Pub Date : 2023-11-21DOI: 10.1016/j.disopt.2023.100812
Lucas Waddell , Warren Adams
The quadratic assignment problem (QAP) is an extremely challenging NP-hard combinatorial optimization program. Due to its difficulty, a research emphasis has been to identify special cases that are polynomially solvable. Included within this emphasis are instances which are linearizable; that is, which can be rewritten as a linear assignment problem having the property that the objective function value is preserved at all feasible solutions. Various known sufficient conditions for identifying linearizable instances have been explained in terms of the continuous relaxation of a weakened version of the level-1 reformulation-linearization-technique (RLT) form that does not enforce nonnegativity on a subset of the variables. Also, conditions that are both necessary and sufficient have been given in terms of decompositions of the objective coefficients. The main contribution of this paper is the identification of a relationship between polyhedral theory and linearizability that promotes a novel, yet strikingly simple, necessary and sufficient condition for identifying linearizable instances; specifically, an instance of the QAP is linearizable if and only if the continuous relaxation of the same weakened RLT form is bounded. In addition to providing a novel perspective on the QAP being linearizable, a consequence of this study is that every linearizable instance has an optimal solution to the (polynomially-sized) continuous relaxation of the level-1 RLT form that is binary. The converse, however, is not true so that the continuous relaxation can yield binary optimal solutions to instances of the QAP that are not linearizable. Another consequence follows from our defining a maximal linearly independent set of equations in the lifted RLT variable space; we answer a recent open question that the theoretically best possible linearization-based bound cannot improve upon the level-1 RLT form.
{"title":"Characterizing linearizable QAPs by the level-1 reformulation-linearization technique","authors":"Lucas Waddell , Warren Adams","doi":"10.1016/j.disopt.2023.100812","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100812","url":null,"abstract":"<div><p>The quadratic assignment problem (QAP) is an extremely challenging NP-hard combinatorial optimization program. Due to its difficulty, a research emphasis has been to identify special cases that are polynomially solvable. Included within this emphasis are instances which are <em>linearizable</em><span><span>; that is, which can be rewritten as a linear assignment problem having the property that the objective function value is preserved at all feasible solutions. Various known sufficient conditions for identifying linearizable instances have been explained in terms of the continuous relaxation of a weakened version of the level-1 reformulation-linearization-technique (RLT) form that does not enforce nonnegativity<span> on a subset of the variables. Also, conditions that are both necessary and sufficient have been given in terms of decompositions of the objective coefficients. The main contribution of this paper is the identification of a relationship between polyhedral theory and linearizability that promotes a novel, yet strikingly simple, necessary and sufficient condition for identifying linearizable instances; specifically, an instance of the QAP is linearizable if and only if the continuous relaxation of the same weakened RLT form is bounded. In addition to providing a novel perspective on the QAP being linearizable, a consequence of this study is that every linearizable instance has an optimal solution to the (polynomially-sized) continuous relaxation of the level-1 RLT form that is binary. The converse, however, is not true so that the continuous relaxation can yield binary optimal solutions to instances of the QAP that are not linearizable. Another consequence follows from our defining a maximal </span></span>linearly independent set of equations in the lifted RLT variable space; we answer a recent open question that the theoretically best possible linearization-based bound cannot improve upon the level-1 RLT form.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"51 ","pages":"Article 100812"},"PeriodicalIF":1.1,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138327976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1016/j.disopt.2023.100811
Zoltán Szigeti
The aim of this paper is twofold. We first provide a new orientation theorem which gives a natural and simple proof of a result of Gao and Yang (2021) on matroid-reachability-based packing of mixed arborescences in mixed graphs by reducing it to the corresponding theorem of Király (2016) on directed graphs. Moreover, we extend another result of Gao and Yang (2021) by providing a new theorem on mixed hypergraphs having a packing of mixed hyperarborescences such that their number is at least and at most , each vertex belongs to exactly of them, and each vertex is the root of least and at most of them.
{"title":"Packing mixed hyperarborescences","authors":"Zoltán Szigeti","doi":"10.1016/j.disopt.2023.100811","DOIUrl":"10.1016/j.disopt.2023.100811","url":null,"abstract":"<div><p><span>The aim of this paper is twofold. We first provide a new orientation theorem which gives a natural and simple proof of a result of Gao and Yang (2021) on matroid-reachability-based packing of mixed arborescences in mixed graphs by reducing it to the corresponding theorem of Király (2016) on directed graphs. Moreover, we extend another result of Gao and Yang (2021) by providing a new theorem on mixed hypergraphs having a packing of mixed hyperarborescences such that their number is at least </span><span><math><mi>ℓ</mi></math></span> and at most <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, each vertex belongs to exactly <span><math><mi>k</mi></math></span> of them, and each vertex <span><math><mi>v</mi></math></span> is the root of least <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> and at most <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> of them.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100811"},"PeriodicalIF":1.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1016/j.disopt.2023.100809
Shunhai He , Huiqing Liu
A Halin graph is a plane graph consisting of a plane embedding of a tree of order at least 4 containing no vertex of degree 2, and of a cycle connecting all leaves of . Let be the maximum number of copies of in a Halin graph on vertices. In this paper, we give exact values of when is a path on vertices for . Moreover, we develop a new graph transformation preserving the number of vertices, so that the resulting graph has a monotone behavior with respect to the number of short paths.
