首页 > 最新文献

Chromosome Research最新文献

英文 中文
Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. 染色体保守主义与染色体大进化:鳞翅目核型进化之谜。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-06-10 DOI: 10.1007/s10577-023-09725-9
Elena A Pazhenkova, Vladimir A Lukhtanov

In the evolution of many organisms, periods of slow genome reorganization (= chromosomal conservatism) are interrupted by bursts of numerous chromosomal changes (= chromosomal megaevolution). Using comparative analysis of chromosome-level genome assemblies, we investigated these processes in blue butterflies (Lycaenidae). We demonstrate that the phase of chromosome number conservatism is characterized by the stability of most autosomes and dynamic evolution of the sex chromosome Z, resulting in multiple variants of NeoZ chromosomes due to autosome-sex chromosome fusions. In contrast during the phase of rapid chromosomal evolution, the explosive increase in chromosome number occurs mainly through simple chromosomal fissions. We show that chromosomal megaevolution is a highly non-random canalized process, and in two phylogenetically independent Lysandra lineages, the drastic parallel increase in number of fragmented chromosomes was achieved, at least partially, through reuse of the same ancestral chromosomal breakpoints. In species showing chromosome number doubling, we found no blocks of duplicated sequences or duplicated chromosomes, thus refuting the hypothesis of polyploidy. In the studied taxa, long blocks of interstitial telomere sequences (ITSs) consist of (TTAGG)n arrays interspersed with telomere-specific retrotransposons. ITSs are sporadically present in rapidly evolving Lysandra karyotypes, but not in the species with ancestral chromosome number. Therefore, we hypothesize that the transposition of telomeric sequences may be triggers of the rapid chromosome number increase. Finally, we discuss the hypothetical genomic and population mechanisms of chromosomal megaevolution and argue that the disproportionally high evolutionary role of the Z sex chromosome can be additionally reinforced by sex chromosome-autosome fusions and Z-chromosome inversions.

在许多生物的进化过程中,缓慢的基因组重组时期(= 染色体保守主义)会被大量染色体变化的爆发期(= 染色体大进化)打断。利用染色体级基因组组装的比较分析,我们研究了蓝蝴蝶(Lycaenidae)的这些过程。我们证明,染色体数目保守阶段的特点是大多数常染色体的稳定和性染色体 Z 的动态进化,由于常染色体和性染色体的融合,产生了 NeoZ 染色体的多种变体。相反,在染色体快速进化阶段,染色体数目的爆炸性增长主要是通过简单的染色体裂解实现的。我们的研究表明,染色体大进化是一个高度非随机的渠化过程,在两个系统发育上独立的丽桑花品系中,染色体片段数量的急剧平行增长至少部分是通过重复使用相同的祖先染色体断点实现的。在染色体数目加倍的物种中,我们没有发现重复序列或重复染色体块,因此驳斥了多倍体假说。在所研究的类群中,长的间隙端粒序列(ITSs)块由 (TTAGG)n 阵列与端粒特异性逆转录子穿插组成。ITSs零星地存在于快速进化的莱桑德拉核型中,但不存在于具有祖先染色体数目的物种中。因此,我们推测端粒序列的转座可能是染色体数目快速增加的诱因。最后,我们讨论了染色体巨型进化的假定基因组和种群机制,并认为性染色体-自体融合和 Z 染色体倒位可以进一步加强 Z 性染色体在进化中不成比例的高作用。
{"title":"Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera.","authors":"Elena A Pazhenkova, Vladimir A Lukhtanov","doi":"10.1007/s10577-023-09725-9","DOIUrl":"10.1007/s10577-023-09725-9","url":null,"abstract":"<p><p>In the evolution of many organisms, periods of slow genome reorganization (= chromosomal conservatism) are interrupted by bursts of numerous chromosomal changes (= chromosomal megaevolution). Using comparative analysis of chromosome-level genome assemblies, we investigated these processes in blue butterflies (Lycaenidae). We demonstrate that the phase of chromosome number conservatism is characterized by the stability of most autosomes and dynamic evolution of the sex chromosome Z, resulting in multiple variants of NeoZ chromosomes due to autosome-sex chromosome fusions. In contrast during the phase of rapid chromosomal evolution, the explosive increase in chromosome number occurs mainly through simple chromosomal fissions. We show that chromosomal megaevolution is a highly non-random canalized process, and in two phylogenetically independent Lysandra lineages, the drastic parallel increase in number of fragmented chromosomes was achieved, at least partially, through reuse of the same ancestral chromosomal breakpoints. In species showing chromosome number doubling, we found no blocks of duplicated sequences or duplicated chromosomes, thus refuting the hypothesis of polyploidy. In the studied taxa, long blocks of interstitial telomere sequences (ITSs) consist of (TTAGG)<sub>n</sub> arrays interspersed with telomere-specific retrotransposons. ITSs are sporadically present in rapidly evolving Lysandra karyotypes, but not in the species with ancestral chromosome number. Therefore, we hypothesize that the transposition of telomeric sequences may be triggers of the rapid chromosome number increase. Finally, we discuss the hypothetical genomic and population mechanisms of chromosomal megaevolution and argue that the disproportionally high evolutionary role of the Z sex chromosome can be additionally reinforced by sex chromosome-autosome fusions and Z-chromosome inversions.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10041801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of chromosomal instability (CIN) tolerance in aggressive tumors: surviving the genomic chaos. 侵袭性肿瘤的染色体不稳定性(CIN)耐受机制:在基因组混乱中生存。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-14 DOI: 10.1007/s10577-023-09724-w
Brittiny Dhital, Veronica Rodriguez-Bravo

