首页 > 最新文献

Chromosome Research最新文献

英文 中文
Correction to: A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. 修正:现代甘蔗品种基因组结构的综合分子细胞遗传学分析。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-12-01 DOI: 10.1007/s10577-022-09690-9
Kai Wang, Hon Cheng, Jinlei Han, Ayman Esh, Jiayong Liu, Yuebin Zhang, Baohua Wang
{"title":"Correction to: A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars.","authors":"Kai Wang, Hon Cheng, Jinlei Han, Ayman Esh, Jiayong Liu, Yuebin Zhang, Baohua Wang","doi":"10.1007/s10577-022-09690-9","DOIUrl":"https://doi.org/10.1007/s10577-022-09690-9","url":null,"abstract":"","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10774455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ellman's reagent prevents dephosphorylation of histones during isolation of mitotic chromosomes. Ellman试剂防止有丝分裂染色体分离过程中组蛋白的去磷酸化。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-12-01 DOI: 10.1007/s10577-022-09709-1
James R Paulson, Erica R Vander Mause, Elizabeth Dillinger, Megan E Luedeman, Bakhtawar Usman

Histones H1 and H3 are highly phosphorylated in mitotic HeLa cells but are rapidly dephosphorylated by endogenous protein phosphatases during the isolation of metaphase chromosomes. We show that this dephosphorylation can be prevented by including the sulfhydryl reagent 5,5'-dithiobis-(2-nitrobenzoate) (Ellman's reagent, or DTNB) in the isolation buffer. The minimal amount of DTNB required is approximately stoichiometric with the number of sulfhydryl groups in the lysate. Inhibition of the protein phosphatases can subsequently be reversed by treatment with dithiothreitol or 2-mercaptoethanol. DTNB is compatible with the isolation of either metaphase chromosome clusters or individual metaphase chromosomes. It should be useful in investigations of the structure and biochemistry of chromatin and chromosomes and in the study of possible functions for mitotic histone phosphorylation.

组蛋白H1和H3在有丝分裂的HeLa细胞中高度磷酸化,但在中期染色体分离过程中被内源性蛋白磷酸酶迅速去磷酸化。我们发现,在分离缓冲液中加入巯基试剂5,5′-二硫代比斯-(2-硝基苯甲酸酯)(Ellman试剂,或DTNB)可以防止这种去磷酸化。所需DTNB的最小量与裂解物中巯基的数量大致相同。蛋白磷酸酶的抑制作用随后可通过二硫苏糖醇或2-巯基乙醇治疗逆转。DTNB可用于分离中期染色体簇或单个中期染色体。这将有助于研究染色质和染色体的结构和生物化学,以及研究有丝分裂组蛋白磷酸化的可能功能。
{"title":"Ellman's reagent prevents dephosphorylation of histones during isolation of mitotic chromosomes.","authors":"James R Paulson,&nbsp;Erica R Vander Mause,&nbsp;Elizabeth Dillinger,&nbsp;Megan E Luedeman,&nbsp;Bakhtawar Usman","doi":"10.1007/s10577-022-09709-1","DOIUrl":"https://doi.org/10.1007/s10577-022-09709-1","url":null,"abstract":"<p><p>Histones H1 and H3 are highly phosphorylated in mitotic HeLa cells but are rapidly dephosphorylated by endogenous protein phosphatases during the isolation of metaphase chromosomes. We show that this dephosphorylation can be prevented by including the sulfhydryl reagent 5,5'-dithiobis-(2-nitrobenzoate) (Ellman's reagent, or DTNB) in the isolation buffer. The minimal amount of DTNB required is approximately stoichiometric with the number of sulfhydryl groups in the lysate. Inhibition of the protein phosphatases can subsequently be reversed by treatment with dithiothreitol or 2-mercaptoethanol. DTNB is compatible with the isolation of either metaphase chromosome clusters or individual metaphase chromosomes. It should be useful in investigations of the structure and biochemistry of chromatin and chromosomes and in the study of possible functions for mitotic histone phosphorylation.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10626855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meiotic pairing and double-strand break formation along the heteromorphic threespine stickleback sex chromosomes. 异型三棘棘鱼性染色体减数分裂配对和双链断裂形成。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-12-01 DOI: 10.1007/s10577-022-09699-0
Shivangi Nath, Lucille A Welch, Mary K Flanagan, Michael A White

