首页 > 最新文献

Chromosome Research最新文献

英文 中文
Meiotic segregation and post-meiotic drive of the Festuca pratensis B chromosome. 高羊茅B染色体的减数分裂和减数分裂后驱动。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-09-02 DOI: 10.1007/s10577-023-09728-6
Rahman Ebrahimzadegan, Jörg Fuchs, Jianyong Chen, Veit Schubert, Armin Meister, Andreas Houben, Ghader Mirzaghaderi

In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as "chromosome drive". Here, we studied the behavior of the 103 Mbp-large B chromosome of Festuca pratensis during all meiotic and mitotic stages of microsporogenesis. Mostly, the B chromosome of F. pratensis segregates during meiosis like standard A chromosomes (As). In some cases, the B passes through meiosis in a non-Mendelian segregation leading to their accumulation already in meiosis. However, a true drive of the B happens during the first pollen mitosis, by which the B preferentially migrates to the generative nucleus. During second pollen mitosis, B divides equally between the two sperms. Despite some differences in the frequency of drive between individuals with different numbers of Bs, at least 82% of drive was observed. Flow cytometry-based quantification of B-containing sperm nuclei agrees with the FISH data.

在许多物种中,B染色体(Bs)的传播不遵循孟德尔的平等分离和独立分类定律。这种偏差导致Bs的传播率高于0.5,这一过程被称为“染色体驱动”。在这里,我们研究了高羊茅103Mbp大B染色体在小孢子发生的所有减数分裂和有丝分裂阶段的行为。大多数情况下,pratensis的B染色体在减数分裂过程中像标准的A染色体(As)一样分离。在某些情况下,B以非孟德尔分离的方式通过减数分裂,导致它们已经在减数分裂中积累。然而,B的真正驱动作用发生在第一次花粉有丝分裂期间,通过这种有丝分裂,B优先迁移到生殖细胞核。在第二次花粉有丝分裂过程中,B在两个精子之间平分。尽管具有不同B数的个体之间的驱动频率存在一些差异,但至少观察到82%的驱动。基于流式细胞术的含B精子细胞核定量与FISH数据一致。
{"title":"Meiotic segregation and post-meiotic drive of the Festuca pratensis B chromosome.","authors":"Rahman Ebrahimzadegan,&nbsp;Jörg Fuchs,&nbsp;Jianyong Chen,&nbsp;Veit Schubert,&nbsp;Armin Meister,&nbsp;Andreas Houben,&nbsp;Ghader Mirzaghaderi","doi":"10.1007/s10577-023-09728-6","DOIUrl":"10.1007/s10577-023-09728-6","url":null,"abstract":"<p><p>In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as \"chromosome drive\". Here, we studied the behavior of the 103 Mbp-large B chromosome of Festuca pratensis during all meiotic and mitotic stages of microsporogenesis. Mostly, the B chromosome of F. pratensis segregates during meiosis like standard A chromosomes (As). In some cases, the B passes through meiosis in a non-Mendelian segregation leading to their accumulation already in meiosis. However, a true drive of the B happens during the first pollen mitosis, by which the B preferentially migrates to the generative nucleus. During second pollen mitosis, B divides equally between the two sperms. Despite some differences in the frequency of drive between individuals with different numbers of Bs, at least 82% of drive was observed. Flow cytometry-based quantification of B-containing sperm nuclei agrees with the FISH data.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10161451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling specific aneuploidies: from karyotype manipulations to biological insights. 特定非整倍体的建模:从核型操作到生物学见解。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-29 DOI: 10.1007/s10577-023-09735-7
My Anh Truong, Paula Cané-Gasull, Susanne M A Lens

An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.

染色体数目异常或非整倍体是发育障碍的基础,也是癌症的常见特征,不同的癌症类型表现出不同的染色体增失模式。为了了解特定的非整倍体是如何在某些组织中出现的,以及它们是如何促进疾病发展的,已经开发了各种方法来改变哺乳动物细胞和小鼠的核型。在这篇综述中,我们概述了在人类和小鼠细胞系统中诱导或选择特定染色体得失的经典和新策略。我们强调了这些定制的非整倍体模型如何帮助我们扩展特定非整倍性对(癌症)细胞生理学的影响的知识。
{"title":"Modeling specific aneuploidies: from karyotype manipulations to biological insights.","authors":"My Anh Truong,&nbsp;Paula Cané-Gasull,&nbsp;Susanne M A Lens","doi":"10.1007/s10577-023-09735-7","DOIUrl":"10.1007/s10577-023-09735-7","url":null,"abstract":"<p><p>An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10153125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consequences of gaining an extra chromosome. 获得额外染色体的后果。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-08-25 DOI: 10.1007/s10577-023-09732-w
Eduardo M Torres

