首页 > 最新文献

Discrete & Computational Geometry最新文献

英文 中文
Maximum Matchings in Geometric Intersection Graphs. 几何交图中的最大匹配。
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 Epub Date: 2023-09-09 DOI: 10.1007/s00454-023-00564-3
Édouard Bonnet, Sergio Cabello, Wolfgang Mulzer

Let G be an intersection graph of n geometric objects in the plane. We show that a maximum matching in G can be found in O(ρ3ω/2nω/2) time with high probability, where ρ is the density of the geometric objects and ω>2 is a constant such that n×n matrices can be multiplied in O(nω) time. The same result holds for any subgraph of G, as long as a geometric representation is at hand. For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian elimination, with the fact that geometric intersection graphs have small separators. We also show that in many interesting cases, the maximum matching problem in a general geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum matching in the intersection graph of any family of translates of a convex object in the plane can be found in O(nω/2) time with high probability, and a maximum matching in the intersection graph of a family of planar disks with radii in [1,Ψ] can be found in O(Ψ6log11n+Ψ12ωnω/2) time with high probability.

设G是平面上n个几何对象的交图。我们证明了G中的最大匹配可以在O(ρ3ω/2nω/2)时间内以高概率找到,其中ρ是几何对象的密度,ω>2是一个常数,使得n×n矩阵可以在0(nω)时间内相乘。同样的结果适用于G的任何子图,只要手头有几何表示。为此,我们将代数方法,即通过高斯消去计算矩阵的秩,与几何交集图具有小分隔符的事实相结合。我们还证明了在许多有趣的情况下,一般几何交集图中的最大匹配问题可以简化为有界密度的情况。特别地,在O(nω/2)时间内,可以高概率地在平面内凸对象的平移的任何族的交集图中找到最大匹配,并且在O(Ψ6log11n+Ψ12ωnω/2。
{"title":"Maximum Matchings in Geometric Intersection Graphs.","authors":"Édouard Bonnet,&nbsp;Sergio Cabello,&nbsp;Wolfgang Mulzer","doi":"10.1007/s00454-023-00564-3","DOIUrl":"10.1007/s00454-023-00564-3","url":null,"abstract":"<p><p>Let <i>G</i> be an intersection graph of <i>n</i> geometric objects in the plane. We show that a maximum matching in <i>G</i> can be found in <math><mrow><mi>O</mi><mspace></mspace><mo>(</mo><msup><mi>ρ</mi><mrow><mn>3</mn><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mi>n</mi><mrow><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math> time with high probability, where <math><mi>ρ</mi></math> is the density of the geometric objects and <math><mrow><mi>ω</mi><mo>></mo><mn>2</mn></mrow></math> is a constant such that <math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math> matrices can be multiplied in <math><mrow><mi>O</mi><mo>(</mo><msup><mi>n</mi><mi>ω</mi></msup><mo>)</mo></mrow></math> time. The same result holds for any subgraph of <i>G</i>, as long as a geometric representation is at hand. For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian elimination, with the fact that geometric intersection graphs have small separators. We also show that in many interesting cases, the maximum matching problem in a general geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum matching in the intersection graph of any family of translates of a convex object in the plane can be found in <math><mrow><mi>O</mi><mo>(</mo><msup><mi>n</mi><mrow><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math> time with high probability, and a maximum matching in the intersection graph of a family of planar disks with radii in <math><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>Ψ</mi><mo>]</mo></mrow></math> can be found in <math><mrow><mi>O</mi><mspace></mspace><mo>(</mo><msup><mi>Ψ</mi><mn>6</mn></msup><msup><mo>log</mo><mn>11</mn></msup><mspace></mspace><mi>n</mi><mo>+</mo><msup><mi>Ψ</mi><mrow><mn>12</mn><mi>ω</mi></mrow></msup><msup><mi>n</mi><mrow><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math> time with high probability.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41156223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Nearly k-Distance Sets. 近似k距离集。
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 Epub Date: 2023-06-06 DOI: 10.1007/s00454-023-00489-x
Nóra Frankl, Andrey Kupavskii