Chromosomal instability (CIN) is a pervasive feature of human cancers involved in tumor initiation and progression and which is found elevated in metastatic stages. CIN can provide survival and adaptation advantages to human cancers. However, too much of a good thing may come at a high cost for tumor cells as excessive degree of CIN-induced chromosomal aberrations can be detrimental for cancer cell survival and proliferation. Thus, aggressive tumors adapt to cope with ongoing CIN and most likely develop unique susceptibilities that can be their Achilles' heel. Determining the differences between the tumor-promoting and tumor-suppressing effects of CIN at the molecular level has become one of the most exciting and challenging aspects in cancer biology. In this review, we summarized the state of knowledge regarding the mechanisms reported to contribute to the adaptation and perpetuation of aggressive tumor cells carrying CIN. The use of genomics, molecular biology, and imaging techniques is significantly enhancing the understanding of the intricate mechanisms involved in the generation of and adaptation to CIN in experimental models and patients, which were not possible to observe decades ago. The current and future research opportunities provided by these advanced techniques will facilitate the repositioning of CIN exploitation as a feasible therapeutic opportunity and valuable biomarker for several types of human cancers.

染色体不稳定性(CIN)是人类癌症的一个普遍特征,它与肿瘤的发生和发展有关,并在转移阶段表现得更为明显。CIN 可为人类癌症提供生存和适应优势。然而,好事做多了,肿瘤细胞可能会付出高昂的代价,因为 CIN 诱导的染色体畸变程度过高会不利于癌细胞的生存和增殖。因此,侵袭性肿瘤要适应持续的 CIN,并很可能发展出独特的易感性,而这正是它们的致命弱点。在分子水平上确定 CIN 对肿瘤的促进作用和抑制作用之间的差异,已成为癌症生物学中最令人兴奋和最具挑战性的方面之一。在这篇综述中,我们总结了有关据报道导致携带 CIN 的侵袭性肿瘤细胞适应和延续的机制的知识现状。基因组学、分子生物学和成像技术的应用大大提高了人们对实验模型和患者体内 CIN 的产生和适应所涉及的复杂机制的认识,而这在几十年前是无法观察到的。这些先进技术目前和未来提供的研究机会将有助于重新定位 CIN 的利用,使其成为一种可行的治疗机会和几种人类癌症的宝贵生物标志物。
{"title":"Mechanisms of chromosomal instability (CIN) tolerance in aggressive tumors: surviving the genomic chaos.","authors":"Brittiny Dhital, Veronica Rodriguez-Bravo","doi":"10.1007/s10577-023-09724-w","DOIUrl":"10.1007/s10577-023-09724-w","url":null,"abstract":"<p><p>Chromosomal instability (CIN) is a pervasive feature of human cancers involved in tumor initiation and progression and which is found elevated in metastatic stages. CIN can provide survival and adaptation advantages to human cancers. However, too much of a good thing may come at a high cost for tumor cells as excessive degree of CIN-induced chromosomal aberrations can be detrimental for cancer cell survival and proliferation. Thus, aggressive tumors adapt to cope with ongoing CIN and most likely develop unique susceptibilities that can be their Achilles' heel. Determining the differences between the tumor-promoting and tumor-suppressing effects of CIN at the molecular level has become one of the most exciting and challenging aspects in cancer biology. In this review, we summarized the state of knowledge regarding the mechanisms reported to contribute to the adaptation and perpetuation of aggressive tumor cells carrying CIN. The use of genomics, molecular biology, and imaging techniques is significantly enhancing the understanding of the intricate mechanisms involved in the generation of and adaptation to CIN in experimental models and patients, which were not possible to observe decades ago. The current and future research opportunities provided by these advanced techniques will facilitate the repositioning of CIN exploitation as a feasible therapeutic opportunity and valuable biomarker for several types of human cancers.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9939787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome-length genome assemblies and cytogenomic analyses of pangolins reveal remarkable chromosome counts and plasticity. 穿山甲的染色体长度基因组组装和细胞基因组分析揭示了显著的染色体数量和可塑性。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-04-12 DOI: 10.1007/s10577-023-09722-y
Marlys L Houck, Klaus-Peter Koepfli, Taylor Hains, Ruqayya Khan, Suellen J Charter, Julie A Fronczek, Ann C Misuraca, Sergei Kliver, Polina L Perelman, Violetta Beklemisheva, Alexander Graphodatsky, Shu-Jin Luo, Stephen J O'Brien, Norman T-L Lim, Jason S C Chin, Vanessa Guerra, Gaik Tamazian, Arina Omer, David Weisz, Kenneth Kaemmerer, Ginger Sturgeon, Joseph Gaspard, Alicia Hahn, Mark McDonough, Isabel Garcia-Treviño, Jordan Gentry, Rob L Coke, Jan E Janecka, Ryan J Harrigan, Jen Tinsman, Thomas B Smith, Erez Lieberman Aiden, Olga Dudchenko

