首页 > 最新文献

Electromagnetic Biology and Medicine最新文献

英文 中文
Shortwave radiation-induced reproductive organ damage in male rats by enhanced expression of molecules associated with the calpain/Cdk5 pathway and oxidative stress. 短波辐射通过增强钙蛋白酶/CDK5通路和氧化应激相关分子的表达,诱发雄性大鼠生殖器官损伤。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-10-02 Epub Date: 2023-12-29 DOI: 10.1080/15368378.2023.2296896
Binwei Yao, Junqi Men, Shuchen Liu, Yanxin Bai, Chao Yu, Yabing Gao, Xinping Xu, Li Zhao, Jing Zhang, Hui Wang, Yanyang Li, Ruiyun Peng

Shortwave radiation has been reported to have harmful effects on several organs in humans and animals. However, the biological effects of 27 MHz shortwave on the reproductive system are not clear. In this study, we investigated the effects of shortwave whole-body exposure at a frequency of 27 MHz on structural and functional changes in the testis. Male Wistar rats were exposed to 27 MHz continuous shortwaves at average power densities of 0, 5, 10, or 30 mW/cm2 for 6 min. The levels of insulin-like factor 3 (INSL3) and anti-sperm antibodies (AsAb) in the peripheral serum, sperm motility, sperm malformation rate, and testicular tissue structure of rats were analyzed. Furthermore, the activity of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) content, calpain, and Cdk5 expression were analyzed at 1, 7, 14, and 28 days after exposure. We observed that the rats after radiation had decreased serum INSL3 levels (p < 0.01), increased AsAb levels (p < 0.05), decreased percentage of class A+B sperm (p < 0.01 or p < 0.05), increased sperm malformation (p < 0.01 or p < 0.05), injured testicular tissue structure, decreased SOD and CAT activities (p < 0.01 or p < 0.05), increased MDA content (p < 0.01), and testicular tissue expressions of calpain1, calpain2, and Cdk5 were increased (p < 0.01 or p < 0.05). In conclusion, Shortwave radiation caused functional and structural damage to the reproductive organs of male rats. Furthermore, oxidative stress and key molecules in the calpain/Cdk5 pathway are likely involved in this process.

据报道,短波辐射会对人类和动物的多个器官产生有害影响。然而,27 兆赫短波对生殖系统的生物影响尚不清楚。在这项研究中,我们调查了全身暴露于频率为 27 兆赫的短波对睾丸结构和功能变化的影响。雄性 Wistar 大鼠连续暴露于平均功率密度为 0、5、10 或 30 mW/cm2 的 27 MHz 短波中 6 分钟。分析了大鼠外周血清中胰岛素样因子 3(INSL3)和抗精子抗体(AsAb)的水平、精子活力、精子畸形率和睾丸组织结构。此外,还分析了辐射后 1、7、14 和 28 天大鼠体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的活性、丙二醛(MDA)含量、钙蛋白酶和 Cdk5 的表达。我们观察到,辐射后大鼠的血清 INSL3 水平下降(p p p p p p p p p p p p p p p
{"title":"Shortwave radiation-induced reproductive organ damage in male rats by enhanced expression of molecules associated with the calpain/Cdk5 pathway and oxidative stress.","authors":"Binwei Yao, Junqi Men, Shuchen Liu, Yanxin Bai, Chao Yu, Yabing Gao, Xinping Xu, Li Zhao, Jing Zhang, Hui Wang, Yanyang Li, Ruiyun Peng","doi":"10.1080/15368378.2023.2296896","DOIUrl":"10.1080/15368378.2023.2296896","url":null,"abstract":"<p><p>Shortwave radiation has been reported to have harmful effects on several organs in humans and animals. However, the biological effects of 27 MHz shortwave on the reproductive system are not clear. In this study, we investigated the effects of shortwave whole-body exposure at a frequency of 27 MHz on structural and functional changes in the testis. Male Wistar rats were exposed to 27 MHz continuous shortwaves at average power densities of 0, 5, 10, or 30 mW/cm<sup>2</sup> for 6 min. The levels of insulin-like factor 3 (INSL3) and anti-sperm antibodies (AsAb) in the peripheral serum, sperm motility, sperm malformation rate, and testicular tissue structure of rats were analyzed. Furthermore, the activity of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) content, calpain, and Cdk5 expression were analyzed at 1, 7, 14, and 28 days after exposure. We observed that the rats after radiation had decreased serum INSL3 levels (<i>p</i> < 0.01), increased AsAb levels (<i>p</i> < 0.05), decreased percentage of class A+B sperm (<i>p</i> < 0.01 or <i>p</i> < 0.05), increased sperm malformation (<i>p</i> < 0.01 or <i>p</i> < 0.05), injured testicular tissue structure, decreased SOD and CAT activities (<i>p</i> < 0.01 or <i>p</i> < 0.05), increased MDA content (<i>p</i> < 0.01), and testicular tissue expressions of calpain1, calpain2, and Cdk5 were increased (<i>p</i> < 0.01 or <i>p</i> < 0.05). In conclusion, Shortwave radiation caused functional and structural damage to the reproductive organs of male rats. Furthermore, oxidative stress and key molecules in the calpain/Cdk5 pathway are likely involved in this process.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The protective role of 5-hydroxy-1,4-naphthoquinone against the harmful effects of 50 Hz electric field in rat lung tissue. 5-羟基-1,4-萘醌对50Hz电场对大鼠肺组织损伤的保护作用。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-10-02 Epub Date: 2023-12-29 DOI: 10.1080/15368378.2023.2265935
Nurgül Şenol, Melda Şahin, Uğur Şahin