We say that a set of points SRd is an ε-nearly k-distance set if there exist 1t1tk, such that the distance between any two distinct points in S falls into [t1,t1+ε][tk,tk+ε]. In this paper, we study the quantity Mk(d)=limε0max{|S|:Sis anε-nearlyk-distance set inRd}and its relation to the classical quantity mk(d): the size of the largest k-distance set in Rd. We obtain that Mk(d)=mk(d) for k=2,3, as well as for any fixed k, provided that d is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given n points in Rd, how many pairs of them form a distance that belongs to [t1,t1+1][tk,tk+1], where t1,,tk are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to Mk(d-1

我们说,一组点S⊂Rd是一个ε-近k距离集,如果存在1≤t1≤…≤tk,使得S中任意两个不同点之间的距离落入[t1,t1+ε]Ş…Ş[tk,tk+ε]。本文研究了Mk(d)=limε→0max{|S|:Rd中的ε-近k距离集}及其与经典量mk(d)的关系:Rd的最大k距离集的大小。我们得到Mk(d)=Mk(d),对于k=2,3,以及对于任何固定的k,只要d足够大。最后一个结果回答了一个问题,由Erdõs、Makai和Pach提出。我们还解决了一个密切相关的Turán型问题,该问题由Erdõs、Makai、Pach和Spencer在90年代研究:给定Rd中的n个点,它们中有多少对形成了属于[t1,t1+1]的距离?我们建立了这个量和一个与Mk(d-1)密切相关的量之间的联系,并获得了与上述相同范围k,d的精确答案。
{"title":"Nearly <i>k</i>-Distance Sets.","authors":"Nóra Frankl,&nbsp;Andrey Kupavskii","doi":"10.1007/s00454-023-00489-x","DOIUrl":"https://doi.org/10.1007/s00454-023-00489-x","url":null,"abstract":"<p><p>We say that a set of points <math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></mrow></math> is an <math><mi>ε</mi></math>-nearly <i>k</i>-distance set if there exist <math><mrow><mn>1</mn><mo>≤</mo><msub><mi>t</mi><mn>1</mn></msub><mo>≤</mo><mo>…</mo><mo>≤</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math>, such that the distance between any two distinct points in <i>S</i> falls into <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mi>ε</mi><mo>]</mo></mrow></mrow></math>. In this paper, we study the quantity <dispformula><math><mrow><mtable><mtr><mtd><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><munder><mo>lim</mo><mrow><mi>ε</mi><mo>→</mo><mn>0</mn></mrow></munder><mo>max</mo><mrow><mo>{</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>:</mo><mi>S</mi><mspace></mspace><mspace></mspace><mtext>is an</mtext><mspace></mspace><mi>ε</mi><mtext>-nearly</mtext><mspace></mspace><mi>k</mi><mtext>-distance set in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup><mo>}</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>and its relation to the classical quantity <math><mrow><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math>: the size of the largest <i>k</i>-distance set in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>. We obtain that <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>m</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math> for <math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math>, as well as for any fixed <i>k</i>, provided that <i>d</i> is sufficiently large. The last result answers a question, proposed by Erdős, Makai, and Pach. We also address a closely related Turán-type problem, studied by Erdős, Makai, Pach, and Spencer in the 90s: given <i>n</i> points in <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>, how many pairs of them form a distance that belongs to <math><mrow><mrow><mo>[</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow><mo>∪</mo><mo>⋯</mo><mo>∪</mo><mrow><mo>[</mo><msub><mi>t</mi><mi>k</mi></msub><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub><mo>+</mo><mn>1</mn><mo>]</mo></mrow></mrow></math>, where <math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>t</mi><mi>k</mi></msub></mrow></math> are fixed and any two points in the set are at distance at least 1 apart? We establish the connection between this quantity and a quantity closely related to <math><mrow><msub><mi>M</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>d</mi><mo>-</mo><mn>1</mn><m","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lonely Points in Simplices. 简约中的孤独点
IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 Epub Date: 2022-09-29 DOI: 10.1007/s00454-022-00428-2
Maximilian Jaroschek, Manuel Kauers, Laura Kovács

Given a lattice L Z m and a subset A R m , we say that a point in A is lonely if it is not equivalent modulo L to another point of A. We are interested in identifying lonely points for specific choices of L when A is a dilated standard simplex, and in conditions on L which ensure that the number of lonely points is unbounded as the simplex dilation goes to infinity.

