A. T. Leite‐Filho, B. Soares-Filho, Ubirajara de Oliveira
Deforestation in the Brazilian Amazon (BA) for cattle and soybean production has significant consequences for the various aspects of the climate system. Land surface modifications due to deforestation directly influence surface energy and moisture availability, hence impacting rainfall patterns, air temperature and the onset of the agricultural rainy season. Here, we assess the forest loss‐related climate risks for the first and second crop seasons of the soy‐maize double cropping system in the BA. We utilized long‐term, daily, remote sensed climate data and annual land‐use maps as input for a machine learning algorithm to isolate the signal of forest loss on the climate. Our findings indicate that forest loss in the BA intensifies the risks of climate change from the local to the regional geographical scale, with the impact being more pronounced at the regional scale. Between 1999 and 2019, largely deforested regions exhibited a delay of approximately 76 days in the onset of the agricultural rainy season. These regions also experienced a 360 mm decrease in rainfall and an increase in maximum air temperature of 2.5°C. In view of these results, there are collective advantages of halting deforestation. Conservation of the Amazon Forest is vital for maintaining the early onset of the agricultural rainy season, favourable temperatures and adequate rainfall volume needed for attaining high yields in the soy‐maize double cropping system.
{"title":"Climate risks to soy‐maize double‐cropping due to Amazon deforestation","authors":"A. T. Leite‐Filho, B. Soares-Filho, Ubirajara de Oliveira","doi":"10.1002/joc.8381","DOIUrl":"https://doi.org/10.1002/joc.8381","url":null,"abstract":"Deforestation in the Brazilian Amazon (BA) for cattle and soybean production has significant consequences for the various aspects of the climate system. Land surface modifications due to deforestation directly influence surface energy and moisture availability, hence impacting rainfall patterns, air temperature and the onset of the agricultural rainy season. Here, we assess the forest loss‐related climate risks for the first and second crop seasons of the soy‐maize double cropping system in the BA. We utilized long‐term, daily, remote sensed climate data and annual land‐use maps as input for a machine learning algorithm to isolate the signal of forest loss on the climate. Our findings indicate that forest loss in the BA intensifies the risks of climate change from the local to the regional geographical scale, with the impact being more pronounced at the regional scale. Between 1999 and 2019, largely deforested regions exhibited a delay of approximately 76 days in the onset of the agricultural rainy season. These regions also experienced a 360 mm decrease in rainfall and an increase in maximum air temperature of 2.5°C. In view of these results, there are collective advantages of halting deforestation. Conservation of the Amazon Forest is vital for maintaining the early onset of the agricultural rainy season, favourable temperatures and adequate rainfall volume needed for attaining high yields in the soy‐maize double cropping system.","PeriodicalId":505763,"journal":{"name":"International Journal of Climatology","volume":"12 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139803945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Chicaeme‐Ordoñez, Astrid Baquero‐Bernal, John F. Mejía
This study shows vertical profiles and spatial distribution of upper‐air icing frequency over the tropical Americas. We estimated the in‐flight icing (IFI) over Colombia using the Current Icing Product‐sonde‐A algorithm over two data sets: (1) vertical soundings of temperature and relative humidity and surface station data taken at 12 Coordinated Universal Time or UTC (07 Local Time or LT) on five sites and (2) ERA5 at 00, 06, 12 and 18 UTC (19, 01, 07 and 13 LT). In either case, icing was defined for IFI values exceeding 0.01. Results show that icing tends to occur between 550 and 300 hPa (4.5 and 8.6 km altitude), with a maximum at 500–550 hPa and monotonically decreasing to zero until reaching 300 hPa. Aeronautic reports were used to evaluate the total column IFI and a layer‐based IFI detection with a probability of detection of 87% and 71%, respectively. The annual cycle of IFI is modulated by the meridional migration of the Intertropical Convergence Zone (ITCZ) with a bimodal distribution with peaks during the rainiest seasons. Spatially, IFI hotspots are found in the Pacific, the Andes Mountains and the Amazonia regions of Colombia; the northern Colombia Caribbean region show lower IFI frequency with a relative maximum collocated over the Sierra Nevada de Santa Marta mountains. The IFI exhibits a strong diurnal cycle with a high between night‐time to early morning and a low around noon.