Mistakes in chromosome segregation leading to aneuploidy are the primary cause of miscarriages in humans. Excluding sex chromosomes, viable aneuploidies in humans include trisomies of chromosomes 21, 18, or 13, which cause Down, Edwards, or Patau syndromes, respectively. While individuals with trisomy 18 or 13 die soon after birth, people with Down syndrome live to adulthood but have intellectual disabilities and are prone to multiple diseases. At the cellular level, mistakes in the segregation of a single chromosome leading to a cell losing a chromosome are lethal. In contrast, the cell that gains a chromosome can survive. Several studies support the hypothesis that gaining an extra copy of a chromosome causes gene-specific phenotypes and phenotypes independent of the identity of the genes encoded within that chromosome. The latter, referred to as aneuploidy-associated phenotypes, are the focus of this review. Among the conserved aneuploidy-associated phenotypes observed in yeast and human cells are lower viability, increased gene expression, increased protein synthesis and turnover, abnormal nuclear morphology, and altered metabolism. Notably, abnormal nuclear morphology of aneuploid cells is associated with increased metabolic demand for de novo synthesis of sphingolipids. These findings reveal important insights into the possible pathological role of aneuploidy in Down syndrome. Despite the adverse effects on cell physiology, aneuploidy is a hallmark of cancer cells. Understanding how aneuploidy affects cell physiology can reveal insights into the selective pressure that aneuploid cancer cells must overcome to support unlimited proliferation.

染色体分离错误导致非整倍体是人类流产的主要原因。除性染色体外,人类中可存活的非整倍体包括染色体21、18或13的三体,它们分别导致唐氏综合征、爱德华综合征或帕托综合征。虽然18或13三体患者出生后不久就会死亡,但唐氏综合症患者可以活到成年,但有智力残疾,容易患多种疾病。在细胞水平上,单个染色体分离的错误导致细胞失去染色体是致命的。相反,获得染色体的细胞可以存活。几项研究支持这样一种假设,即获得染色体的额外拷贝会导致基因特异性表型和表型,而与该染色体内编码的基因的身份无关。后者被称为非整倍体相关表型,是本综述的重点。在酵母和人类细胞中观察到的保守的非整倍体相关表型包括生存力降低、基因表达增加、蛋白质合成和周转增加、细胞核形态异常和代谢改变。值得注意的是,非整倍体细胞的异常核形态与鞘脂从头合成的代谢需求增加有关。这些发现揭示了非整倍体在唐氏综合征中可能的病理作用的重要见解。尽管对细胞生理有不良影响,但非整倍体是癌症细胞的标志。了解非整倍体如何影响细胞生理可以揭示非整倍性癌症细胞必须克服的选择性压力,以支持无限增殖。
{"title":"Consequences of gaining an extra chromosome.","authors":"Eduardo M Torres","doi":"10.1007/s10577-023-09732-w","DOIUrl":"10.1007/s10577-023-09732-w","url":null,"abstract":"<p><p>Mistakes in chromosome segregation leading to aneuploidy are the primary cause of miscarriages in humans. Excluding sex chromosomes, viable aneuploidies in humans include trisomies of chromosomes 21, 18, or 13, which cause Down, Edwards, or Patau syndromes, respectively. While individuals with trisomy 18 or 13 die soon after birth, people with Down syndrome live to adulthood but have intellectual disabilities and are prone to multiple diseases. At the cellular level, mistakes in the segregation of a single chromosome leading to a cell losing a chromosome are lethal. In contrast, the cell that gains a chromosome can survive. Several studies support the hypothesis that gaining an extra copy of a chromosome causes gene-specific phenotypes and phenotypes independent of the identity of the genes encoded within that chromosome. The latter, referred to as aneuploidy-associated phenotypes, are the focus of this review. Among the conserved aneuploidy-associated phenotypes observed in yeast and human cells are lower viability, increased gene expression, increased protein synthesis and turnover, abnormal nuclear morphology, and altered metabolism. Notably, abnormal nuclear morphology of aneuploid cells is associated with increased metabolic demand for de novo synthesis of sphingolipids. These findings reveal important insights into the possible pathological role of aneuploidy in Down syndrome. Despite the adverse effects on cell physiology, aneuploidy is a hallmark of cancer cells. Understanding how aneuploidy affects cell physiology can reveal insights into the selective pressure that aneuploid cancer cells must overcome to support unlimited proliferation.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10503949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells. 复制应激导致人类诱导多能干细胞中ANKS1B大神经元基因的有丝分裂进入延迟和12号染色体脆性。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-19 DOI: 10.1007/s10577-023-09729-5
Anastasiia V Kislova, Diana Zheglo, Victoria O Pozhitnova, Philipp S Sviridov, Elmira P Gadzhieva, Ekaterina S Voronina

Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.