Double-strand break repair during meiosis is normally achieved using the homologous chromosome as a repair template. Heteromorphic sex chromosomes share little sequence homology, presenting unique challenges to the repair of double-strand breaks. Our understanding of how heteromorphic sex chromosomes behave during meiosis has been focused on ancient sex chromosomes, where the X and Y differ markedly in overall structure and gene content. It remains unclear how more recently evolved sex chromosomes that share considerably more sequence homology with one another pair and form double-strand breaks. One possibility is barriers to pairing evolve rapidly. Alternatively, recently evolved sex chromosomes may exhibit pairing and double-strand break repair that more closely resembles that of their autosomal ancestors. Here, we use the recently evolved X and Y chromosomes of the threespine stickleback fish (Gasterosteus aculeatus) to study patterns of pairing and double-stranded break formation using molecular cytogenetics. We found that the sex chromosomes of threespine stickleback fish did not pair exclusively in the pseudoautosomal region. Instead, the chromosomes fully paired in a non-homologous fashion. To achieve this, the X chromosome underwent synaptic adjustment during pachytene to match the axis length of the Y chromosome. Double-strand break formation and repair rate also matched that of the autosomes. Our results highlight that recently evolved sex chromosomes exhibit meiotic behavior that is reminiscent of autosomes and argues for further work to identify the homologous templates that are used to repair double-strand breaks on the X and Y chromosomes.

减数分裂过程中的双链断裂修复通常使用同源染色体作为修复模板来实现。异型性染色体几乎没有同源性,这对双链断裂的修复提出了独特的挑战。我们对异型性染色体在减数分裂过程中的行为的理解主要集中在古代性染色体上,其中X和Y在整体结构和基因含量上有显著差异。目前尚不清楚最近进化的性染色体是如何与另一对染色体共享更多的序列同源性并形成双链断裂的。一种可能是配对的障碍发展迅速。另外,最近进化的性染色体可能表现出配对和双链断裂修复,更接近于它们的常染色体祖先。在这里,我们使用最近进化的三刺棘鱼(Gasterosteus aculeatus)的X和Y染色体,利用分子细胞遗传学研究配对和双链断裂形成的模式。我们发现三刺鱼的性染色体并不只在假常染色体区域配对。相反,染色体以非同源方式完全配对。为了实现这一点,X染色体在长期期间进行了突触调整,以匹配Y染色体的轴长。双链断裂的形成和修复率也与常染色体相匹配。我们的研究结果强调,最近进化的性染色体表现出与常染色体相似的减数分裂行为,并认为需要进一步的工作来确定用于修复X和Y染色体上双链断裂的同源模板。
{"title":"Meiotic pairing and double-strand break formation along the heteromorphic threespine stickleback sex chromosomes.","authors":"Shivangi Nath,&nbsp;Lucille A Welch,&nbsp;Mary K Flanagan,&nbsp;Michael A White","doi":"10.1007/s10577-022-09699-0","DOIUrl":"https://doi.org/10.1007/s10577-022-09699-0","url":null,"abstract":"<p><p>Double-strand break repair during meiosis is normally achieved using the homologous chromosome as a repair template. Heteromorphic sex chromosomes share little sequence homology, presenting unique challenges to the repair of double-strand breaks. Our understanding of how heteromorphic sex chromosomes behave during meiosis has been focused on ancient sex chromosomes, where the X and Y differ markedly in overall structure and gene content. It remains unclear how more recently evolved sex chromosomes that share considerably more sequence homology with one another pair and form double-strand breaks. One possibility is barriers to pairing evolve rapidly. Alternatively, recently evolved sex chromosomes may exhibit pairing and double-strand break repair that more closely resembles that of their autosomal ancestors. Here, we use the recently evolved X and Y chromosomes of the threespine stickleback fish (Gasterosteus aculeatus) to study patterns of pairing and double-stranded break formation using molecular cytogenetics. We found that the sex chromosomes of threespine stickleback fish did not pair exclusively in the pseudoautosomal region. Instead, the chromosomes fully paired in a non-homologous fashion. To achieve this, the X chromosome underwent synaptic adjustment during pachytene to match the axis length of the Y chromosome. Double-strand break formation and repair rate also matched that of the autosomes. Our results highlight that recently evolved sex chromosomes exhibit meiotic behavior that is reminiscent of autosomes and argues for further work to identify the homologous templates that are used to repair double-strand breaks on the X and Y chromosomes.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10570487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae. 比较细胞基因组学揭示了豆科植物中基因组重组和着丝粒重新定位。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-12-01 DOI: 10.1007/s10577-022-09702-8
Claudio Montenegro, Lívia do Vale Martins, Fernanda de Oliveira Bustamante, Ana Christina Brasileiro-Vidal, Andrea Pedrosa-Harand