{"title":"Climatology of icing conditions over Colombia based on ERA5 reanalysis and in situ observations","authors":"Kevin Chicaeme‐Ordoñez, Astrid Baquero‐Bernal, John F. Mejía","doi":"10.1002/joc.8359","DOIUrl":"https://doi.org/10.1002/joc.8359","url":null,"abstract":"This study shows vertical profiles and spatial distribution of upper‐air icing frequency over the tropical Americas. We estimated the in‐flight icing (IFI) over Colombia using the Current Icing Product‐sonde‐A algorithm over two data sets: (1) vertical soundings of temperature and relative humidity and surface station data taken at 12 Coordinated Universal Time or UTC (07 Local Time or LT) on five sites and (2) ERA5 at 00, 06, 12 and 18 UTC (19, 01, 07 and 13 LT). In either case, icing was defined for IFI values exceeding 0.01. Results show that icing tends to occur between 550 and 300 hPa (4.5 and 8.6 km altitude), with a maximum at 500–550 hPa and monotonically decreasing to zero until reaching 300 hPa. Aeronautic reports were used to evaluate the total column IFI and a layer‐based IFI detection with a probability of detection of 87% and 71%, respectively. The annual cycle of IFI is modulated by the meridional migration of the Intertropical Convergence Zone (ITCZ) with a bimodal distribution with peaks during the rainiest seasons. Spatially, IFI hotspots are found in the Pacific, the Andes Mountains and the Amazonia regions of Colombia; the northern Colombia Caribbean region show lower IFI frequency with a relative maximum collocated over the Sierra Nevada de Santa Marta mountains. The IFI exhibits a strong diurnal cycle with a high between night‐time to early morning and a low around noon.","PeriodicalId":505763,"journal":{"name":"International Journal of Climatology","volume":"12 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The analysis conducted in this study examines the relationships between changes in cloud cover and the occurrence of cloud genera in Krakow, Poland, and the variations in the thermal state of the North Atlantic (NA) from 1951 to 2020. The existence of areas where annual sea surface temperature (SST) changes exhibit statistically significant correlations with the annual frequency of specific cloud genera was observed. These relationships vary in space: An increase in SST over the NA, particularly in the western and central regions of the subtropical NA, leads to a decrease in the frequency of stratiform clouds at all levels (Cs, As, Ns and St) and an increase in the frequency of convective clouds (Cu, Sc). An attempt to explain this phenomenon demonstrates that there is a correlation between the frequency of specific cloud genera and the variability of meridional SST gradients, as well as changes in the intensity of the thermohaline circulation in the NA (NA THC), which control the variability of mid‐tropospheric circulation (500 hPa). During positive phases of NA THC (the “warm” state of the NA), zonal circulation prevails over Europe, leading to an increase in the height of h500, an increase in the frequency of anticyclonic weather and a decrease in the frequency of cyclonic weather, including a significant proportion of frontal weather systems. Consequently, there is a reduction in frequency of stratiform clouds and an increase in the occurrence of vertically developed convective clouds, thereby increasing the possibility of observing middle‐level (Ac) and high‐level (Ci, Cc) clouds. In negative phases of NA THC (the “cool” state of the NA), the situation is reversed, with meridional circulation dominating over Europe, h500 lowering, an increase in the frequency of cyclonic systems with fronts, and an increase in the frequency of stratiform clouds. This results in decreased sunshine duration and a reduction in the amount of solar energy reaching the Earth's surface.