We report the first chromosome-length genome assemblies for three species in the mammalian order Pholidota: the white-bellied, Chinese, and Sunda pangolins. Surprisingly, we observe extraordinary karyotypic plasticity within this order and, in female white-bellied pangolins, the largest number of chromosomes reported in a Laurasiatherian mammal: 2n = 114. We perform the first karyotype analysis of an African pangolin and report a Y-autosome fusion in white-bellied pangolins, resulting in 2n = 113 for males. We employ a novel strategy to confirm the fusion and identify the autosome involved by finding the pseudoautosomal region (PAR) in the female genome assembly and analyzing the 3D contact frequency between PAR sequences and the rest of the genome in male and female white-bellied pangolins. Analyses of genetic variability show that white-bellied pangolins have intermediate levels of genome-wide heterozygosity relative to Chinese and Sunda pangolins, consistent with two moderate declines of historical effective population size. Our results reveal a remarkable feature of pangolin genome biology and highlight the need for further studies of these unique and endangered mammals.

我们首次报道了三种哺乳动物物种:白腹穿山甲、中国穿山甲和巽他穿山甲的染色体长度基因组组装。令人惊讶的是,我们在这一目中观察到非凡的核型可塑性,在雌性白腹穿山甲中,染色体数量在月牙纲哺乳动物中最多:2n = 114。我们对非洲穿山甲进行了首次核型分析,并报道了白腹穿山甲的y染色体融合,导致雄性2n = 113。我们采用了一种新的策略,通过在雄性和雌性白腹穿山甲的基因组组装中找到假常染色体区域(PAR),并分析PAR序列与其他基因组之间的三维接触频率,来确认融合和识别涉及的常染色体。遗传变异分析表明,白腹穿山甲相对于中国穿山甲和巽他穿山甲具有中等水平的全基因组杂合度,这与历史上有效种群规模的两次适度下降相一致。我们的研究结果揭示了穿山甲基因组生物学的一个显著特征,并强调了对这种独特的濒危哺乳动物进行进一步研究的必要性。
{"title":"Chromosome-length genome assemblies and cytogenomic analyses of pangolins reveal remarkable chromosome counts and plasticity.","authors":"Marlys L Houck,&nbsp;Klaus-Peter Koepfli,&nbsp;Taylor Hains,&nbsp;Ruqayya Khan,&nbsp;Suellen J Charter,&nbsp;Julie A Fronczek,&nbsp;Ann C Misuraca,&nbsp;Sergei Kliver,&nbsp;Polina L Perelman,&nbsp;Violetta Beklemisheva,&nbsp;Alexander Graphodatsky,&nbsp;Shu-Jin Luo,&nbsp;Stephen J O'Brien,&nbsp;Norman T-L Lim,&nbsp;Jason S C Chin,&nbsp;Vanessa Guerra,&nbsp;Gaik Tamazian,&nbsp;Arina Omer,&nbsp;David Weisz,&nbsp;Kenneth Kaemmerer,&nbsp;Ginger Sturgeon,&nbsp;Joseph Gaspard,&nbsp;Alicia Hahn,&nbsp;Mark McDonough,&nbsp;Isabel Garcia-Treviño,&nbsp;Jordan Gentry,&nbsp;Rob L Coke,&nbsp;Jan E Janecka,&nbsp;Ryan J Harrigan,&nbsp;Jen Tinsman,&nbsp;Thomas B Smith,&nbsp;Erez Lieberman Aiden,&nbsp;Olga Dudchenko","doi":"10.1007/s10577-023-09722-y","DOIUrl":"https://doi.org/10.1007/s10577-023-09722-y","url":null,"abstract":"<p><p>We report the first chromosome-length genome assemblies for three species in the mammalian order Pholidota: the white-bellied, Chinese, and Sunda pangolins. Surprisingly, we observe extraordinary karyotypic plasticity within this order and, in female white-bellied pangolins, the largest number of chromosomes reported in a Laurasiatherian mammal: 2n = 114. We perform the first karyotype analysis of an African pangolin and report a Y-autosome fusion in white-bellied pangolins, resulting in 2n = 113 for males. We employ a novel strategy to confirm the fusion and identify the autosome involved by finding the pseudoautosomal region (PAR) in the female genome assembly and analyzing the 3D contact frequency between PAR sequences and the rest of the genome in male and female white-bellied pangolins. Analyses of genetic variability show that white-bellied pangolins have intermediate levels of genome-wide heterozygosity relative to Chinese and Sunda pangolins, consistent with two moderate declines of historical effective population size. Our results reveal a remarkable feature of pangolin genome biology and highlight the need for further studies of these unique and endangered mammals.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9706353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An essential role for the Ino80 chromatin remodeling complex in regulation of gene expression during cellular quiescence. 在细胞静止期间,Ino80染色质重塑复合体在基因表达调控中的重要作用。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-04-12 DOI: 10.1007/s10577-023-09723-x
Yasaman Zahedi, Shengyuan Zeng, Karl Ekwall