There is strong scientific evidence that the electric field is harmful to life. Exposure to an electric field (EF) can cause lung toxicity and respiratory disorders. In addition, the electric field has been shown to cause tissue damage through inflammation and apoptosis. Juglone (JUG) is one of the powerful antioxidants with anti-apoptotic and anti-inflammatory, various pharmacological properties in the biological system. In this study, we evaluated the efficacy of JUG against the potential adverse effects of electric field on the lung. Twenty-four Wistar albino rats were randomly divided into three groups; control group (Cont), EF group, and EF exposure+JUG-treated group (EJUG). After routine histological procedures, sections stained with hematoxylin-eosin (H&E) showed significant changes in lung tissues in the EF group compared to the Cont group. Significant protective effects were observed in the building volumes and histopathology in the EJUG group. Our immunohistochemical and gene expression results increased the expression of caspase-3 and tumor necrosis factor alpha (TNF-α) in the EF group (p < 0.05). Juglon increased cytokine signal suppressor (SOCS) expression (p < 0.001). These findings were consistent with the antioxidant effect of JUG treatment. We reasoned that exposure to EF damaged rat lung tissues and administration of JUG alleviated the complications caused by 50 Hz EF.

有强有力的科学证据表明电场对生命有害。暴露于电场(EF)会导致肺部毒性和呼吸系统疾病。此外,电场已被证明可通过炎症和细胞凋亡引起组织损伤。Juglone(JUG)是一种强大的抗氧化剂,在生物系统中具有抗细胞凋亡和抗炎、多种药理特性。在本研究中,我们评估了JUG对抗电场对肺部潜在不良影响的疗效。24只Wistar白化大鼠随机分为三组;对照组(Cont)、EF组和EF暴露+JUG治疗组(EJUG)。在常规组织学程序后,苏木精-伊红(H&E)染色的切片显示,与Cont组相比,EF组的肺组织发生了显著变化。在EJUG组的建筑体积和组织病理学中观察到显著的保护作用。我们的免疫组化和基因表达结果增加了EF组中胱天蛋白酶-3和肿瘤坏死因子-α(TNF-α)的表达(p p
{"title":"The protective role of 5-hydroxy-1,4-naphthoquinone against the harmful effects of 50 Hz electric field in rat lung tissue.","authors":"Nurgül Şenol, Melda Şahin, Uğur Şahin","doi":"10.1080/15368378.2023.2265935","DOIUrl":"10.1080/15368378.2023.2265935","url":null,"abstract":"<p><p>There is strong scientific evidence that the electric field is harmful to life. Exposure to an electric field (EF) can cause lung toxicity and respiratory disorders. In addition, the electric field has been shown to cause tissue damage through inflammation and apoptosis. Juglone (JUG) is one of the powerful antioxidants with anti-apoptotic and anti-inflammatory, various pharmacological properties in the biological system. In this study, we evaluated the efficacy of JUG against the potential adverse effects of electric field on the lung. Twenty-four Wistar albino rats were randomly divided into three groups; control group (Cont), EF group, and EF exposure+JUG-treated group (EJUG). After routine histological procedures, sections stained with hematoxylin-eosin (H&E) showed significant changes in lung tissues in the EF group compared to the Cont group. Significant protective effects were observed in the building volumes and histopathology in the EJUG group. Our immunohistochemical and gene expression results increased the expression of caspase-3 and tumor necrosis factor alpha (TNF-α) in the EF group (<i>p</i> < 0.05). Juglon increased cytokine signal suppressor (SOCS) expression (<i>p</i> < 0.001). These findings were consistent with the antioxidant effect of JUG treatment. We reasoned that exposure to EF damaged rat lung tissues and administration of JUG alleviated the complications caused by 50 Hz EF.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Four minutes of capacitive and resistive electric transfer therapy increased jump performance. 四分钟的容性和电阻性电转移治疗提高了跳跃性能。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-10-02 Epub Date: 2023-12-29 DOI: 10.1080/15368378.2023.2290742
Michio Wachi, Takumi Jiroumaru, Ayako Satonaka, Masae Ikeya, Nobuko Shichiri, Junko Ochi, Yutaro Hyodo, Takamitsu Fujikawa

Capacitive and resistive electric transfer (CRET) therapy can improve flexibility and increase muscle activity and may be useful as a warm-up technique. This study examined the effects of short-time CRET on jump performance. Thirty healthy men (age range, 20-40 years) were randomly divided into passive (n = 15) and active (n = 15) warm-up groups. The participants and statisticians were blinded to the participant allocation. The passive warm-up group underwent 4 min of CRET therapy on their posterior lower legs. The active warm-up group performed stretching and jogging for 4 min. Calf muscle temperature and rebound jump (RJ) index were measured before and after the intervention. The mean (± standard deviation) muscle temperature increased by 2.0 ± 0.5°C and 1.4 ± 0.6°C in the passive and active warm-up groups, respectively (p < 0.05). RJ index increased significantly in both groups (p < 0.05). Therefore, passive warm-up using CRET may help avoid energy loss while increasing the muscle temperature in a short time when compared with traditional active warm-up techniques.