The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae (P. lunatus) and Glycininae (Amphicarpaea edgeworthii) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus. We also reconstructed the chromosome number reduction in S. suberectus. The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.

菜籽科包括几种具有组装基因组的豆科作物。比较基因组研究已经证明了豆科植物中保存了大量的基因组块,尽管尚未研究菜豆科进化过程中的染色体动力学。我们进行了比较基因组分析,定义了一个信息基因组块(GB)系统,并重建了祖先相菜的核型(APK)。本研究基于菜花(Phaseolus vulgaris)和菜花(Vigna unguiculata)之间的同源基因进行了GBs鉴定,并在菜花亚族(P. lunatus)和甘糖苷亚族(Amphicarpaea edgeworthii)和菜花亚族(Phaseolinae和甘糖苷亚族的姐妹亚族)的不同基因组中搜索了GBs,以truncatula为外群。我们还使用两条P. vulgaris染色体的oligo-FISH探针来绘制两个未测序的Phaseolinae物种的同源染色体。我们推断APK具有n = 11和19 gb (A到S),假设5条染色体融合将祖先豆科植物核型降低到n = 11。我们发现了APK与亚部落和种之间的重排,在Phaseolus中有广泛的着丝粒重排。我们还重建了直立人染色体数目的减少。GB系统和APK的建立为今后豆科植物的比较基因组分析提供了有益的方法。
{"title":"Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae.","authors":"Claudio Montenegro,&nbsp;Lívia do Vale Martins,&nbsp;Fernanda de Oliveira Bustamante,&nbsp;Ana Christina Brasileiro-Vidal,&nbsp;Andrea Pedrosa-Harand","doi":"10.1007/s10577-022-09702-8","DOIUrl":"https://doi.org/10.1007/s10577-022-09702-8","url":null,"abstract":"<p><p>The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae (P. lunatus) and Glycininae (Amphicarpaea edgeworthii) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus. We also reconstructed the chromosome number reduction in S. suberectus. The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10570900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constitutive heterochromatin propagation contributes to the X chromosome inactivation. 组成型异染色质繁殖有助于X染色体失活。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-12-01 DOI: 10.1007/s10577-022-09706-4
Alexander I Shevchenko, Nikita A Rifel, Suren M Zakian, Irina S Zakharova

Imprinted X chromosome inactivation (iXCI) balances the expression of X-linked genes in preimplantation embryos and extraembryonic tissues in rodents. Long noncoding Xist RNA drives iXCI, silencing genes and recruiting Xist-dependent chromatin repressors. Some domains on the inactive X chromosome include repressive modifications specific to constitutive heterochromatin, which show no direct link to Xist RNA. We explored the relationship between Xist RNA and chromatin silencing during iXCI in vole Microtus levis. We performed locus-specific activation of Xist transcription on the only active X chromosome using the dCas9-SAM system in XO vole trophoblast stem cells (TSCs), which allow modeling iXCI events to some extent. The artificially activated endogenous vole Xist transcript is truncated and restricted ~ 6.6 kb of the exon 1. Ectopic Xist RNA accumulates on the X chromosome and recruits Xist-dependent modifications during TSC differentiation, yet is incapable by itself repressing X-linked genes. Transcriptional silencing occurs upon ectopic Xist upregulation only when repressive marks spread from the massive telomeric constitutive heterochromatin to the X chromosome region containing genes. We hypothesize that the Xist RNA-induced propagation of repressive marks from the constitutive heterochromatin could be a mechanism involved in X chromosome inactivation.