Cellular quiescence is an important physiological state both in unicellular and multicellular eukaryotes. Quiescent cells are halted for proliferation and stop the cell cycle at the G0 stage. Using fission yeast as a model organism, we have previously found that several subunits of a conserved chromatin remodeling complex, Ino80C (INOsitol requiring nucleosome remodeling factor), are required for survival in quiescence. Here, we demonstrate that Ino80C has a key function in the regulation of gene expression in G0 cells. We show that null mutants for two Ino80C subunits, Iec1 and Ies2, a putative subunit Arp42, a null mutant for the histone variant H2A.Z, and a null mutant for the Inositol kinase Asp1 have very similar phenotypes in quiescence. These mutants show reduced transcription genome-wide and specifically fail to activate 149 quiescence genes, of which many are localized to the subtelomeric regions. Using spike in normalized ChIP-seq experiments, we show that there is a global reduction of H2A.Z levels in quiescent wild-type cells but not in iec1∆ cells and that a subtelomeric chromosome boundary element is strongly affected by Ino80C. Based on these observations, we propose a model in which Ino80C is evicting H2A.Z from chromatin in quiescent cells, thereby inactivating the subtelomeric boundary element, leading to a reorganization of the chromosome structure and activation of genes required to survive in quiescence.

细胞静止是单细胞和多细胞真核生物的重要生理状态。静止细胞停止增殖,在G0期停止细胞周期。利用裂变酵母菌作为模式生物,我们之前已经发现保守染色质重塑复合体Ino80C(肌醇要求核小体重塑因子)的几个亚基是静止生存所必需的。在这里,我们证明了Ino80C在G0细胞的基因表达调控中具有关键功能。我们发现了两个Ino80C亚基Iec1和Ies2的零突变,一个假定的亚基Arp42,一个组蛋白变体H2A的零突变。Z和肌醇激酶Asp1的零突变体在静止状态下具有非常相似的表型。这些突变体表现出全基因组转录减少,并特异性地无法激活149个静止基因,其中许多位于亚端粒区域。利用归一化ChIP-seq实验中的峰值,我们发现H2A的整体减少。在静止野生型细胞中,而在iec1∆细胞中则没有,并且亚端粒染色体边界元件受到Ino80C的强烈影响。基于这些观察,我们提出了一个Ino80C驱逐H2A的模型。从静止细胞的染色质中提取Z,从而使亚端粒边界元件失活,导致染色体结构的重组和在静止状态下生存所需的基因的激活。
{"title":"An essential role for the Ino80 chromatin remodeling complex in regulation of gene expression during cellular quiescence.","authors":"Yasaman Zahedi,&nbsp;Shengyuan Zeng,&nbsp;Karl Ekwall","doi":"10.1007/s10577-023-09723-x","DOIUrl":"https://doi.org/10.1007/s10577-023-09723-x","url":null,"abstract":"<p><p>Cellular quiescence is an important physiological state both in unicellular and multicellular eukaryotes. Quiescent cells are halted for proliferation and stop the cell cycle at the G<sub>0</sub> stage. Using fission yeast as a model organism, we have previously found that several subunits of a conserved chromatin remodeling complex, Ino80C (INOsitol requiring nucleosome remodeling factor), are required for survival in quiescence. Here, we demonstrate that Ino80C has a key function in the regulation of gene expression in G<sub>0</sub> cells. We show that null mutants for two Ino80C subunits, Iec1 and Ies2, a putative subunit Arp42, a null mutant for the histone variant H2A.Z, and a null mutant for the Inositol kinase Asp1 have very similar phenotypes in quiescence. These mutants show reduced transcription genome-wide and specifically fail to activate 149 quiescence genes, of which many are localized to the subtelomeric regions. Using spike in normalized ChIP-seq experiments, we show that there is a global reduction of H2A.Z levels in quiescent wild-type cells but not in iec1∆ cells and that a subtelomeric chromosome boundary element is strongly affected by Ino80C. Based on these observations, we propose a model in which Ino80C is evicting H2A.Z from chromatin in quiescent cells, thereby inactivating the subtelomeric boundary element, leading to a reorganization of the chromosome structure and activation of genes required to survive in quiescence.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9664634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. 反常棉着丝粒DNA的特征揭示了着丝粒重复序列的非序列富集动力学。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-03-27 DOI: 10.1007/s10577-023-09721-z
Wenjie Ding, Yuanbin Zhu, Jinlei Han, Hui Zhang, Zhenzhen Xu, Haris Khurshid, Fang Liu, Robert Hasterok, Xinlian Shen, Kai Wang

Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.

真核生物中的着丝粒由高度重复的dna组成,这些dna进化迅速,被认为在成熟的着丝粒中实现了有利的结构。然而,着丝粒重复序列如何进化成适应性结构在很大程度上是未知的。我们通过对CENH3抗体的染色质免疫沉淀对异常棉的着丝粒序列进行了表征。我们发现,G. anomalum的着丝粒只包含逆转录转座子样重复序列,但在长阵列卫星中被耗尽。这些逆转录转座子样着丝粒重复出现在非洲-亚洲和澳大利亚谱系物种中,表明它们可能出现在这些二倍体物种的共同祖先中。有趣的是,我们观察到在非洲-亚洲和澳大利亚血统中,棉花的反转录转座子衍生的着丝粒重复序列拷贝数分别大幅增加和减少,而没有明显的结构或序列变化。这一结果表明,序列内容不是着丝粒重复序列或至少是反转录转座子样着丝粒重复序列适应性进化的决定性方面。此外,在CENH3核小体结合区发现了两个在配子体发生或开花中有潜在作用的活性基因。我们的研究结果为植物着丝重复DNA的构成和着丝重复序列的适应性进化提供了新的见解。
{"title":"Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats.","authors":"Wenjie Ding,&nbsp;Yuanbin Zhu,&nbsp;Jinlei Han,&nbsp;Hui Zhang,&nbsp;Zhenzhen Xu,&nbsp;Haris Khurshid,&nbsp;Fang Liu,&nbsp;Robert Hasterok,&nbsp;Xinlian Shen,&nbsp;Kai Wang","doi":"10.1007/s10577-023-09721-z","DOIUrl":"https://doi.org/10.1007/s10577-023-09721-z","url":null,"abstract":"<p><p>Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cre-LoxP-based approach for combinatorial chromosome rearrangements in human HAP1 cells. 基于cre - loxp的人类HAP1细胞组合染色体重排方法
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-02-26 DOI: 10.1007/s10577-023-09719-7
Anna Khabarova, Galina Koksharova, Pavel Salnikov, Polina Belokopytova, Roman Mungalov, Inna Pristyazhnuk, Artem Nurislamov, Maria Gridina, Veniamin Fishman

Alterations of human karyotype caused by chromosomal rearrangements are often associated with considerable phenotypic effects. Studying molecular mechanisms underlying these effects requires an efficient and scalable experimental model. Here, we propose a Cre-LoxP-based approach for the generation of combinatorial diversity of chromosomal rearrangements. We demonstrate that using the developed system, both intra- and inter-chromosomal rearrangements can be induced in the human haploid HAP1 cells, although the latter is significantly less effective. The obtained genetically modified HAP1 cell line can be used to dissect genomic effects associated with intra-chromosomal structural variations.

由染色体重排引起的人类核型改变通常与相当大的表型效应相关。研究这些效应背后的分子机制需要一个有效的、可扩展的实验模型。在这里,我们提出了一种基于cre - loxp的方法来产生染色体重排的组合多样性。我们证明,使用开发的系统,在人类单倍体HAP1细胞中,染色体内和染色体间的重排都可以诱导,尽管后者的效果明显较差。获得的基因修饰HAP1细胞系可用于解剖与染色体内结构变异相关的基因组效应。
{"title":"A Cre-LoxP-based approach for combinatorial chromosome rearrangements in human HAP1 cells.","authors":"Anna Khabarova,&nbsp;Galina Koksharova,&nbsp;Pavel Salnikov,&nbsp;Polina Belokopytova,&nbsp;Roman Mungalov,&nbsp;Inna Pristyazhnuk,&nbsp;Artem Nurislamov,&nbsp;Maria Gridina,&nbsp;Veniamin Fishman","doi":"10.1007/s10577-023-09719-7","DOIUrl":"https://doi.org/10.1007/s10577-023-09719-7","url":null,"abstract":"<p><p>Alterations of human karyotype caused by chromosomal rearrangements are often associated with considerable phenotypic effects. Studying molecular mechanisms underlying these effects requires an efficient and scalable experimental model. Here, we propose a Cre-LoxP-based approach for the generation of combinatorial diversity of chromosomal rearrangements. We demonstrate that using the developed system, both intra- and inter-chromosomal rearrangements can be induced in the human haploid HAP1 cells, although the latter is significantly less effective. The obtained genetically modified HAP1 cell line can be used to dissect genomic effects associated with intra-chromosomal structural variations.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9365116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fold-back mechanism originating inv-dup-del rearrangements in chromosomes 13 and 15. 13号和15号染色体中产生inv- up-del重排的折叠机制。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-02-24 DOI: 10.1007/s10577-023-09720-0
Bruna Burssed, Malú Zamariolli, Bianca Pereira Favilla, Vera Ayres Meloni, Eny Maria Goloni-Bertollo, Fernanda Teixeira Bellucco, Maria Isabel Melaragno