电容性和电阻性电转移(CRET)疗法可以改善柔韧性和增加肌肉活动,可能是一种有用的热身技术。本研究考察了短时CRET对跳远成绩的影响。30名健康男性(年龄20 ~ 40岁)随机分为被动热身组(n = 15)和主动热身组(n = 15)。参与者和统计学家不知道参与者的分配情况。被动热身组在其小腿后部进行4分钟的CRET治疗。积极热身组进行伸展运动和慢跑4分钟。测量干预前后小腿肌肉温度和RJ指数。被动和主动热身组肌肉温度平均(±标准差)分别升高2.0±0.5°C和1.4±0.6°C (p < 0.05)
{"title":"Four minutes of capacitive and resistive electric transfer therapy increased jump performance.","authors":"Michio Wachi, Takumi Jiroumaru, Ayako Satonaka, Masae Ikeya, Nobuko Shichiri, Junko Ochi, Yutaro Hyodo, Takamitsu Fujikawa","doi":"10.1080/15368378.2023.2290742","DOIUrl":"10.1080/15368378.2023.2290742","url":null,"abstract":"<p><p>Capacitive and resistive electric transfer (CRET) therapy can improve flexibility and increase muscle activity and may be useful as a warm-up technique. This study examined the effects of short-time CRET on jump performance. Thirty healthy men (age range, 20-40 years) were randomly divided into passive (<i>n</i> = 15) and active (<i>n</i> = 15) warm-up groups. The participants and statisticians were blinded to the participant allocation. The passive warm-up group underwent 4 min of CRET therapy on their posterior lower legs. The active warm-up group performed stretching and jogging for 4 min. Calf muscle temperature and rebound jump (RJ) index were measured before and after the intervention. The mean (± standard deviation) muscle temperature increased by 2.0 ± 0.5°C and 1.4 ± 0.6°C in the passive and active warm-up groups, respectively (<i>p</i> < 0.05). RJ index increased significantly in both groups (<i>p</i> < 0.05). Therefore, passive warm-up using CRET may help avoid energy loss while increasing the muscle temperature in a short time when compared with traditional active warm-up techniques.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus. 通过极低频电场(ELF-EF)增强氧化铁和银纳米颗粒对金黄色葡萄球菌的抗菌作用。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-07-03 Epub Date: 2023-05-08 DOI: 10.1080/15368378.2023.2208610
Ebtesam A Mohamad, Marwa A Ramadan, Marwa M Mostafa, Mona S Elneklawi

Staphylococcus aureus is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of Staphylococcus aureus using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of Staphylococcus aureus were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of Staphylococcus aureus bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.

金黄色葡萄球菌是许多传染病和炎症性疾病的病因,许多研究旨在发现替代抗生素的感染控制和治疗方法。这项工作试图使用纳米颗粒(氧化铁纳米颗粒和银纳米颗粒)和极低频电场(ELF-EF)来降低金黄色葡萄球菌的细菌活性和生长特性。使用金黄色葡萄球菌的细菌悬浮液制备样品,将样品均匀地分组。对照组,10组暴露于ELF-EF,频率范围为(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1 Hz),氧化铁NP处理组,暴露于0.8的氧化铁NP Hz处理组、银NP处理组和最后一组用银NP和0.8处理 赫兹。使用活微生物的抗生素敏感性测试、介电弛豫和生物膜发育来评估形态和分子变化。结果表明,纳米颗粒与ELF-EF在0.8 Hz增强了细菌的抑制效率,这可能是由于结构的变化。介电测量结果支持了这一点,该结果表明,与对照样品相比,处理样品的介电增量和电导率存在差异。获得的生物膜形成测量结果也证实了这一点。我们可以得出结论,金黄色葡萄球菌暴露于ELF-EF和NPs会影响其细胞活性和结构。这项技术无损、安全、快速,可以被认为是减少抗生素使用的一种手段。
{"title":"Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against <i>S. aureus</i>.","authors":"Ebtesam A Mohamad,&nbsp;Marwa A Ramadan,&nbsp;Marwa M Mostafa,&nbsp;Mona S Elneklawi","doi":"10.1080/15368378.2023.2208610","DOIUrl":"10.1080/15368378.2023.2208610","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of <i>Staphylococcus aureus</i> using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of <i>Staphylococcus aureus</i> were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of <i>Staphylococcus aureus</i> bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Assessing the effect of selenium on cyclin D1 level and nuclear factor kappa b activity in NIH/3T3 fibroblast cells at 2100 MHz electromagnetic field exposure. 评估硒在2100MHz电磁场暴露下对NIH/3T3成纤维细胞中细胞周期蛋白D1水平和核因子κb活性的影响。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-07-03 Epub Date: 2023-08-28 DOI: 10.1080/15368378.2023.2252457
Dilek Duzgun Ergun, Nural Pastaci Ozsobaci, Tuba Yilmaz, Dervis Ozcelik, Mustafa Tunaya Kalkan