给定一个网格 L ⊆ Z m 和一个子集 A ⊆ R m,如果 A 中的一个点不等价于 A 中的另一个点,那么我们就说这个点是孤点。我们感兴趣的是,当 A 是一个扩张的标准单纯形时,在 L 的特定选择下识别孤点,以及 L 的条件,这些条件可以确保孤点的数量在单纯形扩张到无穷大时是无限制的。
{"title":"Lonely Points in Simplices.","authors":"Maximilian Jaroschek, Manuel Kauers, Laura Kovács","doi":"10.1007/s00454-022-00428-2","DOIUrl":"10.1007/s00454-022-00428-2","url":null,"abstract":"<p><p>Given a lattice <math><mrow><mi>L</mi> <mo>⊆</mo> <msup><mi>Z</mi> <mi>m</mi></msup> </mrow> </math> and a subset <math><mrow><mi>A</mi> <mo>⊆</mo> <msup><mi>R</mi> <mi>m</mi></msup> </mrow> </math> , we say that a point in <i>A</i> is <i>lonely</i> if it is not equivalent modulo <math><mi>L</mi></math> to another point of <i>A</i>. We are interested in identifying lonely points for specific choices of <math><mi>L</mi></math> when <i>A</i> is a dilated standard simplex, and in conditions on <math><mi>L</mi></math> which ensure that the number of lonely points is unbounded as the simplex dilation goes to infinity.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10481510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds. 非算术双曲共轭轨道的尖密度和可通约性。
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.1007/s00454-022-00455-z
Edoardo Dotti, Simon T Drewitz, Ruth Kellerhals

For three distinct infinite families ( R m ) , ( S m ) , and ( T m ) of non-arithmetic 1-cusped hyperbolic Coxeter 3-orbifolds, we prove incommensurability for a pair of elements X k and Y l belonging to the same sequence and for most pairs belonging two different ones. We investigate this problem first by means of the Vinberg space and the Vinberg form, a quadratic space associated to each of the corresponding fundamental Coxeter prism groups, which allows us to deduce some partial results. The complete proof is based on the analytic behavior of another commensurability invariant. It is given by the cusp density, and we prove and exploit its strict monotonicity.

对于非等差1尖双曲Coxeter 3-轨道的三个不同无限族(R m), (S m)和(T m),我们证明了属于同一序列的一对元素X k和Y l以及属于两个不同序列的大多数元素对的不可通约性。我们首先通过Vinberg空间和Vinberg形式来研究这个问题,Vinberg形式是一个与每个相应的基本Coxeter棱镜群相关的二次空间,它允许我们推断出一些部分结果。完整的证明是基于另一个可通约性不变量的解析行为。它由尖密度给出,并证明和利用了它的严格单调性。
{"title":"Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds.","authors":"Edoardo Dotti,&nbsp;Simon T Drewitz,&nbsp;Ruth Kellerhals","doi":"10.1007/s00454-022-00455-z","DOIUrl":"https://doi.org/10.1007/s00454-022-00455-z","url":null,"abstract":"<p><p>For three distinct infinite families <math><mrow><mo>(</mo> <msub><mi>R</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> , <math><mrow><mo>(</mo> <msub><mi>S</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> , and <math><mrow><mo>(</mo> <msub><mi>T</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> of non-arithmetic 1-cusped hyperbolic Coxeter 3-orbifolds, we prove incommensurability for a pair of elements <math><msub><mi>X</mi> <mi>k</mi></msub> </math> and <math><msub><mi>Y</mi> <mi>l</mi></msub> </math> belonging to the same sequence and for most pairs belonging two different ones. We investigate this problem first by means of the Vinberg space and the Vinberg form, a quadratic space associated to each of the corresponding fundamental Coxeter prism groups, which allows us to deduce some partial results. The complete proof is based on the analytic behavior of another commensurability invariant. It is given by the cusp density, and we prove and exploit its strict monotonicity.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9424995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Completeness for the Complexity Class R and Area-Universality. 复杂性类R的完备性和区域普遍性。
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 Epub Date: 2022-05-18 DOI: 10.1007/s00454-022-00381-0
Michael Gene Dobbins, Linda Kleist, Tillmann Miltzow, Paweł Rzążewski