印迹X染色体失活(iXCI)平衡了啮齿动物着床前胚胎和胚胎外组织中X连锁基因的表达。长链非编码的Xist RNA驱动iXCI,沉默基因并招募依赖于Xist的染色质抑制因子。非活性X染色体上的一些结构域包括对组成异染色质特异性的抑制修饰,这些修饰与Xist RNA没有直接联系。我们探索了鼠鼠iXCI过程中Xist RNA与染色质沉默的关系。我们在XO田鼠滋养细胞干细胞(TSCs)中使用dCas9-SAM系统对唯一活跃的X染色体上的Xist转录进行了位点特异性激活,这在一定程度上允许模拟iXCI事件。人工激活的内源性田鼠Xist转录本被截断并限制在约6.6 kb的外显子1上。异位Xist RNA在X染色体上积累,并在TSC分化过程中招募依赖于Xist的修饰,但其本身无法抑制X连锁基因。只有当抑制标记从大量端粒组成异染色质扩散到含有基因的X染色体区域时,转录沉默才会发生在异位存在上调上。我们假设Xist rna诱导的来自本构异染色质的抑制标记的繁殖可能是参与X染色体失活的机制。
{"title":"Constitutive heterochromatin propagation contributes to the X chromosome inactivation.","authors":"Alexander I Shevchenko,&nbsp;Nikita A Rifel,&nbsp;Suren M Zakian,&nbsp;Irina S Zakharova","doi":"10.1007/s10577-022-09706-4","DOIUrl":"https://doi.org/10.1007/s10577-022-09706-4","url":null,"abstract":"<p><p>Imprinted X chromosome inactivation (iXCI) balances the expression of X-linked genes in preimplantation embryos and extraembryonic tissues in rodents. Long noncoding Xist RNA drives iXCI, silencing genes and recruiting Xist-dependent chromatin repressors. Some domains on the inactive X chromosome include repressive modifications specific to constitutive heterochromatin, which show no direct link to Xist RNA. We explored the relationship between Xist RNA and chromatin silencing during iXCI in vole Microtus levis. We performed locus-specific activation of Xist transcription on the only active X chromosome using the dCas9-SAM system in XO vole trophoblast stem cells (TSCs), which allow modeling iXCI events to some extent. The artificially activated endogenous vole Xist transcript is truncated and restricted ~ 6.6 kb of the exon 1. Ectopic Xist RNA accumulates on the X chromosome and recruits Xist-dependent modifications during TSC differentiation, yet is incapable by itself repressing X-linked genes. Transcriptional silencing occurs upon ectopic Xist upregulation only when repressive marks spread from the massive telomeric constitutive heterochromatin to the X chromosome region containing genes. We hypothesize that the Xist RNA-induced propagation of repressive marks from the constitutive heterochromatin could be a mechanism involved in X chromosome inactivation.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10574899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZmSPO11-2 is critical for meiotic recombination in maize. ZmSPO11-2在玉米减数分裂重组中起关键作用。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-12-01 DOI: 10.1007/s10577-022-09694-5
Menghan Li, Shuyue Li, Yan He, Yan Wang, Ting Zhang, Ping Li, Yan He

Most plant species have three or more SPO11/TOPOVIA homologs and two TOPOVIB homologs, which associate to trigger meiotic double-strand break (DSB) formation and subsequent meiotic recombination. In Zea mays L. (maize), ZmSPO11-1 and ZmMTOPVIB have been reported to be indispensable for the initiation of meiotic recombination, yet the function of ZmSPO11-2 remains unclear. In this study, we characterized meiotic functions of ZmSPO11-2 during male meiosis in maize. Two independent Zmspo11-1 knock-out mutants exhibited normal vegetative growth but both male and female sterility. The formation of meiotic DSBs of DNA molecules was fully abolished in the Zmspo11-2 plants, leading to the defective homologous chromosome paring, synapsis, recombination, and segregation. However, the bipolar spindle assembly was not noticeably affected in Zmspo11-2 meiocytes. Overall, our results demonstrate that as its partner ZmSPO11-1 and ZmMTOPVIB, ZmSPO11-2 plays essential roles in DSB formation and homologous recombination in maize meiosis.