大量背景水平的复制应激是胚胎和诱导多能干细胞(iPSC)的一个特征,它可能导致染色体数量和结构的不稳定,包括12号染色体的复发性畸变。在分化的细胞中,复制应激敏感的基因组区域,包括常见的脆性位点,通过温和的阿西德林处理(一种复制聚合酶的抑制剂)诱导有丝分裂染色体断裂而被广泛定位。IPSCs表现出较低的凋亡阈值和较高的修复能力,阻碍了脆性位点的定位。咖啡因增强基因毒性作用,消除化学和物理诱变剂诱导的G2/M检查点延迟。使用5-乙炔基-2'-脱氧尿苷(EdU)进行复制标记,我们表征了暴露于阿片苷和/或咖啡因的异步iPSC的有丝分裂进入动力学。在复制应激暴露时间调整后,细胞周期延迟,与原代淋巴细胞相比,在iPSC中观察到更高的中期染色体断裂率。使用差异染色体染色和随后的位点特异性荧光原位杂交,我们在12q23.1定位了横跨大神经元ANKS1B基因的FRA12L脆性位点,这可能有助于iPSC中复发性的12号染色体错序和重排。综述了关于ANKS1B基因改变及其可能的功能影响的公开可用数据。我们的研究首次证明了iPSC中常见的脆性位点诱导,并揭示了在人类早期发育和体外细胞扩增过程中临床相关基因的潜在体细胞不稳定性。
{"title":"Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells.","authors":"Anastasiia V Kislova,&nbsp;Diana Zheglo,&nbsp;Victoria O Pozhitnova,&nbsp;Philipp S Sviridov,&nbsp;Elmira P Gadzhieva,&nbsp;Ekaterina S Voronina","doi":"10.1007/s10577-023-09729-5","DOIUrl":"10.1007/s10577-023-09729-5","url":null,"abstract":"<p><p>Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10141129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Genome composition in Brassica interspecific hybrids affects chromosome inheritance and viability of progeny. 芸苔属种间杂交种的基因组组成影响后代的染色体遗传和活力。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-19 DOI: 10.1007/s10577-023-09733-9
Elvis Katche, Elizabeth Ihien Katche, Paula Vasquez-Teuber, Zurianti Idris, Yu-Tzu Lo, David Nugent, Jun Zou, Jacqueline Batley, Annaliese S Mason

Interspecific hybridization is widespread in nature and can result in the formation of new hybrid species as well as the transfer of traits between species. However, the fate of newly formed hybrid lineages is relatively understudied. We undertook pairwise crossing between multiple genotypes of three Brassica allotetraploid species Brassica juncea (2n = AABB), Brassica carinata (2n = BBCC), and Brassica napus (2n = AACC) to generate AABC, BBAC, and CCAB interspecific hybrids and investigated chromosome inheritance and fertility in these hybrids and their self-pollinated progeny. Surprisingly, despite the presence of a complete diploid genome in all hybrids, hybrid fertility was very low. AABC and BBAC first generation (F1) hybrids both averaged ~16% pollen viability compared to 3.5% in CCAB hybrids: most CCAB hybrid flowers were male-sterile. AABC and CCAB F1 hybrid plants averaged 5.5 and 0.5 seeds per plant, respectively, and BBAC F1 hybrids ~56 seeds/plant. In the second generation (S1), all confirmed self-pollinated progeny resulting from CCAB hybrids were sterile, producing no self-pollinated seeds. Three AABC S1 hybrids putatively resulting from unreduced gametes produced 3, 14, and 182 seeds each, while other AABC S1 hybrids averaged 1.5 seeds/plant (0-8). BBAC S1 hybrids averaged 44 seeds/plant (range 0-403). We also observed strong bias towards retention rather than loss of the haploid genomes, suggesting that the subgenomes in the Brassica allotetraploids are already highly interdependent, such that loss of one subgenome is detrimental to fertility and viability. Our results suggest that relationships between subgenomes determine hybridization outcomes in these species.