Intrachromosomal rearrangements involve a single chromosome and can be formed by several proposed mechanisms. We reported two patients with intrachromosomal duplications and deletions, whose rearrangements and breakpoints were characterized through karyotyping, chromosomal microarray, fluorescence in situ hybridization, whole-genome sequencing, and Sanger sequencing. Inverted duplications associated with terminal deletions, known as inv-dup-del rearrangements, were found in 13q and 15q in these patients. The presence of microhomology at the junction points led to the proposal of the Fold-back mechanism for their formation. The use of different high-resolution techniques allowed for a better characterization of the rearrangements, with Sanger sequencing of the junction points being essential to infer the mechanisms of formation as it revealed microhomologies that were missed by the previous techniques. A karyotype-phenotype correlation was also performed for the characterized rearrangements.

染色体内重排涉及单个染色体,可以通过几种提出的机制形成。我们报告了两例染色体内重复和缺失的患者,通过核型分析、染色体微阵列、荧光原位杂交、全基因组测序和Sanger测序对其重排和断点进行了表征。在这些患者的13q和15q中发现了与末端缺失相关的反向重复,称为inv-dup-del重排。在连接点上的微同源性导致了它们形成的折叠机制的提出。使用不同的高分辨率技术可以更好地表征重排,连接点的Sanger测序对于推断形成机制至关重要,因为它揭示了以前技术所遗漏的微同源性。核型-表型的相关性也进行了表征重排。
{"title":"Fold-back mechanism originating inv-dup-del rearrangements in chromosomes 13 and 15.","authors":"Bruna Burssed,&nbsp;Malú Zamariolli,&nbsp;Bianca Pereira Favilla,&nbsp;Vera Ayres Meloni,&nbsp;Eny Maria Goloni-Bertollo,&nbsp;Fernanda Teixeira Bellucco,&nbsp;Maria Isabel Melaragno","doi":"10.1007/s10577-023-09720-0","DOIUrl":"https://doi.org/10.1007/s10577-023-09720-0","url":null,"abstract":"<p><p>Intrachromosomal rearrangements involve a single chromosome and can be formed by several proposed mechanisms. We reported two patients with intrachromosomal duplications and deletions, whose rearrangements and breakpoints were characterized through karyotyping, chromosomal microarray, fluorescence in situ hybridization, whole-genome sequencing, and Sanger sequencing. Inverted duplications associated with terminal deletions, known as inv-dup-del rearrangements, were found in 13q and 15q in these patients. The presence of microhomology at the junction points led to the proposal of the Fold-back mechanism for their formation. The use of different high-resolution techniques allowed for a better characterization of the rearrangements, with Sanger sequencing of the junction points being essential to infer the mechanisms of formation as it revealed microhomologies that were missed by the previous techniques. A karyotype-phenotype correlation was also performed for the characterized rearrangements.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9365112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Widespread chromosomal rearrangements preceded genetic divergence in a monitor lizard, Varanus acanthurus (Varanidae). 巨蜥科巨蜥(Varanus acanthurus)广泛的染色体重排先于遗传分化。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-02-06 DOI: 10.1007/s10577-023-09715-x
Jason Dobry, Erik Wapstra, Emily J Stringer, Bernd Gruber, Janine E Deakin, Tariq Ezaz

Chromosomal rearrangements are often associated with local adaptation and speciation because they suppress recombination, and as a result, rearrangements have been implicated in disrupting gene flow. Although there is strong evidence to suggest that chromosome rearrangements are a factor in genetic isolation of divergent populations, the underlying mechanism remains elusive. Here, we applied an integrative cytogenetics and genomics approach testing whether chromosomal rearrangements are the initial process, or a consequence, of population divergence in the dwarf goanna, Varanus acanthurus. Specifically, we tested whether chromosome rearrangements are indicators of genetic barriers that can be used to identify divergent populations by looking at gene flow within and between populations with rearrangements. We found that gene flow was present between individuals with chromosome rearrangements within populations, but there was no gene flow between populations that had similar chromosome rearrangements. Moreover, we identified a correlation between reduced genetic variation in populations with a higher frequency of homozygous submetacentric individuals. These findings suggest that chromosomal rearrangements were widespread prior to divergence, and because we found populations with higher frequencies of submetacentric chromosomes were associated with lower genetic diversity, this could indicate that polymorphisms within populations are early indicators of genetic drift.