大多数植物物种都有三个或更多的SPO11/TOPOVIA同源物和两个TOPOVIB同源物,它们相互关联以触发减数分裂双链断裂(DSB)的形成和随后的减数分裂重组。在玉米中,ZmSPO11-1和ZmMTOPVIB在减数分裂重组的启动中是必不可少的,但ZmSPO11-2的功能尚不清楚。在本研究中,我们研究了ZmSPO11-2在玉米雄性减数分裂中的减数分裂功能。两个独立的Zmspo11-1敲除突变体表现出正常的营养生长,但雄性和雌性均不育。在Zmspo11-2植物中,DNA分子减数分裂dsb的形成被完全取消,导致同源染色体配对、突触、重组和分离存在缺陷。然而,双极纺锤体组装在Zmspo11-2减数细胞中没有明显的影响。综上所述,作为ZmSPO11-1和ZmMTOPVIB的搭档,ZmSPO11-2在玉米减数分裂中DSB的形成和同源重组中发挥了重要作用。
{"title":"ZmSPO11-2 is critical for meiotic recombination in maize.","authors":"Menghan Li,&nbsp;Shuyue Li,&nbsp;Yan He,&nbsp;Yan Wang,&nbsp;Ting Zhang,&nbsp;Ping Li,&nbsp;Yan He","doi":"10.1007/s10577-022-09694-5","DOIUrl":"https://doi.org/10.1007/s10577-022-09694-5","url":null,"abstract":"<p><p>Most plant species have three or more SPO11/TOPOVIA homologs and two TOPOVIB homologs, which associate to trigger meiotic double-strand break (DSB) formation and subsequent meiotic recombination. In Zea mays L. (maize), ZmSPO11-1 and ZmMTOPVIB have been reported to be indispensable for the initiation of meiotic recombination, yet the function of ZmSPO11-2 remains unclear. In this study, we characterized meiotic functions of ZmSPO11-2 during male meiosis in maize. Two independent Zmspo11-1 knock-out mutants exhibited normal vegetative growth but both male and female sterility. The formation of meiotic DSBs of DNA molecules was fully abolished in the Zmspo11-2 plants, leading to the defective homologous chromosome paring, synapsis, recombination, and segregation. However, the bipolar spindle assembly was not noticeably affected in Zmspo11-2 meiocytes. Overall, our results demonstrate that as its partner ZmSPO11-1 and ZmMTOPVIB, ZmSPO11-2 plays essential roles in DSB formation and homologous recombination in maize meiosis.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10570895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes. 超分辨率显微镜显示果蝇多染色体复制的随机起始。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-12-01 DOI: 10.1007/s10577-021-09679-w
Tatyana D Kolesnikova, Galina V Pokholkova, Viktoria V Dovgan, Igor F Zhimulev, Veit Schubert

Studying the probability distribution of replication initiation along a chromosome is a huge challenge. Drosophila polytene chromosomes in combination with super-resolution microscopy provide a unique opportunity for analyzing the probabilistic nature of replication initiation at the ultrastructural level. Here, we developed a method for synchronizing S-phase induction among salivary gland cells. An analysis of the replication label distribution in the first minutes of S phase and in the following hours after the induction revealed the dynamics of replication initiation. Spatial super-resolution structured illumination microscopy allowed identifying multiple discrete replication signals and to investigate the behavior of replication signals in the first minutes of the S phase at the ultrastructural level. We identified replication initiation zones where initiation occurs stochastically. These zones differ significantly in the probability of replication initiation per time unit. There are zones in which initiation occurs on most strands of the polytene chromosome in a few minutes. In other zones, the initiation on all strands takes several hours. Compact bands are free of replication initiation events, and the replication runs from outer edges to the middle, where band shapes may alter.