种间杂交在自然界中广泛存在,可以形成新的杂交物种以及在物种之间转移性状。然而,对新形成的杂交谱系的命运研究相对不足。我们对三个芸苔属异四倍体种芥菜(2n=AABB)、隆突芸苔(2n=BBCC)和甘蓝型油菜(2n=AACC)的多个基因型进行了配对杂交,以产生AABC、BBAC和CCAB种间杂交种,并研究了这些杂交种及其自花授粉后代的染色体遗传和育性。令人惊讶的是,尽管所有杂交种都有完整的二倍体基因组,但杂交种的生育能力非常低。AABC和BBAC第一代(F1)杂交种的花粉活力平均约为16%,而CCAB杂交种的平均花粉活力为3.5%:大多数CCAB杂交花是雄性不育的。AABC和CCAB F1杂交植株平均每株种子分别为5.5和0.5粒,BBAC F1杂交植株为56粒/株。在第二代(S1)中,CCAB杂交种产生的所有已确认的自授粉后代都是不育的,不产生自授粉种子。三个由未还原配子产生的AABC S1杂交种各产生3、14和182个种子,而其他AABC S1杂种平均每株产生1.5个种子(0-8)。BBAC S1杂交种平均每株44粒种子(0-403粒)。我们还观察到单倍体基因组的保留而非丢失具有强烈的偏向性,这表明芸苔属同素异形体中的亚基因组已经高度相互依赖,因此一个亚基因组的丢失对生育能力和生存能力不利。我们的研究结果表明,亚基因组之间的关系决定了这些物种的杂交结果。
{"title":"Genome composition in Brassica interspecific hybrids affects chromosome inheritance and viability of progeny.","authors":"Elvis Katche,&nbsp;Elizabeth Ihien Katche,&nbsp;Paula Vasquez-Teuber,&nbsp;Zurianti Idris,&nbsp;Yu-Tzu Lo,&nbsp;David Nugent,&nbsp;Jun Zou,&nbsp;Jacqueline Batley,&nbsp;Annaliese S Mason","doi":"10.1007/s10577-023-09733-9","DOIUrl":"10.1007/s10577-023-09733-9","url":null,"abstract":"<p><p>Interspecific hybridization is widespread in nature and can result in the formation of new hybrid species as well as the transfer of traits between species. However, the fate of newly formed hybrid lineages is relatively understudied. We undertook pairwise crossing between multiple genotypes of three Brassica allotetraploid species Brassica juncea (2n = AABB), Brassica carinata (2n = BBCC), and Brassica napus (2n = AACC) to generate AABC, BBAC, and CCAB interspecific hybrids and investigated chromosome inheritance and fertility in these hybrids and their self-pollinated progeny. Surprisingly, despite the presence of a complete diploid genome in all hybrids, hybrid fertility was very low. AABC and BBAC first generation (F<sub>1</sub>) hybrids both averaged ~16% pollen viability compared to 3.5% in CCAB hybrids: most CCAB hybrid flowers were male-sterile. AABC and CCAB F<sub>1</sub> hybrid plants averaged 5.5 and 0.5 seeds per plant, respectively, and BBAC F<sub>1</sub> hybrids ~56 seeds/plant. In the second generation (S<sub>1</sub>), all confirmed self-pollinated progeny resulting from CCAB hybrids were sterile, producing no self-pollinated seeds. Three AABC S<sub>1</sub> hybrids putatively resulting from unreduced gametes produced 3, 14, and 182 seeds each, while other AABC S<sub>1</sub> hybrids averaged 1.5 seeds/plant (0-8). BBAC S<sub>1</sub> hybrids averaged 44 seeds/plant (range 0-403). We also observed strong bias towards retention rather than loss of the haploid genomes, suggesting that the subgenomes in the Brassica allotetraploids are already highly interdependent, such that loss of one subgenome is detrimental to fertility and viability. Our results suggest that relationships between subgenomes determine hybridization outcomes in these species.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10147736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Human artificial chromosome carrying 3p21.3‑p22.2 region suppresses hTERT transcription in oral cancer cells. 更正:携带3p21.3‑p22.2区域的人类人工染色体抑制口腔癌症细胞中hTERT转录。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-17 DOI: 10.1007/s10577-023-09734-8
Takahito Ohira, Kaho Yoshimura, Hiroyuki Kugoh
{"title":"Correction to: Human artificial chromosome carrying 3p21.3‑p22.2 region suppresses hTERT transcription in oral cancer cells.","authors":"Takahito Ohira, Kaho Yoshimura, Hiroyuki Kugoh","doi":"10.1007/s10577-023-09734-8","DOIUrl":"10.1007/s10577-023-09734-8","url":null,"abstract":"","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512193/pdf/10577_2023_Article_9734.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10070882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting a living biobank to delineate mechanisms underlying disease-specific chromosome instability. 利用活体生物库来描述疾病特异性染色体不稳定的潜在机制。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-17 DOI: 10.1007/s10577-023-09731-x
Louisa Nelson, Bethany M Barnes, Anthony Tighe, Samantha Littler, Camilla Coulson-Gilmer, Anya Golder, Sudha Desai, Robert D Morgan, Joanne C McGrail, Stephen S Taylor

