Graphitic nitrogen-doped carbon film/nanoparticle composite, in which the films were wrapped and separated by the nanoparticles, was prepared through a simple co-calcination route. Due to its unique porous structure and improved nitrogen content, the as-prepared electrode material could exhibit high specific capacitances of 317.5 F g−1 at 0.5 A g−1 and 200.0 F g−1 at 20 A g−1, and stable cycling behavior with no capacitance decline after 10,000 cycles in three-electrode system. When assembled in two-electrode capacitor, its specific capacitance could be well kept at 265.5 F g−1 at 0.5 A g−1, and thus the supercapacitor with a high energy density of 9.22 Wh kg−1 was obtained. The superior energy storage properties of the as-prepared material indicate its promising application as high-performance carbon-based electrode for supercapacitors.
通过简单的共煅烧路线制备了石墨氮掺杂碳膜/纳米颗粒复合材料,其中碳膜被纳米颗粒包裹并分离。由于其独特的多孔结构和更高的氮含量,所制备的电极材料在 0.5 A g-1 电流和 20 A g-1 电流条件下分别具有 317.5 F g-1 和 200.0 F g-1 的高比电容,并且在三电极系统中具有稳定的循环行为,循环 10,000 次后电容没有下降。当组装成双电极电容器时,其比电容在 0.5 A g-1 时可保持在 265.5 F g-1 的水平,从而获得了能量密度高达 9.22 Wh kg-1 的超级电容器。所制备材料的优异储能特性表明,它有望成为超级电容器的高性能碳基电极。
{"title":"Graphitic carbon nitride film deposited with nitrogen-doped carbon nanoparticles as electrode for high-performance supercapacitors","authors":"Jun Zhu, Qiang Ma, Lirong Kong, Jianguo Dai, Keqiang Xu, Quanrun Chen, Zhiguo Zhao","doi":"10.1007/s42823-024-00754-w","DOIUrl":"10.1007/s42823-024-00754-w","url":null,"abstract":"<div><p>Graphitic nitrogen-doped carbon film/nanoparticle composite, in which the films were wrapped and separated by the nanoparticles, was prepared through a simple co-calcination route. Due to its unique porous structure and improved nitrogen content, the as-prepared electrode material could exhibit high specific capacitances of 317.5 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and 200.0 F g<sup>−1</sup> at 20 A g<sup>−1</sup>, and stable cycling behavior with no capacitance decline after 10,000 cycles in three-electrode system. When assembled in two-electrode capacitor, its specific capacitance could be well kept at 265.5 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, and thus the supercapacitor with a high energy density of 9.22 Wh kg<sup>−1</sup> was obtained. The superior energy storage properties of the as-prepared material indicate its promising application as high-performance carbon-based electrode for supercapacitors.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2279 - 2290"},"PeriodicalIF":5.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silicon carbide (β-SiC) was synthesized through an improved sol–gel method, then Ni/SiC catalysts were prepared using a hydrothermal method. The catalysts were characterized using TEM, H2-TPR, CO2-TPD and N2-TPD, etc. The results showed that the synthesized β-SiC had a large specific surface area, promoting the dispersion of Ni species and thus exposing more active sites. The interaction between Ni species and β-SiC contributed significantly to catalytic performance. Furthermore, the strong alkalinity of catalyst could adjust the bond energy of the active metal and N (M–N), which were conducive to desorption of the recombinant N2 from the metal surface, promoting to ammonia decomposition. Among the Ni/SiC catalysts, 30Ni/SiC-700 synthesized with the Ni loading of 30 wt% and calcination temperature of 700 °C, exhibited the optimal ammonia conversion rate of 93.4% at 600 °C under the space speed of 30,000 mL∙gcat−1∙h−1, and demonstrated a long-term stability, suggesting a very promising catalyst in ammonia decomposition.