Although there are numerous studies on the health impacts of electromagnetic field (EMF) of mobile phone operation frequency 2100 MHz, the published works present contradicting results. Long-term exposure to mobile phone frequencies has unclear health hazards. Therefore, it is important to investigate the molecular mechanism of possible biological effects in mobile phone exposure and to determine the corresponding biological markers. Towards this end, this study was designed to assess the effect of 200 nM selenium (Se) on cell viability% [trypan blue], cell cycle biomarker [cyclin D1] and the transcription factor [nuclear factor kappa b (NF-κB)] in NIH/3T3 fibroblast cells when exposed to 2100 MHz mobile phone frequency. When 2100 MHz EMF was exposed to NIH/3T3 fibroblast cells, the cell viability% was reduced, whereas cyclin D1 level and NF-kB activity increased. Also we show that Se supplementation decreases the effects of 2100 MHz EMF on these parameters. Although future studies will be required to investigate the biological effects of EMF emitted by mobile phones, the results obtained here provide an insight into the molecular mechanisms and specifically underlying selenium's protective effect against 2100 MHz EMF exposure.

尽管有许多关于手机操作频率2100的电磁场(EMF)对健康影响的研究 MHz,发表的作品呈现出矛盾的结果。长期接触手机频率对健康的危害尚不清楚。因此,研究手机暴露可能产生的生物效应的分子机制并确定相应的生物标志物具有重要意义。为此,本研究旨在评估200 当暴露于2100时,nM硒(Se)对NIH/3T3成纤维细胞的细胞活力%[台盼蓝]、细胞周期生物标志物[细胞周期蛋白D1]和转录因子[核因子κb(NF-κb)]的影响 MHz移动电话频率。2100年 MHz-EMF暴露于NIH/3T3成纤维细胞,细胞活力%降低,而细胞周期蛋白D1水平和NF-kB活性增加。此外,我们还表明,补充硒可以降低2100的效果 MHz EMF对这些参数的影响。尽管未来的研究还需要研究手机发射的EMF的生物学效应,但本文获得的结果提供了对分子机制的深入了解,特别是硒对2100的保护作用 MHz EMF暴露。
{"title":"Assessing the effect of selenium on cyclin D1 level and nuclear factor kappa b activity in NIH/3T3 fibroblast cells at 2100 MHz electromagnetic field exposure.","authors":"Dilek Duzgun Ergun, Nural Pastaci Ozsobaci, Tuba Yilmaz, Dervis Ozcelik, Mustafa Tunaya Kalkan","doi":"10.1080/15368378.2023.2252457","DOIUrl":"10.1080/15368378.2023.2252457","url":null,"abstract":"<p><p>Although there are numerous studies on the health impacts of electromagnetic field (EMF) of mobile phone operation frequency 2100 MHz, the published works present contradicting results. Long-term exposure to mobile phone frequencies has unclear health hazards. Therefore, it is important to investigate the molecular mechanism of possible biological effects in mobile phone exposure and to determine the corresponding biological markers. Towards this end, this study was designed to assess the effect of 200 nM selenium (Se) on cell viability% [trypan blue], cell cycle biomarker [cyclin D1] and the transcription factor [nuclear factor kappa b (NF-κB)] in NIH/3T3 fibroblast cells when exposed to 2100 MHz mobile phone frequency. When 2100 MHz EMF was exposed to NIH/3T3 fibroblast cells, the cell viability% was reduced, whereas cyclin D1 level and NF-kB activity increased. Also we show that Se supplementation decreases the effects of 2100 MHz EMF on these parameters. Although future studies will be required to investigate the biological effects of EMF emitted by mobile phones, the results obtained here provide an insight into the molecular mechanisms and specifically underlying selenium's protective effect against 2100 MHz EMF exposure.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10466143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic field exposure to human head model with various metal objects at sub-6 GHz frequencies. 在低于6GHz的频率下,暴露于具有各种金属物体的人类头部模型的电磁场。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-07-03 Epub Date: 2023-06-04 DOI: 10.1080/15368378.2023.2220736
Niyazi İl, Kayhan Ateş, Şükrü Özen

In recent years, the interactions of metal objects in human body with electromagnetic fields caused by devices working at fifth-generation (5G) frequencies have been studied by various researchers. A motivation behind this research was to evaluate the human body absorption of electromagnetic energy operating at sub-6 GHz 5G applications. According to this, the specific absorption rate (SAR) caused by new generation mobile phones was investigated in human heads wearing metal-framed spectacles and having metallic implants or earrings to analyse electromagnetic field exposure. A realistic human head model, including some metal objects, was numerically calculated, and analysed in terms of non-ionizing dosimetry. Simulations were carried out with the finite integration technique (FIT) based commercial software in the frequencies of 0.9, 1.8, 2.1, 2.45, 3.5 and 5 GHz, respectively. The maximum SAR of 14 × 10-5 W/kg for 10 g average tissue was calculated at 2.45 GHz frequency in the head model with earrings. The highest electric field strength of 0.52 V/m was observed at a 1.8 GHz frequency in the head model with all metal objects equipped. Results show that metal objects such as spectacles, dental implants and earrings can cause an increase in the SAR values for external biological tissues, and metal objects can behave as a kind of shield for deeper tissues. However, the obtained values are below the limits of international organisations.