{"title":"The maximum number of short paths in a Halin graph","authors":"Shunhai He , Huiqing Liu","doi":"10.1016/j.disopt.2023.100809","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100809","url":null,"abstract":"<div><p>A Halin graph <span><math><mi>G</mi></math></span> is a plane graph consisting of a plane embedding of a tree <span><math><mi>T</mi></math></span> of order at least 4 containing no vertex of degree 2, and of a cycle <span><math><mi>C</mi></math></span> connecting all leaves of <span><math><mi>T</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the maximum number of copies of <span><math><mi>G</mi></math></span> in a Halin graph on <span><math><mi>n</mi></math></span> vertices. In this paper, we give exact values of <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> is a path on <span><math><mi>k</mi></math></span> vertices for <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn></mrow></math></span>. Moreover, we develop a new graph transformation preserving the number of vertices, so that the resulting graph has a monotone behavior with respect to the number of short paths.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100809"},"PeriodicalIF":1.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91729833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1016/j.disopt.2023.100810
Patrick Chervet , Roland Grappe , Mathieu Lacroix , Francesco Pisanu , Roberto Wolfler Calvo
In this paper, we study the complexity of some fundamental questions regarding box-totally dual integral (box-TDI) polyhedra. First, although box-TDI polyhedra have strong integrality properties, we prove that Integer Programming over box-TDI polyhedra is NP-complete, that is, finding an integer point optimizing a linear function over a box-TDI polyhedron is hard. Second, we complement the result of Ding et al. (2008) who proved that deciding whether a given system is box-TDI is co-NP-complete: we prove that recognizing whether a polyhedron is box-TDI is co-NP-complete.
To derive these complexity results, we exhibit new classes of totally equimodular matrices – a generalization of totally unimodular matrices – by characterizing the total equimodularity of incidence matrices of graphs.
本文研究了盒-完全对偶积分多面体的一些基本问题的复杂性。首先,尽管盒- tdi多面体具有很强的整体性,但我们证明了盒- tdi多面体上的整数规划是np完全的,即很难找到一个整数点来优化一个线性函数。其次,我们补充了Ding et al.(2008)证明判定给定系统是否为box-TDI是共np完全的结果:我们证明了识别多面体是否为box-TDI是共np完全的。为了得到这些复杂性结果,我们通过刻画图关联矩阵的全等模性,展示了一类新的全等模矩阵——全等模矩阵的推广。
{"title":"Hard problems on box-totally dual integral polyhedra","authors":"Patrick Chervet , Roland Grappe , Mathieu Lacroix , Francesco Pisanu , Roberto Wolfler Calvo","doi":"10.1016/j.disopt.2023.100810","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100810","url":null,"abstract":"<div><p>In this paper, we study the complexity of some fundamental questions regarding box-totally dual integral (box-TDI) polyhedra. First, although box-TDI polyhedra have strong integrality properties, we prove that Integer Programming over box-TDI polyhedra is NP-complete, that is, finding an integer point optimizing a linear function over a box-TDI polyhedron is hard. Second, we complement the result of Ding et al. (2008) who proved that deciding whether a given system is box-TDI is co-NP-complete: we prove that recognizing whether a polyhedron is box-TDI is co-NP-complete.</p><p>To derive these complexity results, we exhibit new classes of totally equimodular matrices – a generalization of totally unimodular matrices – by characterizing the total equimodularity of incidence matrices of graphs.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100810"},"PeriodicalIF":1.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92046424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-14DOI: 10.1016/j.disopt.2023.100806
K. Subramani, Piotr Wojciechowski
In this paper, we discuss the computational complexities of determining optimal length refutations of infeasible integer programs (IPs). We focus on three different types of refutations, namely read-once refutations, tree-like refutations, and dag-like refutations. For each refutation type, we are interested in finding the length of the shortest possible refutation of that type. In the case of this paper, the length of a refutation is equal to the number of inferences in that refutation. The refutations in this paper are also defined by the types of inferences that can be used to derive new constraints. We are interested in refutations with two inference rules. The first rule corresponds to the summation of two constraints and is called the ADD rule. The second rule is the DIV rule which divides a constraint by a positive integer. For integer programs, we study the complexity of approximating the length of the shortest refutation of each type (read-once, tree-like, and dag-like). In this paper, we show that the problem of finding the shortest read-once refutation is NPO PB-complete. Additionally, we show that the problem of finding the shortest tree-like refutation is NPO-hard for IPs. We also show that the problem of finding the shortest dag-like refutation is NPO-hard for IPs. Finally, we show that the problems of finding the shortest tree-like and dag-like refutations are in FPSPACE.