{"title":"Multiyear variability of cloud genera in Krakow in the context of changes in the thermal state of the North Atlantic","authors":"A. Marsz, Dorota Matuszko, A. Styszyńska","doi":"10.1002/joc.8376","DOIUrl":"https://doi.org/10.1002/joc.8376","url":null,"abstract":"The analysis conducted in this study examines the relationships between changes in cloud cover and the occurrence of cloud genera in Krakow, Poland, and the variations in the thermal state of the North Atlantic (NA) from 1951 to 2020. The existence of areas where annual sea surface temperature (SST) changes exhibit statistically significant correlations with the annual frequency of specific cloud genera was observed. These relationships vary in space: An increase in SST over the NA, particularly in the western and central regions of the subtropical NA, leads to a decrease in the frequency of stratiform clouds at all levels (Cs, As, Ns and St) and an increase in the frequency of convective clouds (Cu, Sc). An attempt to explain this phenomenon demonstrates that there is a correlation between the frequency of specific cloud genera and the variability of meridional SST gradients, as well as changes in the intensity of the thermohaline circulation in the NA (NA THC), which control the variability of mid‐tropospheric circulation (500 hPa). During positive phases of NA THC (the “warm” state of the NA), zonal circulation prevails over Europe, leading to an increase in the height of h500, an increase in the frequency of anticyclonic weather and a decrease in the frequency of cyclonic weather, including a significant proportion of frontal weather systems. Consequently, there is a reduction in frequency of stratiform clouds and an increase in the occurrence of vertically developed convective clouds, thereby increasing the possibility of observing middle‐level (Ac) and high‐level (Ci, Cc) clouds. In negative phases of NA THC (the “cool” state of the NA), the situation is reversed, with meridional circulation dominating over Europe, h500 lowering, an increase in the frequency of cyclonic systems with fronts, and an increase in the frequency of stratiform clouds. This results in decreased sunshine duration and a reduction in the amount of solar energy reaching the Earth's surface.","PeriodicalId":505763,"journal":{"name":"International Journal of Climatology","volume":"26 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Several observational precipitation products that provide high temporal (≤3 h) and spatial (≤0.25°) resolution gridded estimates are available, although no single product can be assumed worldwide to be closest to the (unknown) “reality.” Here, we propose and apply a methodology to quantify the uncertainty of a set of precipitation products and to identify, at individual grid points, the products that are likely wrong (i.e., outliers). The methodology is applied over eastern North America for the 2015–2019 period for eight high‐resolution gridded precipitation products: CMORPH, ERA5, GSMaP, IMERG, MSWEP, PERSIANN, STAGE IV and TMPA. Four difference metrics are used to quantify discrepancies in different aspects of the precipitation time series, such as the total accumulation, two characteristics of the intensity‐frequency distribution, and the timing of precipitating events. Large regional and seasonal variations in the observational uncertainty are found across the ensemble. The observational uncertainty is higher in Canada than in the United States, reflecting large differences in the density of precipitation gauge measurements. In northern midlatitudes, the uncertainty is highest in winter, demonstrating the difficulties of satellite retrieval algorithms in identifying precipitation in snow‐covered areas. In southern midlatitudes, the uncertainty is highest in summer, probably due to the more discontinuous nature of precipitation. While the best product cannot be identified due to the lack of an absolute reference, our study is able to identify products that are likely wrong and that should be excluded depending on the specific application.
目前有几种观测降水产品可提供高时间分辨率(≤3 h)和空间分辨率(≤0.25°)的网格化估计值,但在全球范围内,没有任何一种产品可以被认为是最接近(未知的)"现实 "的。在此,我们提出并应用一种方法来量化一组降水产品的不确定性,并在单个网格点上识别可能出错的产品(即异常值)。该方法适用于 2015-2019 年期间北美东部的八个高分辨率网格降水产品:CMORPH、ERA5、GSMaP、IMERG、MSWEP、PERSIANN、STAGE IV 和 TMPA。四个差异度量指标用于量化降水时间序列不同方面的差异,如总累积量、强度-频率分布的两个特征以及降水事件的时间。在整个集合中,观测不确定性存在很大的地区和季节差异。加拿大的观测不确定性高于美国,这反映了降水测量密度的巨大差异。在北部中纬度地区,冬季的不确定性最大,这表明卫星检索算法难以识别积雪地区的降水量。在中纬度南部,夏季的不确定性最大,这可能是由于降水的不连续性较强。虽然由于缺乏绝对参考而无法确定最佳产品,但我们的研究能够确定哪些产品可能是错误的,哪些产品应根据具体应用予以排除。