染色体重排通常与局部适应和物种形成有关,因为它们抑制重组,因此,重排与破坏基因流动有关。尽管有强有力的证据表明染色体重排是不同种群遗传隔离的一个因素,但其潜在的机制仍然难以捉摸。在这里,我们应用了综合细胞遗传学和基因组学方法来测试染色体重排是矮蜥,Varanus acanthurus种群分化的初始过程还是结果。具体来说,我们测试了染色体重排是否是遗传屏障的指标,可以通过观察重排群体内部和群体之间的基因流动来识别不同的群体。我们发现,在种群中存在染色体重排的个体之间存在基因流动,但在具有相似染色体重排的种群之间不存在基因流动。此外,我们还发现,在纯合子亚异心个体频率较高的群体中,遗传变异减少之间存在相关性。这些研究结果表明,染色体重排在分化之前就已经广泛存在,而且由于我们发现亚异心染色体频率较高的群体与较低的遗传多样性相关,这可能表明群体内的多态性是遗传漂变的早期指标。
{"title":"Widespread chromosomal rearrangements preceded genetic divergence in a monitor lizard, Varanus acanthurus (Varanidae).","authors":"Jason Dobry,&nbsp;Erik Wapstra,&nbsp;Emily J Stringer,&nbsp;Bernd Gruber,&nbsp;Janine E Deakin,&nbsp;Tariq Ezaz","doi":"10.1007/s10577-023-09715-x","DOIUrl":"https://doi.org/10.1007/s10577-023-09715-x","url":null,"abstract":"<p><p>Chromosomal rearrangements are often associated with local adaptation and speciation because they suppress recombination, and as a result, rearrangements have been implicated in disrupting gene flow. Although there is strong evidence to suggest that chromosome rearrangements are a factor in genetic isolation of divergent populations, the underlying mechanism remains elusive. Here, we applied an integrative cytogenetics and genomics approach testing whether chromosomal rearrangements are the initial process, or a consequence, of population divergence in the dwarf goanna, Varanus acanthurus. Specifically, we tested whether chromosome rearrangements are indicators of genetic barriers that can be used to identify divergent populations by looking at gene flow within and between populations with rearrangements. We found that gene flow was present between individuals with chromosome rearrangements within populations, but there was no gene flow between populations that had similar chromosome rearrangements. Moreover, we identified a correlation between reduced genetic variation in populations with a higher frequency of homozygous submetacentric individuals. These findings suggest that chromosomal rearrangements were widespread prior to divergence, and because we found populations with higher frequencies of submetacentric chromosomes were associated with lower genetic diversity, this could indicate that polymorphisms within populations are early indicators of genetic drift.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9352287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nuclear architecture and the structural basis of mitotic memory. 核结构和有丝分裂记忆的结构基础。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-02-02 DOI: 10.1007/s10577-023-09714-y
Mamilla Soujanya, Ashish Bihani, Nikhil Hajirnis, Rashmi U Pathak, Rakesh K Mishra

The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.

细胞核是承载基因组的复杂细胞器,对DNA复制、DNA修复、转录和剪接等重要过程至关重要。基因组在细胞核的三维空间中是非随机组织的。这种功能性的亚区隔化被认为是在核基质(NuMat)的框架上组织的,NuMat是一种非染色质支架,作为细胞核各种分子过程的基质。最近,核体或无膜的核室被认为是由于染色质、RNA和蛋白质的相分离而产生的。核结构是染色质、表观遗传景观、核体和核骨架在细胞核三维空间中的相对组织的融合。在有丝分裂期间,细胞核在形态上经历了剧烈的变化,以至于它不再存在;各种核成分,包括定义细胞核的包膜,分解,染色质获得有丝分裂特异性的表观遗传标记并凝聚形成染色体。有丝分裂结束后,染色体去致密化,重新建立等级基因组组织,并恢复与母细胞相似的表观遗传和转录状态。这种有丝分裂记忆是如何在细胞分裂过程中遗传的仍然是一个谜。NuMat成分作为有丝分裂染色体的一部分,以有丝分裂染色体支架(mic)的形式存在,可能是指导表观基因组、染色体区域和核体相对重建的种子。在这里,我们综合了在有丝分裂过程中对细胞核结构记忆的理解方面的进展,并提出了一个假设,即在mic中保留了各种核体成核所必需的NuMat蛋白质组亚群,作为有丝分裂记忆的种子,从而确保子细胞重建类似于母细胞的核结构的复杂状态,从而维持有丝分裂前的转录状态。
{"title":"Nuclear architecture and the structural basis of mitotic memory.","authors":"Mamilla Soujanya,&nbsp;Ashish Bihani,&nbsp;Nikhil Hajirnis,&nbsp;Rashmi U Pathak,&nbsp;Rakesh K Mishra","doi":"10.1007/s10577-023-09714-y","DOIUrl":"https://doi.org/10.1007/s10577-023-09714-y","url":null,"abstract":"<p><p>The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9364615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
CRISPR/Cas9 and FLP-FRT mediated regulatory dissection of the BX-C of Drosophila melanogaster. CRISPR/Cas9和FLP-FRT介导的黑腹果蝇BX-C的调节性解剖。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-31 DOI: 10.1007/s10577-023-09716-w
Nikhil Hajirnis, Shubhanshu Pandey, Rakesh K Mishra

