1 heterocomplex with sequence alignments of other MLA receptors, we engineered a single amino acid substitution in MLA7 that enables expanded effector detection of AVR<sub>A13</sub>-1 and the virulent variant AVR<sub>A13</sub>-V2. In contrast to the pentameric conformation of previously reported effector-activated CNL resistosomes, MLA13 was purified and resolved as a stable heterodimer from an in planta expression system. Our study suggests a common structural principle for RNase-like effector binding to MLAs and highlights the utility of structure-guided engineering of plant immune receptors for broadening their pathogen effector recognition capabilities.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EMBO Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1