近年来,各种研究人员研究了人体内金属物体与第五代(5G)频率设备产生的电磁场的相互作用。这项研究的动机是评估人体对亚6级电磁能的吸收 GHz 5G应用。据此,研究了新一代手机在佩戴金属框眼镜和金属植入物或耳环的人头中引起的比吸收率(SAR),以分析电磁场暴露。对包括一些金属物体在内的逼真的人头模型进行了数值计算,并根据非电离剂量测定法进行了分析。使用基于有限积分技术(FIT)的商业软件在0.9、1.8、2.1、2.45、3.5和5的频率下进行模拟 GHz。最大SAR为14 × 10-5 W/kg,适用于10 g平均组织计算为2.45 GHz频率的头模型与耳环。0.52的最高电场强度 在1.8 配备全金属物体的头部模型中的GHz频率。结果表明,眼镜、牙科植入物和耳环等金属物体会导致外部生物组织的SAR值增加,而金属物体可以作为深层组织的屏障。然而,所获得的价值低于国际组织的限制。
{"title":"Electromagnetic field exposure to human head model with various metal objects at sub-6 GHz frequencies.","authors":"Niyazi İl,&nbsp;Kayhan Ateş,&nbsp;Şükrü Özen","doi":"10.1080/15368378.2023.2220736","DOIUrl":"10.1080/15368378.2023.2220736","url":null,"abstract":"<p><p>In recent years, the interactions of metal objects in human body with electromagnetic fields caused by devices working at fifth-generation (5G) frequencies have been studied by various researchers. A motivation behind this research was to evaluate the human body absorption of electromagnetic energy operating at sub-6 GHz 5G applications. According to this, the specific absorption rate (SAR) caused by new generation mobile phones was investigated in human heads wearing metal-framed spectacles and having metallic implants or earrings to analyse electromagnetic field exposure. A realistic human head model, including some metal objects, was numerically calculated, and analysed in terms of non-ionizing dosimetry. Simulations were carried out with the finite integration technique (FIT) based commercial software in the frequencies of 0.9, 1.8, 2.1, 2.45, 3.5 and 5 GHz, respectively. The maximum SAR of 14 × 10<sup>-5</sup> W/kg for 10 g average tissue was calculated at 2.45 GHz frequency in the head model with earrings. The highest electric field strength of 0.52 V/m was observed at a 1.8 GHz frequency in the head model with all metal objects equipped. Results show that metal objects such as spectacles, dental implants and earrings can cause an increase in the SAR values for external biological tissues, and metal objects can behave as a kind of shield for deeper tissues. However, the obtained values are below the limits of international organisations.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9574530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The increase in c-fos expression in epileptic seizures is inhibited by magnetic field application, but not KCa1.1 channel expression. 磁场作用可抑制癫痫发作时c-fos表达的增加,但不抑制KCa1.1通道的表达。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-04-03 DOI: 10.1080/15368378.2023.2247027
Mehmet Zülkif Akdağ, Emrah Oğraş, Züleyha Doğanyiğit, Enes Akyüz, Mahmut Berat Akdag, Aslı Okan, Veysi Akpolat, I Rem Küllü

The aim of this study was to understand the expression of big potassium (BK, KCa1.1) channels in epileptic seizures under magnetic field application. Forty Wistar albino adult male rats were divided into five groups (n = 8). First group rats were control group. Pentylenetetrazole (PTZ) administrated to second group rats to induce the seizures with 35 mg/kg intraperitoneally injection every two days. Levetiracetam (LEV) i.p. at a dose of 108 mg/kg was given to third group rats as positive control group (PC) before 20 minutes PTZ administration. Pulsed magnetic field with 1.5 mT was exposed to the fourth group rats for 3 hours a day for 1 month as magnetic field (MF) group. 1.5 mT pulsed magnetic field was exposed to the fifth group rats for 3 hours a day for 1 month in addition to PTZ administration (PTZ+MF). KCa1.1 not changed in hippocampus of PTZ rats while increased in frontal cortex and pons for PTZ group but not changed with magnetic field exposure. KCa1.1 increased in heart of PTZ animals and turned back to mean control values with magnetic field exposure. Suppressing the expected increase of c-fos protein expression in seizures with magnetic field application but not being able to change the KCa1.1 expression shows that new studies can be done by increasing the frequency of 1.5 mT magnetic field.