Chromosome instability (CIN) is a cancer hallmark that drives tumour heterogeneity, phenotypic adaptation, drug resistance and poor prognosis. High-grade serous ovarian cancer (HGSOC), one of the most chromosomally unstable tumour types, has a 5-year survival rate of only ~30% - largely due to late diagnosis and rapid development of drug resistance, e.g., via CIN-driven ABCB1 translocations. However, CIN is also a cell cycle vulnerability that can be exploited to specifically target tumour cells, illustrated by the success of PARP inhibitors to target homologous recombination deficiency (HRD). However, a lack of appropriate models with ongoing CIN has been a barrier to fully exploiting disease-specific CIN mechanisms. This barrier is now being overcome with the development of patient-derived cell cultures and organoids. In this review, we describe our progress building a Living Biobank of over 120 patient-derived ovarian cancer models (OCMs), predominantly from HGSOC. OCMs are highly purified tumour fractions with extensive proliferative potential that can be analysed at early passage. OCMs have diverse karyotypes, display intra- and inter-patient heterogeneity and mitotic abnormality rates far higher than established cell lines. OCMs encompass a broad-spectrum of HGSOC hallmarks, including a range of p53 alterations and BRCA1/2 mutations, and display drug resistance mechanisms seen in the clinic, e.g., ABCB1 translocations and BRCA2 reversion. OCMs are amenable to functional analysis, drug-sensitivity profiling, and multi-omics, including single-cell next-generation sequencing, and thus represent a platform for delineating HGSOC-specific CIN mechanisms. In turn, our vision is that this understanding will inform the design of new therapeutic strategies.