Exhibiting a deep connection between purely geometric problems and real algebra, the complexity class R plays a crucial role in the study of geometric problems. Sometimes R is referred to as the 'real analog' of NP. While NP is a class of computational problems that deals with existentially quantified boolean variables, R deals with existentially quantified real variables. In analogy to Π2p and Σ2p in the famous polynomial hierarchy, we study the complexity classes R and R with real variables. Our main interest is the Area Universality problem, where we are given a plane graph G, and ask if for each assignment of areas to the inner faces of G, there exists a straight-line drawing of G realizing the assigned areas. We conjecture that Area Universality is R-complete and support this conjecture by proving R- and R-completeness of two variants of Area Universality. To this end, we introduce tools to prove R-hardness and membership. Finally, we present geometric problems as candidates for R-complete problems. These problems have connections to the concepts of imprecision, robustness, and extendability.

复杂性类∃R表现出纯几何问题和实代数之间的深刻联系,在几何问题的研究中起着至关重要的作用。有时∃R被称为NP的“真实模拟物”。NP是一类处理存在量化布尔变量的计算问题,而R处理存在量化实变量。类似于著名多项式层次中的π2p和∑2p,我们研究了具有实变量的复杂度类∀R和∃R。我们的主要兴趣是面积普遍性问题,在这里我们得到了一个平面图G,并询问对于G的内表面的每一个面积分配,是否存在G的直线图来实现所分配的面积。我们猜想区域普遍性是R完备的,并通过证明区域普遍性的两个变体的R完备和R完备来支持这一猜想。为此,我们介绍了证明R硬度和隶属度的工具。最后,我们提出几何问题作为R完全问题的候选者。这些问题与不精确性、鲁棒性和可扩展性的概念有关。
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Completeness for the Complexity Class <ns0:math><ns0:mrow><ns0:mo>∀</ns0:mo><ns0:mo>∃</ns0:mo><ns0:mi>R</ns0:mi></ns0:mrow></ns0:math> and Area-Universality.","authors":"Michael Gene Dobbins,&nbsp;Linda Kleist,&nbsp;Tillmann Miltzow,&nbsp;Paweł Rzążewski","doi":"10.1007/s00454-022-00381-0","DOIUrl":"10.1007/s00454-022-00381-0","url":null,"abstract":"<p><p>Exhibiting a deep connection between purely geometric problems and real algebra, the complexity class <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> plays a crucial role in the study of geometric problems. Sometimes <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> is referred to as the 'real analog' of NP. While NP is a class of computational problems that deals with existentially quantified <i>boolean</i> variables, <math><mrow><mo>∃</mo><mi>R</mi></mrow></math> deals with existentially quantified <i>real</i> variables. In analogy to <math><msubsup><mi>Π</mi><mn>2</mn><mi>p</mi></msubsup></math> and <math><msubsup><mi>Σ</mi><mn>2</mn><mi>p</mi></msubsup></math> in the famous polynomial hierarchy, we study the complexity classes <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math> and <math><mrow><mo>∃</mo><mo>∀</mo><mi>R</mi></mrow></math> with <i>real</i> variables. Our main interest is the Area Universality problem, where we are given a plane graph <i>G</i>, and ask if for each assignment of areas to the inner faces of <i>G</i>, there exists a straight-line drawing of <i>G</i> realizing the assigned areas. We conjecture that Area Universality is <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-complete and support this conjecture by proving <math><mrow><mo>∃</mo><mi>R</mi></mrow></math>- and <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-completeness of two variants of Area Universality. To this end, we introduce tools to prove <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-hardness and membership. Finally, we present geometric problems as candidates for <math><mrow><mo>∀</mo><mo>∃</mo><mi>R</mi></mrow></math>-complete problems. These problems have connections to the concepts of imprecision, robustness, and extendability.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9600927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related Problems. 期望线性时间中抽象Voronoi图的删除及相关问题。
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 Epub Date: 2023-03-25 DOI: 10.1007/s00454-022-00463-z
Kolja Junginger, Evanthia Papadopoulou

Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem in a long time; similarly, for any concrete Voronoi diagram of generalized (non-point) sites. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion of one site. To achieve this result, we use the concept of a Voronoi-like diagram, a relaxed Voronoi structure of independent interest. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible. We formalize the concept and prove that it is robust under insertion, therefore, enabling its use in incremental constructions. The time-complexity analysis introduces a variant to backwards analysis, which is applicable to order-dependent structures. We further extend the technique to compute in expected linear time: the order-(k+1) subdivision within an order-k Voronoi region, and the farthest abstract Voronoi diagram, after the order of its regions at infinity is known.