本研究旨在了解磁场作用下癫痫发作大钾(BK, KCa1.1)通道的表达情况。40只成年雄性Wistar白化大鼠分为5组(n = 8)。第一组大鼠为对照组。第二组大鼠腹腔注射戊四唑(PTZ) 35 mg/kg,每2 d致痫。第三组大鼠在给药前20分钟给予左乙拉西坦(LEV) 108 mg/kg,作为阳性对照组(PC)。以1.5 mT的脉冲磁场照射第四组大鼠,每天照射3小时,连续1个月作为磁场组。第五组大鼠在给予PTZ (PTZ+MF)的基础上,每天照射1.5 mT脉冲磁场3小时,持续1个月。PTZ组大鼠海马区KCa1.1无变化,额叶皮质区和脑桥区KCa1.1升高,但不随磁场暴露而变化。磁场暴露后,PTZ动物心脏KCa1.1升高,并恢复到平均对照值。磁场作用抑制癫痫发作中c-fos蛋白表达的预期增加,但不能改变KCa1.1表达,表明可以通过增加1.5 mT磁场频率进行新的研究。
{"title":"The increase in c-fos expression in epileptic seizures is inhibited by magnetic field application, but not K<sub>Ca</sub>1.1 channel expression.","authors":"Mehmet Zülkif Akdağ,&nbsp;Emrah Oğraş,&nbsp;Züleyha Doğanyiğit,&nbsp;Enes Akyüz,&nbsp;Mahmut Berat Akdag,&nbsp;Aslı Okan,&nbsp;Veysi Akpolat,&nbsp;I Rem Küllü","doi":"10.1080/15368378.2023.2247027","DOIUrl":"https://doi.org/10.1080/15368378.2023.2247027","url":null,"abstract":"<p><p>The aim of this study was to understand the expression of big potassium (BK, K<sub>Ca</sub>1.1) channels in epileptic seizures under magnetic field application. Forty Wistar albino adult male rats were divided into five groups (<i>n</i> = 8). First group rats were control group. Pentylenetetrazole (PTZ) administrated to second group rats to induce the seizures with 35 mg/kg intraperitoneally injection every two days. Levetiracetam (LEV) i.p. at a dose of 108 mg/kg was given to third group rats as positive control group (PC) before 20 minutes PTZ administration. Pulsed magnetic field with 1.5 mT was exposed to the fourth group rats for 3 hours a day for 1 month as magnetic field (MF) group. 1.5 mT pulsed magnetic field was exposed to the fifth group rats for 3 hours a day for 1 month in addition to PTZ administration (PTZ+MF). K<sub>Ca</sub>1.1 not changed in hippocampus of PTZ rats while increased in frontal cortex and pons for PTZ group but not changed with magnetic field exposure. K<sub>Ca</sub>1.1 increased in heart of PTZ animals and turned back to mean control values with magnetic field exposure. Suppressing the expected increase of c-fos protein expression in seizures with magnetic field application but not being able to change the K<sub>Ca</sub>1.1 expression shows that new studies can be done by increasing the frequency of 1.5 mT magnetic field.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10441498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of pulsed electromagnetic fields and N-acetylcysteine on transplantation of vitrified mouse ovarian tissue. 脉冲电磁场和n -乙酰半胱氨酸对玻璃化小鼠卵巢组织移植的影响。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-04-03 DOI: 10.1080/15368378.2023.2246503
Khadijeh Rasaeifar, Saeed Zavareh, Maryam Hajighasem-Kashani, Meysam Nasiri

In this experimental study, adult female NMRI mice were randomly assigned to five groups: control ;(fresh ovarian transplantation, OT); sham ;(vitrified OT); NAC ;(vitrified OT treated with N-acetyl cysteine, NAC); EMF ;(vitrified OT treated with pulsed electromagnetic fields, PEMF); and NAC+EMF ;(vitrified OT combined with NAC and PEMF). We conducted histological assessments to evaluate follicle reservation and vascularization. Furthermore, we examined the relative expression of Fgf-2, Vegf, Tnf-α, Il-6, Il-1, and Cd31 genes on days 2 and 7 after OT. Additionally, we measured total antioxidant capacity (TAC), malondialdehyde (MDA) levels, as well as the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Our results demonstrated that NAC, PEMF, and NAC+PEMF treatments significantly increased the number of follicles. Moreover, we observed a more pronounced development of vascularization in the NAC, PEMF, and PEMF+NAC groups. The relative expression levels of Fgf-2, Vegf, Tnf-α, Il-1β, and Il-6 were significantly elevated in the NAC, PEMF, and NAC+PEMF groups. Notably, TAC levels decreased significantly in the NAC group compared to the control group. Additionally, the MDA level showed a significant decrease in the PEMF+NAC group when compared to the other groups. Overall, the combination of NAC and PEMF exhibited a synergistic effect in promoting angiogenesis and protecting against oxidative stress and inflammation during OT.

