首页 > 最新文献

Carbon Letters最新文献

英文 中文
Effects of macrostructure of carbon support in preparation of C/Six/C anode materials for lithium-ion batteries via silane decomposition 通过硅烷分解法制备锂离子电池 C/Six/C 负极材料过程中碳载体宏观结构的影响
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-09 DOI: 10.1007/s42823-024-00756-8
Kyeong Nan Kim, Seok Chang Kang, Sang Wan Seo, Deok Jae Seo, Ji Sun Im, Soo Hong Lee, Jong Yeul Seog

Si-based anodes are promising alternatives to graphite owing to their high capacities. However, their practical application is hindered by severe volume expansion during cycling. Herein, we propose employing a carbon support to address this challenge and utilize Si-based anode materials for lithium-ion batteries (LIBs). Specifically, carbon supports with various pore structures were prepared through KOH and NaOH activation of the pitch. In addition, Si was deposited into the carbon support pores via SiH4 chemical vapor deposition (CVD), and to enhance the conductivity and mechanical stability, a carbon coating was applied via CH4 CVD. The electrochemical performance of the C/Si/C composites was assessed, providing insights into their capacity retention rates, cycling stability, rate capability, and lithium-ion diffusion coefficients. Notably, the macrostructure of the carbon support differed significantly depending on the activation agent used. More importantly, the macrostructure of the carbon support significantly affected the Si deposition behavior and enhanced the stability by mitigating the volume expansion of the Si particles. This study elucidated the crucial role of the macrostructure of carbon supports in optimizing Si-based anode materials for LIBs, providing valuable guidance for the design and development of high-performance energy-storage systems.

硅基阳极因其高容量而有望成为石墨的替代品。然而,它们的实际应用受到循环过程中严重的体积膨胀的阻碍。在此,我们建议使用碳支撑物来解决这一难题,并将硅基负极材料用于锂离子电池(LIB)。具体来说,我们通过 KOH 和 NaOH 活化沥青,制备了具有各种孔隙结构的碳支撑物。此外,还通过 SiH4 化学气相沉积(CVD)将硅沉积到碳支撑孔隙中,并通过 CH4 化学气相沉积进行碳涂层,以提高导电性和机械稳定性。对 C/Si/C 复合材料的电化学性能进行了评估,深入了解了它们的容量保持率、循环稳定性、速率能力和锂离子扩散系数。值得注意的是,所使用的活化剂不同,碳支持物的宏观结构也大不相同。更重要的是,碳衬底的宏观结构会显著影响硅的沉积行为,并通过减缓硅颗粒的体积膨胀来提高稳定性。这项研究阐明了碳支撑的宏观结构在优化锂电池硅基负极材料中的关键作用,为设计和开发高性能储能系统提供了宝贵的指导。
{"title":"Effects of macrostructure of carbon support in preparation of C/Six/C anode materials for lithium-ion batteries via silane decomposition","authors":"Kyeong Nan Kim, Seok Chang Kang, Sang Wan Seo, Deok Jae Seo, Ji Sun Im, Soo Hong Lee, Jong Yeul Seog","doi":"10.1007/s42823-024-00756-8","DOIUrl":"https://doi.org/10.1007/s42823-024-00756-8","url":null,"abstract":"<p>Si-based anodes are promising alternatives to graphite owing to their high capacities. However, their practical application is hindered by severe volume expansion during cycling. Herein, we propose employing a carbon support to address this challenge and utilize Si-based anode materials for lithium-ion batteries (LIBs). Specifically, carbon supports with various pore structures were prepared through KOH and NaOH activation of the pitch. In addition, Si was deposited into the carbon support pores via SiH<sub>4</sub> chemical vapor deposition (CVD), and to enhance the conductivity and mechanical stability, a carbon coating was applied via CH<sub>4</sub> CVD. The electrochemical performance of the C/Si/C composites was assessed, providing insights into their capacity retention rates, cycling stability, rate capability, and lithium-ion diffusion coefficients. Notably, the macrostructure of the carbon support differed significantly depending on the activation agent used. More importantly, the macrostructure of the carbon support significantly affected the Si deposition behavior and enhanced the stability by mitigating the volume expansion of the Si particles. This study elucidated the crucial role of the macrostructure of carbon supports in optimizing Si-based anode materials for LIBs, providing valuable guidance for the design and development of high-performance energy-storage systems.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced modeling of conductivity in graphene–polymer nanocomposites: insights into interface and tunneling characteristics 石墨烯-聚合物纳米复合材料导电性的高级建模:洞察界面和隧道特性
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-07 DOI: 10.1007/s42823-024-00774-6
Yasser Zare, Muhammad Tajammal Munir, Kyong Yop Rhee, Soo-Jin Park