删除一个站点后,在线性时间内更新抽象的Voronoi图,长期以来一直是一个悬而未决的问题;类似地,对于广义(非点)站点的任何具体Voronoi图。在本文中,我们提出了一种简单的、预期的线性时间算法,在删除一个站点后更新抽象的Voronoi图。为了实现这一结果,我们使用了类Voronoi图的概念,这是一种独立感兴趣的松弛Voronai结构。类Voronoi图作为中间结构,计算起来要简单得多,从而使预期的线性时间结构成为可能。我们形式化了这个概念,并证明了它在插入下是稳健的,因此,使它能够在增量构造中使用。时间复杂性分析引入了一种向后分析的变体,适用于依赖于顺序的结构。我们进一步扩展了该技术以在期望的线性时间内计算:k阶Voronoi区域内的阶-(k+1)细分,以及在其无穷大区域的阶已知之后的最远抽象Voronoi图。
{"title":"Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related Problems.","authors":"Kolja Junginger,&nbsp;Evanthia Papadopoulou","doi":"10.1007/s00454-022-00463-z","DOIUrl":"10.1007/s00454-022-00463-z","url":null,"abstract":"<p><p>Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem in a long time; similarly, for any concrete Voronoi diagram of generalized (non-point) sites. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion of one site. To achieve this result, we use the concept of a Voronoi-like diagram, a relaxed Voronoi structure of independent interest. Voronoi-like diagrams serve as intermediate structures, which are considerably simpler to compute, thus, making an expected linear-time construction possible. We formalize the concept and prove that it is robust under insertion, therefore, enabling its use in incremental constructions. The time-complexity analysis introduces a variant to backwards analysis, which is applicable to order-dependent structures. We further extend the technique to compute in expected linear time: the order-<math><mrow><mo>(</mo><mi>k</mi><mspace></mspace><mo>+</mo><mspace></mspace><mn>1</mn><mo>)</mo></mrow></math> subdivision within an order-<i>k</i> Voronoi region, and the farthest abstract Voronoi diagram, after the order of its regions at infinity is known.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10296942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Inserting One Edge into a Simple Drawing is Hard. 在简单的绘图中插入一条边是困难的。
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.1007/s00454-022-00394-9
Alan Arroyo, Fabian Klute, Irene Parada, Birgit Vogtenhuber, Raimund Seidel, Tilo Wiedera

A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G + e extending D(G). As a result of Levi's Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment  σ , it can be decided in polynomial time whether there exists a pseudocircle Φ σ extending σ for which A { Φ σ } is again an arrangement of pseudocircles.