研究复制起始沿染色体的概率分布是一个巨大的挑战。果蝇多链染色体结合超分辨率显微镜为在超微结构水平上分析复制起始的概率性质提供了一个独特的机会。在此,我们开发了一种在唾液腺细胞间同步诱导s期的方法。通过对S期前几分钟和诱导后数小时内复制标记分布的分析,揭示了复制起始的动力学过程。空间超分辨率结构照明显微镜可以识别多个离散的复制信号,并在超微结构水平上研究复制信号在S期最初几分钟的行为。我们确定了随机起始的复制起始区。这些区域在每个时间单位内启动复制的概率上差别很大。在多烯染色体的大多数链上有起始区,起始发生在几分钟内。在其他区域,所有链的起始需要几个小时。紧致带没有复制起始事件,复制从外缘到中间,在中间,带的形状可能会改变。
{"title":"Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes.","authors":"Tatyana D Kolesnikova,&nbsp;Galina V Pokholkova,&nbsp;Viktoria V Dovgan,&nbsp;Igor F Zhimulev,&nbsp;Veit Schubert","doi":"10.1007/s10577-021-09679-w","DOIUrl":"https://doi.org/10.1007/s10577-021-09679-w","url":null,"abstract":"<p><p>Studying the probability distribution of replication initiation along a chromosome is a huge challenge. Drosophila polytene chromosomes in combination with super-resolution microscopy provide a unique opportunity for analyzing the probabilistic nature of replication initiation at the ultrastructural level. Here, we developed a method for synchronizing S-phase induction among salivary gland cells. An analysis of the replication label distribution in the first minutes of S phase and in the following hours after the induction revealed the dynamics of replication initiation. Spatial super-resolution structured illumination microscopy allowed identifying multiple discrete replication signals and to investigate the behavior of replication signals in the first minutes of the S phase at the ultrastructural level. We identified replication initiation zones where initiation occurs stochastically. These zones differ significantly in the probability of replication initiation per time unit. There are zones in which initiation occurs on most strands of the polytene chromosome in a few minutes. In other zones, the initiation on all strands takes several hours. Compact bands are free of replication initiation events, and the replication runs from outer edges to the middle, where band shapes may alter.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10569347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa. 单性亚马逊鲂(Poecilia formosa)的着丝粒减数分裂。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-12-01 Epub Date: 2022-12-02 DOI: 10.1007/s10577-022-09708-2
Dmitrij Dedukh, Irene da Cruz, Susanne Kneitz, Anatolie Marta, Jenny Ormanns, Tomáš Tichopád, Yuan Lu, Manfred Alsheimer, Karel Janko, Manfred Schartl

Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes.

产生克隆后代的单性繁殖是有性繁殖的另一种策略,甚至在脊椎动物中也会出现。人们已经描述了多种非有性生殖模式,其中最不为人所知的一个问题是这种途径是如何出现的,以及它们是如何从机理上进行的。亚马逊鲂(Poecilia formosa)需要来自相关物种雄性的精子来触发二倍体卵子的孤雌生殖发育。然而,未还原的雌配子是如何产生的,其机制仍不清楚。细胞学分析表明,初级卵母细胞的染色体启动了pachytene,但没有进行二价形成和减数分裂交叉。比较 P. formosa 和其有性亲本的卵巢转录组发现,减数分裂特异性基因的表达水平与 P. mexicana 不同,但与 P. latipinna 不同。此外,一些减数分裂基因的表达偏向于亲本基因组的两个等位基因之一。我们从我们的数据中推断,在亚马逊小骡子中,二倍体卵母细胞是由于同源染色体的突触失败而通过无性繁殖产生的。这种失败并没有反映在已知减数分裂基因的差异表达上,这一事实表明其潜在的分子机制可能是蛋白质水平的失调或迄今未知的减数分裂基因的错误表达,以及/或由于来自不同基因组的蛋白质相互作用受损而导致的杂交育种不良。
{"title":"Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa.","authors":"Dmitrij Dedukh, Irene da Cruz, Susanne Kneitz, Anatolie Marta, Jenny Ormanns, Tomáš Tichopád, Yuan Lu, Manfred Alsheimer, Karel Janko, Manfred Schartl","doi":"10.1007/s10577-022-09708-2","DOIUrl":"10.1007/s10577-022-09708-2","url":null,"abstract":"<p><p>Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9123336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rye B chromosomes differently influence the expression of A chromosome-encoded genes depending on the host species. 黑麦B染色体对A染色体编码基因表达的影响因寄主种类而异。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-12-01 DOI: 10.1007/s10577-022-09704-6
Anastassia Boudichevskaia, Anne Fiebig, Katrin Kumke, Axel Himmelbach, Andreas Houben