在本实验研究中,成年雌性NMRI小鼠随机分为五组:对照组;(新鲜卵巢移植,OT);(玻璃化OT);用n -乙酰半胱氨酸(NAC)处理的玻璃化OT;电动势(用脉冲电磁场处理的玻璃化OT);和NAC+EMF;(玻璃化OT与NAC和PEMF结合)。我们进行了组织学评估,以评估卵泡保留和血管形成。此外,我们检测了Fgf-2、Vegf、Tnf-α、Il-6、Il-1和Cd31基因在OT后第2天和第7天的相对表达。此外,我们测量了总抗氧化能力(TAC),丙二醛(MDA)水平,以及超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPX)的活性。我们的研究结果表明,NAC、PEMF和NAC+PEMF治疗显著增加了卵泡的数量。此外,我们观察到NAC、PEMF和PEMF+NAC组的血管化发展更为明显。NAC、PEMF及NAC+PEMF组Fgf-2、Vegf、Tnf-α、Il-1β、Il-6的相对表达量均显著升高。值得注意的是,与对照组相比,NAC组的TAC水平显著下降。此外,与其他组相比,PEMF+NAC组的MDA水平显着降低。总的来说,NAC和PEMF联合使用在OT期间促进血管生成和防止氧化应激和炎症方面表现出协同作用。
{"title":"Effects of pulsed electromagnetic fields and N-acetylcysteine on transplantation of vitrified mouse ovarian tissue.","authors":"Khadijeh Rasaeifar,&nbsp;Saeed Zavareh,&nbsp;Maryam Hajighasem-Kashani,&nbsp;Meysam Nasiri","doi":"10.1080/15368378.2023.2246503","DOIUrl":"https://doi.org/10.1080/15368378.2023.2246503","url":null,"abstract":"<p><p>In this experimental study, adult female NMRI mice were randomly assigned to five groups: control ;(fresh ovarian transplantation, OT); sham ;(vitrified OT); NAC ;(vitrified OT treated with N-acetyl cysteine, NAC); EMF ;(vitrified OT treated with pulsed electromagnetic fields, PEMF); and NAC+EMF ;(vitrified OT combined with NAC and PEMF). We conducted histological assessments to evaluate follicle reservation and vascularization. Furthermore, we examined the relative expression of <i>Fgf-2, Vegf, Tnf-α, Il-6, Il-1</i>, and <i>Cd31</i> genes on days 2 and 7 after OT. Additionally, we measured total antioxidant capacity (TAC), malondialdehyde (MDA) levels, as well as the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Our results demonstrated that NAC, PEMF, and NAC+PEMF treatments significantly increased the number of follicles. Moreover, we observed a more pronounced development of vascularization in the NAC, PEMF, and PEMF+NAC groups. The relative expression levels of <i>Fgf-2, Vegf, Tnf-α, Il-1β</i>, and <i>Il-6</i> were significantly elevated in the NAC, PEMF, and NAC+PEMF groups. Notably, TAC levels decreased significantly in the NAC group compared to the control group. Additionally, the MDA level showed a significant decrease in the PEMF+NAC group when compared to the other groups. Overall, the combination of NAC and PEMF exhibited a synergistic effect in promoting angiogenesis and protecting against oxidative stress and inflammation during OT.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10066169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive effects of pulsed electromagnetic fields on behavior, immune function, and oxidative and inflammatory state in old mice. 脉冲电磁场对老年小鼠行为、免疫功能、氧化和炎症状态的积极影响。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-04-03 DOI: 10.1080/15368378.2023.2243994
Estefanía Díaz-Del Cerro, Mónica De la Fuente

The establishment of chronic oxidative and inflammatory stress with aging leads to the deterioration of the nervous and immune systems and, consequently, to the loss of health. The aim of this work was to study the effect of exposure to low-frequency pulsed electromagnetic fields (PEMFs) produced by the NEURALTER® system (15 min/day for 4 weeks) in the behavior, immune functions, and oxidative and inflammatory state of old mice. Female old CD1 mice were divided into three groups: control group, handling control group and Neuralter group. Then, behavioral tests were performed, and peritoneal leukocytes were extracted to analyze function, oxidative and inflammatory parameters. In peritoneal leukocytes from old mice, the effects in vitro of 15 min with NEURALTER® were studied on function and oxidative parameters. The results show that after this type of treatment, old mice had greater coordination and locomotion, better immune function, and an oxidative-inflammatory state. Similarly, the immune function and oxidative state of leukocytes showed an improvement when these cells were exposed directly to the NEURALTER® system. In conclusion, the exposure to low-frequency PEMFs produced by the NEURALTER® system has beneficial effects on health in aging. In addition, this effect is direct, at least in part, on immune cells.

随着年龄的增长,慢性氧化和炎症应激的建立导致神经和免疫系统的恶化,从而导致健康的丧失。本研究的目的是研究暴露于NEURALTER®系统产生的低频脉冲电磁场(pemf)(每天15分钟,持续4周)对老年小鼠行为、免疫功能、氧化和炎症状态的影响。雌性老龄CD1小鼠分为3组:对照组、处理对照组和Neuralter组。然后进行行为测试,并提取腹膜白细胞以分析功能,氧化和炎症参数。在老年小鼠腹膜白细胞中,研究了体外使用NEURALTER®15分钟对其功能和氧化参数的影响。结果表明,经过这种治疗,老年小鼠的协调性和运动性更强,免疫功能更好,氧化炎症状态更好。同样,当这些细胞直接暴露于NEURALTER®系统时,白细胞的免疫功能和氧化状态也有所改善。总之,暴露于NEURALTER®系统产生的低频pemf对衰老的健康有有益的影响。此外,这种作用至少在一定程度上直接作用于免疫细胞。
{"title":"Positive effects of pulsed electromagnetic fields on behavior, immune function, and oxidative and inflammatory state in old mice.","authors":"Estefanía Díaz-Del Cerro,&nbsp;Mónica De la Fuente","doi":"10.1080/15368378.2023.2243994","DOIUrl":"https://doi.org/10.1080/15368378.2023.2243994","url":null,"abstract":"<p><p>The establishment of chronic oxidative and inflammatory stress with aging leads to the deterioration of the nervous and immune systems and, consequently, to the loss of health. The aim of this work was to study the effect of exposure to low-frequency pulsed electromagnetic fields (PEMFs) produced by the NEURALTER® system (15 min/day for 4 weeks) in the behavior, immune functions, and oxidative and inflammatory state of old mice. Female old CD1 mice were divided into three groups: control group, handling control group and Neuralter group. Then, behavioral tests were performed, and peritoneal leukocytes were extracted to analyze function, oxidative and inflammatory parameters. In peritoneal leukocytes from old mice, the effects <i>in vitro</i> of 15 min with NEURALTER® were studied on function and oxidative parameters. The results show that after this type of treatment, old mice had greater coordination and locomotion, better immune function, and an oxidative-inflammatory state. Similarly, the immune function and oxidative state of leukocytes showed an improvement when these cells were exposed directly to the NEURALTER® system. In conclusion, the exposure to low-frequency PEMFs produced by the NEURALTER® system has beneficial effects on health in aging. In addition, this effect is direct, at least in part, on immune cells.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10068745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative proteomics reveals effects of environmental radiofrequency electromagnetic fields on embryonic neural stem cells. 定量蛋白质组学揭示了环境射频电磁场对胚胎神经干细胞的影响。
IF 1.7 4区 生物学 Q2 Medicine Pub Date : 2023-04-03 DOI: 10.1080/15368378.2023.2243980
Guangzhou An, Yuntao Jing, Tao Zhao, Wei Zhang, Ling Guo, Juan Guo, Xia Miao, Junling Xing, Jing Li, Junye Liu, Guirong Ding