染色体不稳定性(CIN)是癌症的一个标志,它导致肿瘤异质性、表型适应、耐药性和预后不良。高粒径浆液性癌症(HGSOC)是染色体最不稳定的肿瘤类型之一,其5年生存率仅为约30%,这主要是由于诊断较晚和耐药性迅速发展,例如通过CIN驱动的ABCB1易位。然而,CIN也是一种细胞周期脆弱性,可以用来特异性靶向肿瘤细胞,PARP抑制剂成功靶向同源重组缺陷(HRD)就说明了这一点。然而,缺乏合适的持续CIN模型一直是充分利用疾病特异性CIN机制的障碍。随着患者来源的细胞培养物和类器官的发展,这一障碍正在被克服。在这篇综述中,我们描述了我们建立一个由120多个患者衍生的癌症模型(OCM)组成的活体生物库的进展,这些模型主要来自HGSOC。OCMs是高度纯化的肿瘤组分,具有广泛的增殖潜力,可以在早期传代时进行分析。OCMs具有不同的核型,显示出患者内和患者间的异质性,有丝分裂异常率远高于已建立的细胞系。OCMs包含广泛的HGSOC特征,包括一系列p53改变和BRCA1/2突变,并显示出临床上可见的耐药性机制,例如ABCB1易位和BRCA2逆转。OCM适用于功能分析、药物敏感性分析和多组学,包括单细胞下一代测序,因此代表了描述HGSOC特异性CIN机制的平台。反过来,我们的愿景是,这种理解将为新的治疗策略的设计提供信息。
{"title":"Exploiting a living biobank to delineate mechanisms underlying disease-specific chromosome instability.","authors":"Louisa Nelson,&nbsp;Bethany M Barnes,&nbsp;Anthony Tighe,&nbsp;Samantha Littler,&nbsp;Camilla Coulson-Gilmer,&nbsp;Anya Golder,&nbsp;Sudha Desai,&nbsp;Robert D Morgan,&nbsp;Joanne C McGrail,&nbsp;Stephen S Taylor","doi":"10.1007/s10577-023-09731-x","DOIUrl":"10.1007/s10577-023-09731-x","url":null,"abstract":"<p><p>Chromosome instability (CIN) is a cancer hallmark that drives tumour heterogeneity, phenotypic adaptation, drug resistance and poor prognosis. High-grade serous ovarian cancer (HGSOC), one of the most chromosomally unstable tumour types, has a 5-year survival rate of only ~30% - largely due to late diagnosis and rapid development of drug resistance, e.g., via CIN-driven ABCB1 translocations. However, CIN is also a cell cycle vulnerability that can be exploited to specifically target tumour cells, illustrated by the success of PARP inhibitors to target homologous recombination deficiency (HRD). However, a lack of appropriate models with ongoing CIN has been a barrier to fully exploiting disease-specific CIN mechanisms. This barrier is now being overcome with the development of patient-derived cell cultures and organoids. In this review, we describe our progress building a Living Biobank of over 120 patient-derived ovarian cancer models (OCMs), predominantly from HGSOC. OCMs are highly purified tumour fractions with extensive proliferative potential that can be analysed at early passage. OCMs have diverse karyotypes, display intra- and inter-patient heterogeneity and mitotic abnormality rates far higher than established cell lines. OCMs encompass a broad-spectrum of HGSOC hallmarks, including a range of p53 alterations and BRCA1/2 mutations, and display drug resistance mechanisms seen in the clinic, e.g., ABCB1 translocations and BRCA2 reversion. OCMs are amenable to functional analysis, drug-sensitivity profiling, and multi-omics, including single-cell next-generation sequencing, and thus represent a platform for delineating HGSOC-specific CIN mechanisms. In turn, our vision is that this understanding will inform the design of new therapeutic strategies.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435626/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10503487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosomal instability and inflammation: a catch-22 for cancer cells. 染色体不稳定和炎症:癌症细胞的第二十二条军规。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-08-10 DOI: 10.1007/s10577-023-09730-y
Anouk van den Brink, Maria F Suárez Peredo Rodríguez, Floris Foijer

Chromosomal instability (CIN), an increased rate of chromosomal segregation abnormalities, drives intratumor heterogeneity and affects most human cancers. In addition to chromosome copy number alterations, CIN results in chromosome(s) (fragments) being mislocalized into the cytoplasm in the form of micronuclei. Micronuclei can be detected by cGAS, a double-strand nucleic acid sensor, which will lead to the production of the second messenger 2'3'-cGAMP, activation of an inflammatory response, and downstream immune cell activation. However, the molecular network underlying the CIN-induced inflammatory response is still poorly understood. Furthermore, there is emerging evidence that cancers that display CIN circumvent this CIN-induced inflammatory response, and thus immune surveillance. The STAT1, STAT3, and NF-κB signaling cascades appear to play an important role in the CIN-induced inflammatory response. In this review, we discuss how these pathways are involved in signaling CIN in cells and how they are intertwined. A better understanding of how CIN is being signaled in cells and how cancer cells circumvent this is of the utmost importance for better and more selective cancer treatment.