The B chromosome (B) is a dispensable component of the genome in many species. To evaluate the impact of Bs on the transcriptome of the standard A chromosomes (A), comparative RNA-seq analyses of rye and wheat anthers with and without additional rye Bs were conducted. In both species, 5-6% of the A-derived transcripts across the entire genomes were differentially expressed in the presence of  2Bs. The GO term enrichment analysis revealed that Bs influence A chromosome encoded processes like "gene silencing"; "DNA methylation or demethylation"; "chromatin silencing"; "negative regulation of gene expression, epigenetic"; "post-embryonic development"; and "chromosome organization." 244 B chromosome responsive A-located genes in + 2B rye and + B wheat shared the same biological function. Positively correlated with the number of Bs, 939 and 1391 B-specific transcripts were identified in + 2B and + 4B wheat samples, respectively. 85% of B-transcripts in + 2B were also found in + 4B transcriptomes. 297 B-specific transcripts were identified in + 2B rye, and 27% were common to the B-derived transcripts identified in + B wheat. Bs encode mobile elements and housekeeping genes, but most B-transcripts were without detectable similarity to known genes. Some of these genes are involved in cell division-related functions like Nuf2 and might indicate their importance in maintaining Bs. The transcriptome analysis provides new insights into the complex interrelationship between standard A chromosomes and supernumerary B chromosomes.

在许多物种中,B染色体是基因组中不可或缺的组成部分。为了评估b对标准A染色体(A)转录组的影响,对添加和不添加b的黑麦花药和小麦花药进行了比较RNA-seq分析。在这两个物种中,整个基因组中5-6%的a衍生转录本在2b存在下差异表达。GO项富集分析表明,b影响A染色体的“基因沉默”等编码过程;“DNA甲基化或去甲基化”;“染色质沉默”;“基因表达负调控,表观遗传学”;“post-embryonic发展”;还有“染色体组织”。+ 2B黑麦和+ B小麦的244个B染色体应答基因具有相同的生物学功能。在+ 2B和+ 4B小麦样品中分别鉴定出939个和1391个b特异性转录本,与b的数量正相关。+ 2B中85%的b转录本也存在于+ 4B转录组中。在+ 2B黑麦中鉴定出297个B特异性转录本,27%与+ B小麦中鉴定的B衍生转录本共有。b -转录本编码移动元件和管家基因,但大多数b -转录本与已知基因没有可检测到的相似性。其中一些基因参与细胞分裂相关的功能,如Nuf2,可能表明它们在维持b的重要性。转录组分析为标准A染色体和多余B染色体之间复杂的相互关系提供了新的见解。
{"title":"Rye B chromosomes differently influence the expression of A chromosome-encoded genes depending on the host species.","authors":"Anastassia Boudichevskaia,&nbsp;Anne Fiebig,&nbsp;Katrin Kumke,&nbsp;Axel Himmelbach,&nbsp;Andreas Houben","doi":"10.1007/s10577-022-09704-6","DOIUrl":"https://doi.org/10.1007/s10577-022-09704-6","url":null,"abstract":"<p><p>The B chromosome (B) is a dispensable component of the genome in many species. To evaluate the impact of Bs on the transcriptome of the standard A chromosomes (A), comparative RNA-seq analyses of rye and wheat anthers with and without additional rye Bs were conducted. In both species, 5-6% of the A-derived transcripts across the entire genomes were differentially expressed in the presence of  2Bs. The GO term enrichment analysis revealed that Bs influence A chromosome encoded processes like \"gene silencing\"; \"DNA methylation or demethylation\"; \"chromatin silencing\"; \"negative regulation of gene expression, epigenetic\"; \"post-embryonic development\"; and \"chromosome organization.\" 244 B chromosome responsive A-located genes in + 2B rye and + B wheat shared the same biological function. Positively correlated with the number of Bs, 939 and 1391 B-specific transcripts were identified in + 2B and + 4B wheat samples, respectively. 85% of B-transcripts in + 2B were also found in + 4B transcriptomes. 297 B-specific transcripts were identified in + 2B rye, and 27% were common to the B-derived transcripts identified in + B wheat. Bs encode mobile elements and housekeeping genes, but most B-transcripts were without detectable similarity to known genes. Some of these genes are involved in cell division-related functions like Nuf2 and might indicate their importance in maintaining Bs. The transcriptome analysis provides new insights into the complex interrelationship between standard A chromosomes and supernumerary B chromosomes.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10568641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Non-random chromosome segregation and chromosome eliminations in the fly Bradysia (Sciara). 苍蝇 Bradysia(Sciara)的非随机染色体分离和染色体淘汰。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-09-01 Epub Date: 2022-07-06 DOI: 10.1007/s10577-022-09701-9
Susan A Gerbi