{"title":"Preparation of silicon carbide supported nickel catalyst with enhanced catalytic activity for ammonia decomposition","authors":"Xiantong Yu, Gideon Kofie, Fengxiang Yin, Jie Zhang, Qinjun Deng, Guoru Li, Yuhang Tan, Gongheng Zhang, Biaohua Chen","doi":"10.1007/s42823-024-00747-9","DOIUrl":"10.1007/s42823-024-00747-9","url":null,"abstract":"<div><p>Silicon carbide (β-SiC) was synthesized through an improved sol–gel method, then Ni/SiC catalysts were prepared using a hydrothermal method. The catalysts were characterized using TEM, H<sub>2</sub>-TPR, CO<sub>2</sub>-TPD and N<sub>2</sub>-TPD, etc. The results showed that the synthesized β-SiC had a large specific surface area, promoting the dispersion of Ni species and thus exposing more active sites. The interaction between Ni species and β-SiC contributed significantly to catalytic performance. Furthermore, the strong alkalinity of catalyst could adjust the bond energy of the active metal and N (M–N), which were conducive to desorption of the recombinant N<sub>2</sub> from the metal surface, promoting to ammonia decomposition. Among the Ni/SiC catalysts, 30Ni/SiC-700 synthesized with the Ni loading of 30 wt% and calcination temperature of 700 °C, exhibited the optimal ammonia conversion rate of 93.4% at 600 °C under the space speed of 30,000 mL∙g<sub>cat</sub><sup>−1</sup>∙h<sup>−1</sup>, and demonstrated a long-term stability, suggesting a very promising catalyst in ammonia decomposition.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2233 - 2243"},"PeriodicalIF":5.5,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-11DOI: 10.1007/s42823-023-00634-9
Petr Praus
The combination of the two-dimensional (2D) materials g-C3N4 and MXenes in photocatalysis offers several advantages. The g-C3N4 can serve as a visible light-absorbing material, while MXenes can enhance the charge separation and transfer processes leading to improved photocatalytic efficiency. A critical review of 77 already published articles in the field of photocatalytic reactions using g-C3N4 and MXenes, such as hydrogen evolution, the reduction of carbon dioxide, the degradation of organic compounds, the redox reactions of nitrogen, was conducted. For the purpose of greater objectivity, the published results were analysed by non-parametric Mann–Whitney, Kolmogorov–Smirnov, and Mood´s median tests and visualised by box and whisker plots. It was found that MXenes can significantly improve the photocatalytic activity of g-C3N4. Adding other co-catalysts to the MXene/g-C3N4 composites does not bring a significant improvement in the photocatalytic performance. Promising results were obtained especially in the fields of hydrogen evolution and the reduction of carbon dioxide. Since the MXenes are relatively a new class of materials, there is still a big challenge for finding new photocatalytic applications and for the enhancement of existing photocatalytic systems based on g-C3N4, especially in terms of the MXenes and g-C3N4 surface and in the heterojunction engineering.
{"title":"2D/2D composites based on graphitic carbon nitride and MXenes for photocatalytic reactions: a critical review","authors":"Petr Praus","doi":"10.1007/s42823-023-00634-9","DOIUrl":"10.1007/s42823-023-00634-9","url":null,"abstract":"<div><p>The combination of the two-dimensional (2D) materials g-C<sub>3</sub>N<sub>4</sub> and MXenes in photocatalysis offers several advantages. The g-C<sub>3</sub>N<sub>4</sub> can serve as a visible light-absorbing material, while MXenes can enhance the charge separation and transfer processes leading to improved photocatalytic efficiency. A critical review of 77 already published articles in the field of photocatalytic reactions using g-C<sub>3</sub>N<sub>4</sub> and MXenes, such as hydrogen evolution, the reduction of carbon dioxide, the degradation of organic compounds, the redox reactions of nitrogen, was conducted. For the purpose of greater objectivity, the published results were analysed by non-parametric Mann–Whitney, Kolmogorov–Smirnov, and Mood´s median tests and visualised by box and whisker plots. It was found that MXenes can significantly improve the photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub>. Adding other co-catalysts to the MXene/g-C<sub>3</sub>N<sub>4</sub> composites does not bring a significant improvement in the photocatalytic performance. Promising results were obtained especially in the fields of hydrogen evolution and the reduction of carbon dioxide. Since the MXenes are relatively a new class of materials, there is still a big challenge for finding new photocatalytic applications and for the enhancement of existing photocatalytic systems based on g-C<sub>3</sub>N<sub>4</sub>, especially in terms of the MXenes and g-C<sub>3</sub>N<sub>4</sub> surface and in the heterojunction engineering.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 1","pages":"227 - 245"},"PeriodicalIF":5.5,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42823-023-00634-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135041823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphene-modified melamine sponges (RGO-MSs) were prepared, as adsorbents with photothermal conversion ability, utilizing solar energy to achieve heavy oil temperature rise, viscosity reduction, and efficient adsorption recovery of highly viscous oil. The RGO-MSs were prepared through a simple impregnation method. The photothermal performance and heavy oil adsorption performances of RGO-MSs with different densities and thicknesses were observed. It was found that as the density increases, the thermal conductivity of RGO-MS increases too, leading to the increase of the average oil absorption rate. The reduction of thickness is beneficial to improving of the adsorption rate. The prepared RGO-MS with a density of 21.5 mg/cm−3 and a height of 1 cm (RGO-MS-3-1) shows excellent mechanical properties and fatigue resistance. Cyclic adsorption–desorption of RGO-MS-3-1 was achieved through extrusion/ ethanol washing. After 10 cycles of reuse through extrusion, the adsorption capacity decreased from 52.90 to 50.02 g g−1, with a loss of 5.4%. The material was then washed with petroleum ether and ethanol in turn. Its adsorption capacity can restored to 98.8% of the initial value, showing a promising application prospect on heavy oil leakage treatment. The easily prepared RGO-MS exhibits excellent light absorption and photothermal oil adsorption properties, providing a good solution for the problem of heavy oil leakage at sea.