In this work, the depth of the interphase in graphene polymer systems is determined by the properties of graphene and interfacial parameters. Furthermore, the actual volume fraction and percolation onset of the nanosheets are characterized by the actual inverse aspect ratio, interphase depth, and tunneling distance. In addition, the dimensions of graphene, along with interfacial/interphase properties and tunneling characteristics, are utilized to develop the power-law equation for the conductivity of graphene-filled composites. Using the derived equations, the interphase depth, percolation onset, and nanocomposite conductivity are graphed against various ranges of the aforementioned factors. Moreover, numerous experimental data points for percolation onset and conductivity are presented to validate the equations. The optimal levels for interphase depth, percolation onset, and conductivity are achieved through high interfacial conductivity and large graphene nanosheets. In addition, increased nanocomposite conductivity can be attained with thinner nanosheets, a larger tunneling distance, and a thicker interphase. The calculations highlight the considerable impacts of interfacial/interphase factors and tunneling distance on the percolation onset. The highest nanocomposite conductivity of 0.008 S/m is acquired by the highest interfacial conduction of 900 S/m and graphene length (D) of 5 μm, while an insulated sample is observed at D < 1.2 μm. Therefore, higher interfacial conduction and larger nanosheets cause the higher nanocomposite conductivity, but the short nanosheets cannot promote the conductivity.

在这项研究中,石墨烯聚合物体系中的相间深度是由石墨烯的特性和界面参数决定的。此外,纳米片的实际体积分数和渗流起始点是由实际反长宽比、相间深度和隧道距离决定的。此外,利用石墨烯的尺寸、界面/相间特性和隧道特性,还可以推导出石墨烯填充复合材料电导率的幂律方程。利用推导出的方程,可以将相间深度、渗流起始点和纳米复合材料的电导率与上述因素的不同范围进行对比。此外,还给出了渗流起始点和电导率的大量实验数据点,以验证方程。通过高界面电导率和大面积石墨烯纳米片,相间深度、渗流起始点和电导率都达到了最佳水平。此外,更薄的纳米片、更大的隧道距离和更厚的相间层也能提高纳米复合材料的电导率。计算强调了界面/相间因素和隧道距离对渗流起始的重要影响。最高界面传导(900 S/m)和石墨烯长度(D)为 5 μm时,纳米复合材料的最高电导率为 0.008 S/m,而在 D < 1.2 μm 时则出现绝缘样品。因此,较高的界面传导率和较大的纳米片会导致较高的纳米复合材料导电率,但较短的纳米片则无法提高导电率。
{"title":"Advanced modeling of conductivity in graphene–polymer nanocomposites: insights into interface and tunneling characteristics","authors":"Yasser Zare, Muhammad Tajammal Munir, Kyong Yop Rhee, Soo-Jin Park","doi":"10.1007/s42823-024-00774-6","DOIUrl":"https://doi.org/10.1007/s42823-024-00774-6","url":null,"abstract":"<p>In this work, the depth of the interphase in graphene polymer systems is determined by the properties of graphene and interfacial parameters. Furthermore, the actual volume fraction and percolation onset of the nanosheets are characterized by the actual inverse aspect ratio, interphase depth, and tunneling distance. In addition, the dimensions of graphene, along with interfacial/interphase properties and tunneling characteristics, are utilized to develop the power-law equation for the conductivity of graphene-filled composites. Using the derived equations, the interphase depth, percolation onset, and nanocomposite conductivity are graphed against various ranges of the aforementioned factors. Moreover, numerous experimental data points for percolation onset and conductivity are presented to validate the equations. The optimal levels for interphase depth, percolation onset, and conductivity are achieved through high interfacial conductivity and large graphene nanosheets. In addition, increased nanocomposite conductivity can be attained with thinner nanosheets, a larger tunneling distance, and a thicker interphase. The calculations highlight the considerable impacts of interfacial/interphase factors and tunneling distance on the percolation onset. The highest nanocomposite conductivity of 0.008 S/m is acquired by the highest interfacial conduction of 900 S/m and graphene length (D) of 5 μm, while an insulated sample is observed at <i>D</i> &lt; 1.2 μm. Therefore, higher interfacial conduction and larger nanosheets cause the higher nanocomposite conductivity, but the short nanosheets cannot promote the conductivity.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoperforated graphene hosts for stable lithium metal anodes 用于稳定锂金属阳极的纳米穿孔石墨烯主机
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-06 DOI: 10.1007/s42823-024-00775-5
Jeong-A Kim, Dong-Kyu Kim, Hyeung-Keun Shin, Sang-Won Jeong, Young-Hyun Hong, Byeong-Jun Kang, Wook Ahn, Jagadeesh Sure, Hyun-Kyung Kim

Graphene has been extensively investigated as a host material for Li metal anodes owing to its light weight, high electrical conductivity, high surface area, and exceptional mechanical rigidity. Many studies have focused on assembling two-dimensional (2D) graphene sheets into three-dimensional (3D) forms, such as lamination, spheres, and carbon nanotubes; however, little attention has been paid to the technology of modifying 2D graphene sheets. Herein, nanoperforated graphene (NPG) was fabricated through a relatively straightforward process employing metal oxide catalysts based on aqueous solutions. Nanoperforations exhibited a size of approximately 5 nm and were introduced on the graphene sheet and lithiophilic carbonyl groups (C = O) at the edges, facilitating the rapid diffusion of Li+ and lowering the Li nucleation overpotential. In comparison to the reduced graphene oxide (RGO) host, the NPG host exhibited a lower lithium nucleation overpotential and a stable overpotential of ~ 30 mV for over 150 cycles as a stable host structure as a Li metal anode for Li metal batteries.