图G的简单图D(G)是每对边最多共用一个点:要么是公共端点,要么是固有交叉点。如果存在G + e扩展D(G)的简单图,则G的补边e可以插入D(G)。根据Levi’s放大引理,如果一幅图是直线的(伪线性),即边可以扩展成一组线(伪线),则在G的补内的任何边都可以插入。相反,我们证明了它是np完全的,以确定一条边是否可以插入到一个简单的绘图。即使我们假设画的是伪圆,也就是说,这些边可以延伸成一组伪圆,这一点仍然成立。在正方面,我们证明了给定一个伪圆A和一个伪段σ的排列,可以在多项式时间内确定是否存在一个伪圆Φ σ扩展σ,对于这个伪圆A∪{Φ σ}又是一个伪圆的排列。
{"title":"Inserting One Edge into a Simple Drawing is Hard.","authors":"Alan Arroyo,&nbsp;Fabian Klute,&nbsp;Irene Parada,&nbsp;Birgit Vogtenhuber,&nbsp;Raimund Seidel,&nbsp;Tilo Wiedera","doi":"10.1007/s00454-022-00394-9","DOIUrl":"https://doi.org/10.1007/s00454-022-00394-9","url":null,"abstract":"<p><p>A <i>simple drawing</i> <i>D</i>(<i>G</i>) of a graph <i>G</i> is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge <i>e</i> in the complement of <i>G</i> can be <i>inserted</i> into <i>D</i>(<i>G</i>) if there exists a simple drawing of <math><mrow><mi>G</mi> <mo>+</mo> <mi>e</mi></mrow> </math> extending <i>D</i>(<i>G</i>). As a result of Levi's Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of <i>G</i> can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles <math><mi>A</mi></math> and a pseudosegment  <math><mi>σ</mi></math> , it can be decided in polynomial time whether there exists a pseudocircle <math><msub><mi>Φ</mi> <mi>σ</mi></msub> </math> extending <math><mi>σ</mi></math> for which <math><mrow><mi>A</mi> <mo>∪</mo> <mo>{</mo> <msub><mi>Φ</mi> <mi>σ</mi></msub> <mo>}</mo></mrow> </math> is again an arrangement of pseudocircles.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9424996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile. 不可确定的平移瓷砖只有两个瓷砖,或一个非abel瓷砖
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 Epub Date: 2023-01-04 DOI: 10.1007/s00454-022-00426-4
Rachel Greenfeld, Terence Tao

We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in ZFC whether Z2×E can be tiled by translations of F1,F2. In particular, this implies that this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z2). A similar construction also applies for G=Zd for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.

对于有限阿贝尔群G0, G0的子集E, G的两个有限子集F1,F2,构造了一个群G=Z2×G0的例子,使得在ZFC中F1,F2的平移是否可以平铺Z2×E是不可确定的。特别地,这意味着这个平铺问题是非周期的,在某种意义上(在ZFC的标准宇宙中)存在E通过平铺F1,F2,但没有周期平铺。以前,这种非周期性或不可确定的平动瓷砖仅用于11个或更多瓷砖的组合(主要在Z2中)。对于足够大的d,类似的构造也适用于G=Zd。如果允许群G0是非阿贝尔的,则构造的变体产生只有一个瓦片f的不可确定的平移瓦片。论证通过首先观察到单个瓦片方程能够编码一个瓦片方程的任意系统,而一旦有两个或更多的瓦片,该系统又可以编码某个函数方程的任意系统。特别是,可以使用两个贴图来编码任意数量的贴图的贴图问题。
{"title":"Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile.","authors":"Rachel Greenfeld, Terence Tao","doi":"10.1007/s00454-022-00426-4","DOIUrl":"10.1007/s00454-022-00426-4","url":null,"abstract":"<p><p>We construct an example of a group <math><mrow><mi>G</mi><mo>=</mo><msup><mrow><mi>Z</mi></mrow><mn>2</mn></msup><mo>×</mo><msub><mi>G</mi><mn>0</mn></msub></mrow></math> for a finite abelian group <math><msub><mi>G</mi><mn>0</mn></msub></math>, a subset <i>E</i> of <math><msub><mi>G</mi><mn>0</mn></msub></math>, and two finite subsets <math><mrow><msub><mi>F</mi><mn>1</mn></msub><mo>,</mo><msub><mi>F</mi><mn>2</mn></msub></mrow></math> of <i>G</i>, such that it is undecidable in ZFC whether <math><mrow><msup><mrow><mi>Z</mi></mrow><mn>2</mn></msup><mo>×</mo><mi>E</mi></mrow></math> can be tiled by translations of <math><mrow><msub><mi>F</mi><mn>1</mn></msub><mo>,</mo><msub><mi>F</mi><mn>2</mn></msub></mrow></math>. In particular, this implies that this tiling problem is <i>aperiodic</i>, in the sense that (in the standard universe of ZFC) there exist translational tilings of <i>E</i> by the tiles <math><mrow><msub><mi>F</mi><mn>1</mn></msub><mo>,</mo><msub><mi>F</mi><mn>2</mn></msub></mrow></math>, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in <math><msup><mrow><mi>Z</mi></mrow><mn>2</mn></msup></math>). A similar construction also applies for <math><mrow><mi>G</mi><mo>=</mo><msup><mrow><mi>Z</mi></mrow><mi>d</mi></msup></mrow></math> for sufficiently large <i>d</i>. If one allows the group <math><msub><mi>G</mi><mn>0</mn></msub></math> to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile <i>F</i>. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49166205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Discrete Yamabe Problem for Polyhedral Surfaces. 多面体曲面的离散Yamabe问题。
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 Epub Date: 2023-03-13 DOI: 10.1007/s00454-023-00484-2
Hana Dal Poz Kouřimská