The effects of environmental radiofrequency electromagnetic fields (RF-EMF) on embryonic neural stem cells have not been determined, particularly at the proteomic level. This study aims to elucidate the effects of environmental levels of RF-EMF radiation on embryonic neural stem cells. Neuroectodermal stem cells (NE-4C cells) were randomly divided into a sham group and an RF group, which were sham-exposed and continuously exposed to a 1950 MHz RF-EMF at 2 W/kg for 48 h. After exposure, cell proliferation was determined by a Cell Counting Kit-8 (CCK8) assay, the cell cycle distribution and apoptosis were measured by flow cytometry, protein abundance was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and mRNA expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). We did not detect differences in cell proliferation, cell cycle distribution, and apoptosis between the two groups. However, we detected differences in the abundance of 23 proteins between the two groups, and some of these differences were consistent with alterations in transcript levels determined by qRT-PCR (P < 0.05). A bioinformatics analysis indicated that the differentially regulated proteins were mainly enriched in 'localization' in the cellular process category; however, no significant pathway alterations in NE-4C cells were detected. We conclude that under the experimental conditions, low-level RF-EMF exposure was not neurotoxic but could induce minor changes in the abundance of some proteins involved in neurodevelopment or brain function.

环境射频电磁场(RF-EMF)对胚胎神经干细胞的影响尚未确定,特别是在蛋白质组水平上。本研究旨在阐明环境水平的射频电磁场辐射对胚胎神经干细胞的影响。将神经外胚层干细胞(NE-4C细胞)随机分为假暴露组和射频组,假暴露并连续暴露于2w /kg的1950 MHz RF- emf中48 h。暴露后,采用细胞计数试剂盒-8 (CCK8)检测细胞增殖,流式细胞术检测细胞周期分布和凋亡,液相色谱-串联质谱(LC-MS/MS)检测蛋白丰度,定量逆转录聚合酶链反应(qRT-PCR)检测mRNA表达。我们没有发现两组之间细胞增殖、细胞周期分布和凋亡的差异。然而,我们检测到两组之间23种蛋白的丰度存在差异,其中一些差异与qRT-PCR测定的转录物水平的变化一致(P
{"title":"Quantitative proteomics reveals effects of environmental radiofrequency electromagnetic fields on embryonic neural stem cells.","authors":"Guangzhou An,&nbsp;Yuntao Jing,&nbsp;Tao Zhao,&nbsp;Wei Zhang,&nbsp;Ling Guo,&nbsp;Juan Guo,&nbsp;Xia Miao,&nbsp;Junling Xing,&nbsp;Jing Li,&nbsp;Junye Liu,&nbsp;Guirong Ding","doi":"10.1080/15368378.2023.2243980","DOIUrl":"https://doi.org/10.1080/15368378.2023.2243980","url":null,"abstract":"<p><p>The effects of environmental radiofrequency electromagnetic fields (RF-EMF) on embryonic neural stem cells have not been determined, particularly at the proteomic level. This study aims to elucidate the effects of environmental levels of RF-EMF radiation on embryonic neural stem cells. Neuroectodermal stem cells (NE-4C cells) were randomly divided into a sham group and an RF group, which were sham-exposed and continuously exposed to a 1950 MHz RF-EMF at 2 W/kg for 48 h. After exposure, cell proliferation was determined by a Cell Counting Kit-8 (CCK8) assay, the cell cycle distribution and apoptosis were measured by flow cytometry, protein abundance was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and mRNA expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). We did not detect differences in cell proliferation, cell cycle distribution, and apoptosis between the two groups. However, we detected differences in the abundance of 23 proteins between the two groups, and some of these differences were consistent with alterations in transcript levels determined by qRT-PCR (<i>P</i> < 0.05). A bioinformatics analysis indicated that the differentially regulated proteins were mainly enriched in 'localization' in the cellular process category; however, no significant pathway alterations in NE-4C cells were detected. We conclude that under the experimental conditions, low-level RF-EMF exposure was not neurotoxic but could induce minor changes in the abundance of some proteins involved in neurodevelopment or brain function.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10121127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electromagnetic Biology and Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1