{"title":"Optimal length cutting plane refutations of integer programs","authors":"K. Subramani, Piotr Wojciechowski","doi":"10.1016/j.disopt.2023.100806","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100806","url":null,"abstract":"<div><p><span>In this paper, we discuss the computational complexities of determining optimal length refutations of infeasible integer programs (IPs). We focus on three different types of refutations, namely read-once refutations, tree-like refutations, and dag-like refutations. For each refutation type, we are interested in finding the length of the shortest possible refutation of that type. In the case of this paper, the length of a refutation is equal to the number of inferences in that refutation. The refutations in this paper are also defined by the types of inferences that can be used to derive new constraints. We are interested in refutations with two inference rules. The first rule corresponds to the summation of two constraints and is called the ADD rule. The second rule is the DIV rule which divides a constraint by a positive integer. For integer programs, we study the complexity of approximating the length of the shortest refutation of each type (read-once, tree-like, and dag-like). In this paper, we show that the problem of finding the shortest read-once refutation is </span><strong>NPO PB-complete</strong>. Additionally, we show that the problem of finding the shortest tree-like refutation is <strong>NPO-hard</strong> for IPs. We also show that the problem of finding the shortest dag-like refutation is <strong>NPO-hard</strong> for IPs. Finally, we show that the problems of finding the shortest tree-like and dag-like refutations are in <strong>FPSPACE</strong>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100806"},"PeriodicalIF":1.1,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49712009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1016/j.disopt.2023.100807
Konstantinos Kaparis , Adam N. Letchford , Ioannis Mourtos
The max-cut problem is a fundamental and much-studied -hard combinatorial optimisation problem, with a wide range of applications. Several authors have shown that the max-cut problem can be solved in polynomial time if the underlying graph is free of certain minors. We give a polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of graphs on which the max-cut problem can be solved efficiently.
{"title":"On cut polytopes and graph minors","authors":"Konstantinos Kaparis , Adam N. Letchford , Ioannis Mourtos","doi":"10.1016/j.disopt.2023.100807","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100807","url":null,"abstract":"<div><p>The <em>max-cut problem</em> is a fundamental and much-studied <span><math><mi>NP</mi></math></span><span>-hard combinatorial optimisation problem<span>, with a wide range of applications. Several authors have shown that the max-cut problem can be solved in polynomial time if the underlying graph is free of certain </span></span><em>minors</em><span>. We give a polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of graphs on which the max-cut problem can be solved efficiently.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100807"},"PeriodicalIF":1.1,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.1016/j.disopt.2023.100808
Chaohui Chen , Wenshui Lin
<div><p>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span><span> be a connected graph, and </span><span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> the degree of vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span>. We define the general <span><math><mi>Z</mi></math></span>-type index of <span><math><mi>G</mi></math></span> as <span><math><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi></mrow></msub><msup><mrow><mrow><mo>[</mo><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><mi>β</mi><mo>]</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, where <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span><span> are two real numbers. This generalizes several famous topological indices, such as the first and second Zagreb indices, the general sum-connectivity index, the reformulated first Zagreb index, and the general Platt index, which have successful applications in QSPR/QSAR research. Hence, we are able to study these indices in a unified approach.</span></p><p>Let <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span> the set of connected graphs with degree sequence <span><math><mi>π</mi></math></span>. In the present paper, under different conditions of <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, we show that:</p><p><span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span><span> There exists a so-called BFS-graph having extremal </span><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span>;</p><p><span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> If <span><math><mi>π</mi></math></span> is the degree sequence of a tree, a unicyclic graph, or a bicyclic graph, with minimum degree 1, then there exists a special BFS-graph with extremal <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span>;</p><p><span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span><span> The so-called majorization theorem of </span><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> holds for trees, unicyclic graphs, and bicyclic graphs.</p><p>As applications of the above results, we determine the extremal graphs with maximum <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><m
{"title":"On the general Z-type index of connected graphs","authors":"Chaohui Chen , Wenshui Lin","doi":"10.1016/j.disopt.2023.100808","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100808","url":null,"abstract":"<div><p>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span><span> be a connected graph, and </span><span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> the degree of vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span>. We define the general <span><math><mi>Z</mi></math></span>-type index of <span><math><mi>G</mi></math></span> as <span><math><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi></mrow></msub><msup><mrow><mrow><mo>[</mo><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><mi>β</mi><mo>]</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, where <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span><span> are two real numbers. This generalizes several famous topological indices, such as the first and second Zagreb indices, the general sum-connectivity index, the reformulated first Zagreb index, and the general Platt index, which have successful applications in QSPR/QSAR research. Hence, we are able to study these indices in a unified approach.</span></p><p>Let <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span> the set of connected graphs with degree sequence <span><math><mi>π</mi></math></span>. In the present paper, under different conditions of <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, we show that:</p><p><span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span><span> There exists a so-called BFS-graph having extremal </span><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span>;</p><p><span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> If <span><math><mi>π</mi></math></span> is the degree sequence of a tree, a unicyclic graph, or a bicyclic graph, with minimum degree 1, then there exists a special BFS-graph with extremal <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span>;</p><p><span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span><span> The so-called majorization theorem of </span><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> holds for trees, unicyclic graphs, and bicyclic graphs.</p><p>As applications of the above results, we determine the extremal graphs with maximum <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><m","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100808"},"PeriodicalIF":1.1,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49712365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26DOI: 10.1016/j.disopt.2023.100805
Haoran Zhu
In this paper, we will answer a more general version of one of the questions proposed by Bodur et al. (2017). Specifically, we show that the -aggregation closure of a covering set is a polyhedron.