染色体不稳定性(CIN)是染色体分离异常率的增加,导致肿瘤内异质性,并影响大多数人类癌症。除了染色体拷贝数的改变外,CIN还会导致染色体(片段)以微核的形式错误定位在细胞质中。微核可以通过cGAS(一种双链核酸传感器)检测,这将导致第二信使2'3'-cGAMP的产生、炎症反应的激活和下游免疫细胞的激活。然而,CIN诱导的炎症反应的分子网络仍然知之甚少。此外,有新的证据表明,显示CIN的癌症绕过了这种CIN诱导的炎症反应,从而绕过了免疫监测。STAT1、STAT3和NF-κB信号级联似乎在CIN诱导的炎症反应中发挥重要作用。在这篇综述中,我们讨论了这些途径如何参与细胞中CIN的信号传导,以及它们是如何交织在一起的。更好地了解CIN在细胞中是如何发出信号的,以及癌症细胞如何规避这一信号,对于更好、更具选择性的癌症治疗至关重要。
{"title":"Chromosomal instability and inflammation: a catch-22 for cancer cells.","authors":"Anouk van den Brink,&nbsp;Maria F Suárez Peredo Rodríguez,&nbsp;Floris Foijer","doi":"10.1007/s10577-023-09730-y","DOIUrl":"10.1007/s10577-023-09730-y","url":null,"abstract":"<p><p>Chromosomal instability (CIN), an increased rate of chromosomal segregation abnormalities, drives intratumor heterogeneity and affects most human cancers. In addition to chromosome copy number alterations, CIN results in chromosome(s) (fragments) being mislocalized into the cytoplasm in the form of micronuclei. Micronuclei can be detected by cGAS, a double-strand nucleic acid sensor, which will lead to the production of the second messenger 2'3'-cGAMP, activation of an inflammatory response, and downstream immune cell activation. However, the molecular network underlying the CIN-induced inflammatory response is still poorly understood. Furthermore, there is emerging evidence that cancers that display CIN circumvent this CIN-induced inflammatory response, and thus immune surveillance. The STAT1, STAT3, and NF-κB signaling cascades appear to play an important role in the CIN-induced inflammatory response. In this review, we discuss how these pathways are involved in signaling CIN in cells and how they are intertwined. A better understanding of how CIN is being signaled in cells and how cancer cells circumvent this is of the utmost importance for better and more selective cancer treatment.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10152605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twenty years of merotelic kinetochore attachments: a historical perspective. 二十年的裂殖子动粒附着:一个历史的视角。
IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-07-19 DOI: 10.1007/s10577-023-09727-7
Daniela Cimini

Micronuclei, small DNA-containing structures separate from the main nucleus, were used for decades as an indicator of genotoxic damage. Micronuclei containing whole chromosomes were considered a biomarker of aneuploidy and were believed to form, upon mitotic exit, from chromosomes that lagged behind in anaphase as all other chromosomes segregated to the poles of the mitotic spindle. However, the mechanism responsible for inducing anaphase lagging chromosomes remained unknown until just over twenty years ago. Here, I summarize what preceded and what followed this discovery, highlighting some of the open questions and opportunities for future investigation.

微核是一种与主核分离的含有DNA的小结构,几十年来一直被用作基因毒性损伤的指标。含有整条染色体的微核被认为是非整倍体的生物标志物,并且被认为是在有丝分裂结束时,由于所有其他染色体都分离到有丝分裂纺锤体的极点,在后期落后的染色体形成的。然而,直到20多年前,导致后期滞后染色体的机制仍然未知。在这里,我总结了这一发现之前和之后的情况,强调了一些悬而未决的问题和未来调查的机会。
{"title":"Twenty years of merotelic kinetochore attachments: a historical perspective.","authors":"Daniela Cimini","doi":"10.1007/s10577-023-09727-7","DOIUrl":"10.1007/s10577-023-09727-7","url":null,"abstract":"<p><p>Micronuclei, small DNA-containing structures separate from the main nucleus, were used for decades as an indicator of genotoxic damage. Micronuclei containing whole chromosomes were considered a biomarker of aneuploidy and were believed to form, upon mitotic exit, from chromosomes that lagged behind in anaphase as all other chromosomes segregated to the poles of the mitotic spindle. However, the mechanism responsible for inducing anaphase lagging chromosomes remained unknown until just over twenty years ago. Here, I summarize what preceded and what followed this discovery, highlighting some of the open questions and opportunities for future investigation.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10152082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human artificial chromosome carrying 3p21.3-p22.2 region suppresses hTERT transcription in oral cancer cells. 携带 3p21.3-p22.2 区域的人类人工染色体可抑制口腔癌细胞中 hTERT 的转录。
IF 2.6 4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-06-24 DOI: 10.1007/s10577-023-09726-8
Takahito Ohira, Kaho Yoshimura, Hiroyuki Kugoh