{"title":"Uncertainty and outliers in high‐resolution gridded precipitation products over eastern North America","authors":"Tangui Picart, Alejandro Di Luca, René Laprise","doi":"10.1002/joc.8369","DOIUrl":"https://doi.org/10.1002/joc.8369","url":null,"abstract":"Several observational precipitation products that provide high temporal (≤3 h) and spatial (≤0.25°) resolution gridded estimates are available, although no single product can be assumed worldwide to be closest to the (unknown) “reality.” Here, we propose and apply a methodology to quantify the uncertainty of a set of precipitation products and to identify, at individual grid points, the products that are likely wrong (i.e., outliers). The methodology is applied over eastern North America for the 2015–2019 period for eight high‐resolution gridded precipitation products: CMORPH, ERA5, GSMaP, IMERG, MSWEP, PERSIANN, STAGE IV and TMPA. Four difference metrics are used to quantify discrepancies in different aspects of the precipitation time series, such as the total accumulation, two characteristics of the intensity‐frequency distribution, and the timing of precipitating events. Large regional and seasonal variations in the observational uncertainty are found across the ensemble. The observational uncertainty is higher in Canada than in the United States, reflecting large differences in the density of precipitation gauge measurements. In northern midlatitudes, the uncertainty is highest in winter, demonstrating the difficulties of satellite retrieval algorithms in identifying precipitation in snow‐covered areas. In southern midlatitudes, the uncertainty is highest in summer, probably due to the more discontinuous nature of precipitation. While the best product cannot be identified due to the lack of an absolute reference, our study is able to identify products that are likely wrong and that should be excluded depending on the specific application.","PeriodicalId":505763,"journal":{"name":"International Journal of Climatology","volume":"110 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139872319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Historical meteorological droughts are analysed over the Coordinated Regional Downscaling Experiment‐Central America, Caribbean and Mexico (CORDEX‐CAM) domain during 1981–2010, with particular emphasis on the North American monsoon (NAM) and the mid‐summer drought (MSD) regions. We analyse droughts based on the standardized precipitation index (SPI‐12) and the standardized precipitation‐evapotranspiration index (SPEI‐12) using observations from CRU, CHIRPS, GPCP and ERA5‐Land reanalysis (ERA5), and assess the skill of the regional climate model RegCM4 (version 7) at 25 km resolution driven by ERA‐Interim (Reg‐ERA) and by three global climate models (Reg‐GCMs: Reg‐Had, Reg‐MPI and Reg‐GFDL). Observational data sets show large spatial variations in drought frequency, and both Reg‐ERA and Reg‐GCMs have difficulties simulating it. RegCM4 shows positive precipitation and water balance biases over mountain regions and negative ones over Central America, possibly due to the complex terrain and poor observational data coverage. Despite differences among observations, the trend in droughts, duration and severity show consistent dry hot spots (regions with long‐duration severe droughts) over the western United States, the United States‐Mexico border region, the NAM, the Yucatan Peninsula and northern Central America, with stronger values of SPEI‐12 than SPI‐12, particularly over the subtropical regions. Reg‐ERA and ERA5 show similar spatial patterns and similar positive and negative spatial biases relative to observations. Reg‐ERA and Reg‐Had adequately simulate the spatial patterns of the trend, duration and severity of droughts, with smaller biases in SPI‐12 than SPEI‐12; in contrast, Reg‐MPI and Reg‐GFDL overestimate the trend biases over northwest CAM. Observations, reanalysis, and RegCM4 capture an inverse drought response between the NAM and the MSD regions linked to climate teleconnections; however, a stronger drought signal is observed in the NAM, which appears to be linked to decadal variations from negative to positive phases of the Atlantic Multidecadal Oscillation combined with La Niña conditions (negative El Niño 1+2 phase).
{"title":"Historical meteorological droughts over the CORDEX‐CAM (Central America, Caribbean and Mexico) domain: Evaluating the simulation of dry hot spots with RegCM4","authors":"Luisa Andrade‐Gómez, Tereza Cavazos","doi":"10.1002/joc.8374","DOIUrl":"https://doi.org/10.1002/joc.8374","url":null,"abstract":"Historical meteorological droughts are analysed over the Coordinated Regional Downscaling Experiment‐Central America, Caribbean and Mexico (CORDEX‐CAM) domain during 1981–2010, with particular emphasis on the North American monsoon (NAM) and the mid‐summer drought (MSD) regions. We analyse droughts based on the standardized precipitation index (SPI‐12) and the standardized precipitation‐evapotranspiration index (SPEI‐12) using observations from CRU, CHIRPS, GPCP and ERA5‐Land reanalysis (ERA5), and assess the skill of the regional climate model RegCM4 (version 7) at 25 km resolution driven by ERA‐Interim (Reg‐ERA) and by three global climate models (Reg‐GCMs: Reg‐Had, Reg‐MPI and Reg‐GFDL). Observational data sets show large spatial variations in drought frequency, and both Reg‐ERA and Reg‐GCMs have difficulties simulating it. RegCM4 shows positive precipitation and water balance biases over mountain regions and negative ones over Central America, possibly due to the complex terrain and poor observational data coverage. Despite differences among observations, the trend in droughts, duration and severity show consistent dry hot spots (regions with long‐duration severe droughts) over the western United States, the United States‐Mexico border region, the NAM, the Yucatan Peninsula and northern Central America, with