Mendelian inheritance is based upon random segregation of homologous chromosomes during meiosis and perfect duplication and division of chromosomes in mitosis so that the entire genomic content is passed down to the daughter cells. The unusual chromosome mechanics of the fly Bradysia (previously called Sciara) presents many exceptions to the canonical processes. In male meiosis I, there is a monopolar spindle and non-random segregation such that all the paternal homologs move away from the single pole and are eliminated. In male meiosis II, there is a bipolar spindle and segregation of the sister chromatids except for the X dyad that undergoes non-disjunction. The daughter cell that is nullo-X degenerates, whereas the sperm has two copies of the X. Fertilization restores the diploid state, but there are three copies of the X chromosome, of which one or two of the paternally derived X chromosomes will be eliminated in an early cleavage division. Bradysia (Sciara) coprophila also has germ line limited L chromosomes that are eliminated from the soma. Current information and the molecular mechanisms for chromosome imprinting and eliminations, which are just beginning to be studied, will be reviewed here.

孟德尔遗传的基础是同源染色体在减数分裂过程中的随机分离,以及染色体在有丝分裂过程中的完美复制和分裂,从而使整个基因组内容传递给子细胞。苍蝇 Bradysia(以前称为 Sciara)的染色体机械结构不同寻常,它的典型过程有许多例外。在雄性减数分裂 I 中,存在单极纺锤体和非随机分离,所有父系同源染色体都远离单极并被淘汰。在雄性减数分裂 II 中,出现双极纺锤体和姐妹染色单体的分离,但 X 染色体不发生分离。受精后会恢复二倍体状态,但 X 染色体有三个拷贝,其中一个或两个父源 X 染色体会在早期裂殖分裂中被消除。Bradysia (Sciara) coprophila 也具有种系限制的 L 染色体,这些染色体会从体细胞中消除。本文将对染色体印记和消除的现有信息和分子机制进行综述,这些研究刚刚起步。
{"title":"Non-random chromosome segregation and chromosome eliminations in the fly Bradysia (Sciara).","authors":"Susan A Gerbi","doi":"10.1007/s10577-022-09701-9","DOIUrl":"10.1007/s10577-022-09701-9","url":null,"abstract":"<p><p>Mendelian inheritance is based upon random segregation of homologous chromosomes during meiosis and perfect duplication and division of chromosomes in mitosis so that the entire genomic content is passed down to the daughter cells. The unusual chromosome mechanics of the fly Bradysia (previously called Sciara) presents many exceptions to the canonical processes. In male meiosis I, there is a monopolar spindle and non-random segregation such that all the paternal homologs move away from the single pole and are eliminated. In male meiosis II, there is a bipolar spindle and segregation of the sister chromatids except for the X dyad that undergoes non-disjunction. The daughter cell that is nullo-X degenerates, whereas the sperm has two copies of the X. Fertilization restores the diploid state, but there are three copies of the X chromosome, of which one or two of the paternally derived X chromosomes will be eliminated in an early cleavage division. Bradysia (Sciara) coprophila also has germ line limited L chromosomes that are eliminated from the soma. Current information and the molecular mechanisms for chromosome imprinting and eliminations, which are just beginning to be studied, will be reviewed here.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40566499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Chromosome Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1