We study a new discretization of the Gaussian curvature for polyhedral surfaces. This discrete Gaussian curvature is defined on each conical singularity of a polyhedral surface as the quotient of the angle defect and the area of the Voronoi cell corresponding to the singularity. We divide polyhedral surfaces into discrete conformal classes using a generalization of discrete conformal equivalence pioneered by Feng Luo. We subsequently show that, in every discrete conformal class, there exists a polyhedral surface with constant discrete Gaussian curvature. We also provide explicit examples to demonstrate that this surface is in general not unique.

研究了多面体曲面高斯曲率的一种新的离散化方法。这种离散的高斯曲率在多面体表面的每个圆锥奇异点上定义为角度缺陷和对应于该奇异点的Voronoi单元面积的商。我们使用冯洛提出的离散共形等价的推广,将多面体表面划分为离散共形类。我们随后证明,在每个离散共形类中,都存在一个具有恒定离散高斯曲率的多面体表面。我们还提供了明确的例子来证明这个表面通常不是唯一的。
{"title":"Discrete Yamabe Problem for Polyhedral Surfaces.","authors":"Hana Dal Poz Kouřimská","doi":"10.1007/s00454-023-00484-2","DOIUrl":"10.1007/s00454-023-00484-2","url":null,"abstract":"<p><p>We study a new discretization of the Gaussian curvature for polyhedral surfaces. This discrete Gaussian curvature is defined on each conical singularity of a polyhedral surface as the quotient of the angle defect and the area of the Voronoi cell corresponding to the singularity. We divide polyhedral surfaces into discrete conformal classes using a generalization of discrete conformal equivalence pioneered by Feng Luo. We subsequently show that, in every discrete conformal class, there exists a polyhedral surface with constant discrete Gaussian curvature. We also provide explicit examples to demonstrate that this surface is in general not unique.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9981910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Computing the Multicover Bifiltration. 计算Multicover Bifiltration。
IF 0.8 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 Epub Date: 2023-02-20 DOI: 10.1007/s00454-022-00476-8
René Corbet, Michael Kerber, Michael Lesnick, Georg Osang

Given a finite set ARd, let Covr,k denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.

给定有限集合a⊂Rd,设Covr,k表示距离r到a的至少k个点内的所有点的集合。允许r和k变化,我们得到了一个2-参数空间族,当r增加或k减少时,该空间族会变大,称为多重二重过滤。受计算这种二重过滤的同源性问题的启发,我们引入了两种密切相关的组合二重过滤,一种是多面体,另一种是单纯形,它们在拓扑上都等价于多重二重过滤,并且远小于Sheehy先前工作中考虑的基于Čech的模型。我们的多面体构造是Edelsbrunner和Osang的菱形平铺的二重过滤,并且可以使用这些作者给出的算法的变体来有效地计算。使用维度2和维度3的实现,我们提供了实验结果。我们的单纯形构造有助于理解多面体构造并证明其正确性。
{"title":"Computing the Multicover Bifiltration.","authors":"René Corbet,&nbsp;Michael Kerber,&nbsp;Michael Lesnick,&nbsp;Georg Osang","doi":"10.1007/s00454-022-00476-8","DOIUrl":"10.1007/s00454-022-00476-8","url":null,"abstract":"<p><p>Given a finite set <math><mrow><mi>A</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></mrow></math>, let <math><msub><mtext>Cov</mtext><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub></math> denote the set of all points within distance <i>r</i> to at least <i>k</i> points of <i>A</i>. Allowing <i>r</i> and <i>k</i> to vary, we obtain a 2-parameter family of spaces that grow larger when <i>r</i> increases or <i>k</i> decreases, called the <i>multicover bifiltration</i>. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the <i>rhomboid tiling</i> of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10005973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
Discrete & Computational Geometry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1