stronger values of SPEI‐12 than SPI‐12, particularly over the subtropical regions. Reg‐ERA and ERA5 show similar spatial patterns and similar positive and negative spatial biases relative to observations. Reg‐ERA and Reg‐Had adequately simulate the spatial patterns of the trend, duration and severity of droughts, with smaller biases in SPI‐12 than SPEI‐12; in contrast, Reg‐MPI and Reg‐GFDL overestimate the trend biases over northwest CAM. Observations, reanalysis, and RegCM4 capture an inverse drought response between the NAM and the MSD regions linked to climate teleconnections; however, a stronger drought signal is observed in the NAM, which appears to be linked to decadal variations from negative to positive phases of the Atlantic Multidecadal Oscillation combined with La Niña conditions (negative El Niño 1+2 phase).","PeriodicalId":505763,"journal":{"name":"International Journal of Climatology","volume":"29 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139875532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study investigates the climatological variation of rapidly intensifying tropical cyclones (RITCs) developed in the North Indian Ocean (NIO) using observational and reanalysis data from 1982 to 2020. The analysis reveals that out of 153 tropical cyclones (TC) developed in the NIO, 59 TCs underwent rapid intensification (RI). The monthly variation of RITCs exhibited bimodal distribution with a primary peak in November and a secondary peak in May. The percentage of RITCs during April–June is higher as compared to October–December. The study identifies the core zones of RI initiation in the Arabian Sea (AS) and the Bay of Bengal (BoB), respectively. The occurrences of RITCs over the AS have been observed to increase since 2000. Over 65% of RITCs occurred within 12 h of TC formation, and the duration of RI varies from 24 to 48 h. TCs with lifetime maximum intensity (LMI) less than 55 kt have not undergone RI. The trend in the 95th percentile of 24‐h intensity changes is positive but insignificant (p‐value >0.05) in the AS, and for the BoB, it is negative and significant (p‐value <0.05). We infer that there has been an insignificant increase in the 95th percentile of 24‐h intensity change at the rate of 0.32 kt per year in the AS and a significant decrease in the 95th percentile of 24‐h intensity change at the rate of −0.21 kt per year in the BoB. The analysis further reveals that during the RI phase the composite SST of RITCs exceeds 30°C in the core zone, and the mid‐tropospheric (700–500 hPa) relative humidity at the centre of RITCs is high, preventing the intrusion of dry air from the west and aiding in the sustenance and intensification of TCs. The study not only provides insight into the climatology of RITCs in the NIO but also delineates the interplay of large‐scale atmospheric and oceanic parameters in fostering rapid intensification of TCs.
{"title":"Climatological features of rapidly intensifying tropical cyclones in the North Indian Ocean","authors":"M. Ranalkar, Ram Kumar Giri, Kamaljit Ray","doi":"10.1002/joc.8379","DOIUrl":"https://doi.org/10.1002/joc.8379","url":null,"abstract":"The study investigates the climatological variation of rapidly intensifying tropical cyclones (RITCs) developed in the North Indian Ocean (NIO) using observational and reanalysis data from 1982 to 2020. The analysis reveals that out of 153 tropical cyclones (TC) developed in the NIO, 59 TCs underwent rapid intensification (RI). The monthly variation of RITCs exhibited bimodal distribution with a primary peak in November and a secondary peak in May. The percentage of RITCs during April–June is higher as compared to October–December. The study identifies the core zones of RI initiation in the Arabian Sea (AS) and the Bay of Bengal (BoB), respectively. The occurrences of RITCs over the AS have been observed to increase since 2000. Over 65% of RITCs occurred within 12 h of TC formation, and the duration of RI varies from 24 to 48 h. TCs with lifetime maximum intensity (LMI) less than 55 kt have not undergone RI. The trend in the 95th percentile of 24‐h intensity changes is positive but insignificant (p‐value >0.05) in the AS, and for the BoB, it is negative and significant (p‐value <0.05). We infer that there has been an insignificant increase in the 95th percentile of 24‐h intensity change at the rate of 0.32 kt per year in the AS and a significant decrease in the 95th percentile of 24‐h intensity change at the rate of −0.21 kt per year in the BoB. The analysis further reveals that during the RI phase the composite SST of RITCs exceeds 30°C in the core zone, and the mid‐tropospheric (700–500 hPa) relative humidity at the centre of RITCs is high, preventing the intrusion of dry air from the west and aiding in the sustenance and intensification of TCs. The study not only provides insight into the climatology of RITCs in the NIO but also delineates the interplay of large‐scale atmospheric and oceanic parameters in fostering rapid intensification of TCs.","PeriodicalId":505763,"journal":{"name":"International Journal of Climatology","volume":"91 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139878656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}