{"title":"The k-aggregation closure for covering sets","authors":"Haoran Zhu","doi":"10.1016/j.disopt.2023.100805","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100805","url":null,"abstract":"<div><p>In this paper, we will answer a more general version of one of the questions proposed by Bodur et al. (2017). Specifically, we show that the <span><math><mi>k</mi></math></span><span>-aggregation closure of a covering set is a polyhedron.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100805"},"PeriodicalIF":1.1,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49712363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-16DOI: 10.1016/j.disopt.2023.100804
Rui Chen , Sanjeeb Dash , Oktay Günlük
The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of solutions of the standard linearization of this problem a multilinear set with cardinality constraints. We characterize a set of conditions on these multilinear terms (called properness) and observe that under these conditions the convex hull description of the set is tractable via an extended formulation. We then give an explicit polyhedral description of the convex hull when the multilinear terms have a nested structure. Our description has an exponential number of inequalities which can be separated in polynomial time. Finally, we generalize these inequalities to obtain valid inequalities for the general case.
{"title":"Convexifying multilinear sets with cardinality constraints: Structural properties, nested case and extensions","authors":"Rui Chen , Sanjeeb Dash , Oktay Günlük","doi":"10.1016/j.disopt.2023.100804","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100804","url":null,"abstract":"<div><p><span>The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of solutions of the standard linearization of this problem a multilinear set with cardinality constraints. We characterize a set of conditions on these multilinear terms (called </span><em>properness</em><span>) and observe that under these conditions the convex hull<span> description of the set is tractable via an extended formulation. We then give an explicit polyhedral description of the convex hull when the multilinear terms have a nested structure. Our description has an exponential number of inequalities which can be separated in polynomial time. Finally, we generalize these inequalities to obtain valid inequalities for the general case.</span></span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100804"},"PeriodicalIF":1.1,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49733924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-13DOI: 10.1016/j.disopt.2023.100803
Leah Epstein
We revisit online weighted edge coloring. In this problem, weighted edges of a graph are presented one by one, to be colored with positive integers. It is required that for every vertex, all its edges of every common color will have a total weight not exceeding 1. We provide an improved upper bound on the performance of a greedy algorithm First Fit for the case of arbitrary weights, and for the case of weights not exceeding . Here, the meaning of First Fit is that every edge is colored with a color of the smallest index that will keep the coloring valid. This improves the state-of-the-art with respect to online algorithms for this variant of edge coloring. We also show new lower bounds on the performance of any online algorithm with weights in , for any integer .
{"title":"More on online weighted edge coloring","authors":"Leah Epstein","doi":"10.1016/j.disopt.2023.100803","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100803","url":null,"abstract":"<div><p><span><span>We revisit online weighted edge coloring. In this problem, weighted edges of a graph are presented one by one, to be colored with positive integers. It is required that for every vertex, all its edges of every common color will have a total weight not exceeding 1. We provide an improved upper bound on the performance of a </span>greedy algorithm First Fit for the case of arbitrary weights, and for the case of weights not exceeding </span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Here, the meaning of First Fit is that every edge is colored with a color of the smallest index that will keep the coloring valid. This improves the state-of-the-art with respect to online algorithms for this variant of edge coloring. We also show new lower bounds on the performance of any online algorithm with weights in <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac><mo>]</mo></mrow></math></span>, for any integer <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100803"},"PeriodicalIF":1.1,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49733922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}