The homeotic genes or Hox define the anterior-posterior (AP) body axis formation in bilaterians and are often present on the chromosome in an order collinear to their function across the AP axis. However, there are many cases wherein the Hox are not collinear, but their expression pattern is conserved across the AP axis. The expression pattern of Hox is attributed to the cis-regulatory modules (CRMs) consisting of enhancers, initiators, or repressor elements that regulate the genes in a segment-specific manner. In the Drosophila melanogaster Hox complex, the bithorax complex (BX-C) and even the CRMs are organized in an order that is collinear to their function in the thoracic and abdominal segments. In the present study, the regulatorily inert regions were targeted using CRISPR/Cas9 to generate a series of transgenic lines with the insertion of FRT sequences. These FRT lines are repurposed to shuffle the CRMs associated with Abd-B to generate modular deletion, duplication, or inversion of multiple CRMs. The rearrangements yielded entirely novel phenotypes in the fly suggesting the requirement of such complex manipulations to address the significance of higher order arrangement of the CRMs. The functional map and the transgenic flies generated in this study are important resources to decipher the collective ability of multiple regulatory elements in the eukaryotic genome to function as complex modules.

同源基因(Hox)定义了两侧动物的前后(AP)体轴的形成,并且通常以与其在AP轴上的功能共线的顺序存在于染色体上。然而,在许多情况下,Hox不是共线的,但它们的表达模式在AP轴上是保守的。Hox的表达模式归因于由增强子、启动子或抑制元件组成的顺式调控模块(CRMs),它们以特定片段的方式调节基因。在黑腹果蝇Hox复合体中,双胸复合体(BX-C)甚至crm的组织顺序与其在胸腹节的功能共线。在本研究中,利用CRISPR/Cas9靶向调控惰性区,通过插入FRT序列,生成一系列转基因系。这些FRT线被重新用于洗牌与Abd-B相关的crm,以产生多个crm的模块化删除、重复或反转。重排在果蝇中产生了全新的表型,这表明需要这种复杂的操作来解决高阶排列的意义。本研究获得的功能图谱和转基因果蝇是破译真核生物基因组中多个调控元件作为复杂模块发挥作用的集体能力的重要资源。
{"title":"CRISPR/Cas9 and FLP-FRT mediated regulatory dissection of the BX-C of Drosophila melanogaster.","authors":"Nikhil Hajirnis,&nbsp;Shubhanshu Pandey,&nbsp;Rakesh K Mishra","doi":"10.1007/s10577-023-09716-w","DOIUrl":"https://doi.org/10.1007/s10577-023-09716-w","url":null,"abstract":"<p><p>The homeotic genes or Hox define the anterior-posterior (AP) body axis formation in bilaterians and are often present on the chromosome in an order collinear to their function across the AP axis. However, there are many cases wherein the Hox are not collinear, but their expression pattern is conserved across the AP axis. The expression pattern of Hox is attributed to the cis-regulatory modules (CRMs) consisting of enhancers, initiators, or repressor elements that regulate the genes in a segment-specific manner. In the Drosophila melanogaster Hox complex, the bithorax complex (BX-C) and even the CRMs are organized in an order that is collinear to their function in the thoracic and abdominal segments. In the present study, the regulatorily inert regions were targeted using CRISPR/Cas9 to generate a series of transgenic lines with the insertion of FRT sequences. These FRT lines are repurposed to shuffle the CRMs associated with Abd-B to generate modular deletion, duplication, or inversion of multiple CRMs. The rearrangements yielded entirely novel phenotypes in the fly suggesting the requirement of such complex manipulations to address the significance of higher order arrangement of the CRMs. The functional map and the transgenic flies generated in this study are important resources to decipher the collective ability of multiple regulatory elements in the eukaryotic genome to function as complex modules.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9364607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Chromosome Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1