Telomerase is a ribonucleoprotein ribonucleic enzyme that elongates telomere repeat sequences at the ends of chromosomes and contributes to cellular immortalization. The catalytic component of telomerase, human telomerase reverse transcriptase (hTERT), has been observed to be reactivated in immortalized cells. Notably, most cancer cells have been found to have active hTERT mRNA transcription, resulting in continuous cell division, which is crucial for malignant transformation. Therefore, discovering mechanisms underlying the regulation of hTERT transcription is an attractive target for cancer-specific treatments.Loss of heterozygosity (LOH) of chromosome 3p21.3 has been frequently observed in human oral squamous cell carcinoma (OSCC). Moreover, we previously reported that HSC3 OSCC microcell hybrid clones with an introduced human chromosome 3 (HSC3#3) showed inhibition of hTERT transcription compared with the parental HSC3 cells. This study examined whether hTERT transcription regulators are present in the 3p21.3 region. We constructed a human artificial chromosome (HAC) vector (3p21.3-HAC) with only the 3p21.3-p22.2 region and performed functional analysis using the 3p21.3-HAC. HSC3 microcell hybrid clones with an introduced 3p21.3-HAC exhibited significant suppression of hTERT transcription, similar to the microcell hybrid clones with an intact chromosome 3. In contrast, HSC3 clones with truncated chromosome 3 with deletion of the 3p21.3 region (3delp21.3) showed no effect on hTERT expression levels. These results provide direct evidence that hTERT suppressor gene(s) were retained in the 3p21.3 region, suggesting that the presence of regulatory factors that control telomerase enzyme activity may be involved in the development of OSCC.

端粒酶是一种核糖核蛋白核糖核酶,能延长染色体末端的端粒重复序列,促进细胞永生。据观察,端粒酶的催化成分--人类端粒酶逆转录酶(hTERT)在永生化细胞中被重新激活。值得注意的是,已发现大多数癌细胞的 hTERT mRNA 转录活跃,导致细胞持续分裂,这对恶性转化至关重要。因此,发现 hTERT 转录的调控机制是癌症特异性治疗的一个有吸引力的目标。在人类口腔鳞状细胞癌(OSCC)中经常观察到染色体 3p21.3 的杂合性缺失(LOH)。此外,我们以前还报道过,与亲代HSC3细胞相比,带有引入的人类3号染色体(HSC3#3)的HSC3 OSCC微细胞杂交克隆显示出抑制hTERT转录的作用。本研究考察了 3p21.3 区域是否存在 hTERT 转录调控因子。我们构建了一个仅包含 3p21.3-p22.2 区域的人类人工染色体(HAC)载体(3p21.3-HAC),并利用 3p21.3-HAC 进行了功能分析。导入了3p21.3-HAC的HSC3微细胞杂交克隆表现出明显的hTERT转录抑制作用,这与带有完整3号染色体的微细胞杂交克隆相似。与此相反,带有3p21.3区域缺失的截短3号染色体(3delp21.3)的HSC3克隆对hTERT表达水平没有影响。这些结果提供了在3p21.3区域保留hTERT抑制基因的直接证据,表明控制端粒酶活性的调节因子的存在可能与OSCC的发生有关。
{"title":"Human artificial chromosome carrying 3p21.3-p22.2 region suppresses hTERT transcription in oral cancer cells.","authors":"Takahito Ohira, Kaho Yoshimura, Hiroyuki Kugoh","doi":"10.1007/s10577-023-09726-8","DOIUrl":"10.1007/s10577-023-09726-8","url":null,"abstract":"<p><p>Telomerase is a ribonucleoprotein ribonucleic enzyme that elongates telomere repeat sequences at the ends of chromosomes and contributes to cellular immortalization. The catalytic component of telomerase, human telomerase reverse transcriptase (hTERT), has been observed to be reactivated in immortalized cells. Notably, most cancer cells have been found to have active hTERT mRNA transcription, resulting in continuous cell division, which is crucial for malignant transformation. Therefore, discovering mechanisms underlying the regulation of hTERT transcription is an attractive target for cancer-specific treatments.Loss of heterozygosity (LOH) of chromosome 3p21.3 has been frequently observed in human oral squamous cell carcinoma (OSCC). Moreover, we previously reported that HSC3 OSCC microcell hybrid clones with an introduced human chromosome 3 (HSC3#3) showed inhibition of hTERT transcription compared with the parental HSC3 cells. This study examined whether hTERT transcription regulators are present in the 3p21.3 region. We constructed a human artificial chromosome (HAC) vector (3p21.3-HAC) with only the 3p21.3-p22.2 region and performed functional analysis using the 3p21.3-HAC. HSC3 microcell hybrid clones with an introduced 3p21.3-HAC exhibited significant suppression of hTERT transcription, similar to the microcell hybrid clones with an intact chromosome 3. In contrast, HSC3 clones with truncated chromosome 3 with deletion of the 3p21.3 region (3delp21.3) showed no effect on hTERT expression levels. These results provide direct evidence that hTERT suppressor gene(s) were retained in the 3p21.3 region, suggesting that the presence of regulatory factors that control telomerase enzyme activity may be involved in the development of OSCC.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10010038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chromosome Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1