石墨烯具有重量轻、导电性强、比表面积大和机械刚度高等特点,因此被广泛研究用作锂金属阳极的宿主材料。许多研究都集中于将二维(2D)石墨烯片组装成三维(3D)形式,如层压、球体和碳纳米管;但很少有人关注二维石墨烯片的改性技术。在此,我们采用基于水溶液的金属氧化物催化剂,通过相对简单的工艺制作了纳米穿孔石墨烯(NPG)。纳米穿孔的尺寸约为 5 纳米,在石墨烯片上和边缘处引入了亲锂羰基(C = O),从而促进了 Li+ 的快速扩散并降低了锂的成核过电位。与还原氧化石墨烯(RGO)宿主相比,NPG 宿主表现出更低的锂成核过电势,并且在超过 150 个循环中,过电势稳定在约 30 mV,是锂金属电池锂金属阳极的稳定宿主结构。
{"title":"Nanoperforated graphene hosts for stable lithium metal anodes","authors":"Jeong-A Kim, Dong-Kyu Kim, Hyeung-Keun Shin, Sang-Won Jeong, Young-Hyun Hong, Byeong-Jun Kang, Wook Ahn, Jagadeesh Sure, Hyun-Kyung Kim","doi":"10.1007/s42823-024-00775-5","DOIUrl":"https://doi.org/10.1007/s42823-024-00775-5","url":null,"abstract":"<p>Graphene has been extensively investigated as a host material for Li metal anodes owing to its light weight, high electrical conductivity, high surface area, and exceptional mechanical rigidity. Many studies have focused on assembling two-dimensional (2D) graphene sheets into three-dimensional (3D) forms, such as lamination, spheres, and carbon nanotubes; however, little attention has been paid to the technology of modifying 2D graphene sheets. Herein, nanoperforated graphene (NPG) was fabricated through a relatively straightforward process employing metal oxide catalysts based on aqueous solutions. Nanoperforations exhibited a size of approximately 5 nm and were introduced on the graphene sheet and lithiophilic carbonyl groups (C = O) at the edges, facilitating the rapid diffusion of Li<sup>+</sup> and lowering the Li nucleation overpotential. In comparison to the reduced graphene oxide (RGO) host, the NPG host exhibited a lower lithium nucleation overpotential and a stable overpotential of ~ 30 mV for over 150 cycles as a stable host structure as a Li metal anode for Li metal batteries.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma-engineered FeSe2-encapsulated carbon composites with enhanced kinetics for high-performance lithium and sodium ion batteries 用于高性能锂离子和钠离子电池的等离子体工程化 FeSe2-封装碳复合材料具有更强的动力学性能
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-05 DOI: 10.1007/s42823-024-00771-9
Junmei Luo, Shufeng Bo, Seohyun Park, Beom-Kyeong Park, Oi Lun Li

Iron selenides with high capacity and excellent chemical properties have been considered as outstanding anodes for alkali metal-ion batteries. However, its further development is hindered by sluggish kinetics and fading capacity caused by volume expansion. Herein, a series of FeSe2 nanoparticles (NPs)-encapsulated carbon composites were successfully synthesized by tailoring the amount of Fe species through facile plasma engineering and followed by a simple selenization transformation process. Such a stable structure can effectively mitigate volume changes and accelerate kinetics, leading to excellent electrochemical performance. The optimized electrode (FeSe2@C2) exhibits outstanding reversible capacity of 853.1 mAh g−1 after 150 cycles and exceptional rate capacity of 444.9 mAh g−1 at 5.0 A g−1 for Li+ storage. In Na+ batteries, it possesses a relatively high capacity of 433.7 mAh g−1 at 0.1 A g−1 as well as good cycle stability. The plasma-engineered FeSe2@C2 composite, which profits from synergistic effect of small FeSe2 NPs and carbon framework with large specific surface area, exhibits remarkable ions/electrons transportation abilities during various kinetic analyses and unveils the energy storage mechanism dominated by surface-mediated capacitive behavior. This novel cost-efficient synthesis strategy might offer valuable guidance for developing transition metal-based composites towards energy storage materials.

Graphical abstract

硒化铁具有高容量和优异的化学特性,一直被认为是碱金属离子电池的理想阳极。然而,由于体积膨胀导致的动力学迟钝和容量衰减,阻碍了其进一步发展。在此,通过简便的等离子体工程技术调整铁物种的数量,再经过简单的硒化转化过程,成功合成了一系列 FeSe2 纳米粒子(NPs)-封装碳复合材料。这种稳定的结构可有效缓解体积变化并加速动力学过程,从而实现优异的电化学性能。优化后的电极(FeSe2@C2)在 150 次循环后显示出出色的可逆容量(853.1 mAh g-1),在 5.0 A g-1 的锂+存储条件下显示出卓越的速率容量(444.9 mAh g-1)。在 Na+ 电池中,它在 0.1 A g-1 时具有相对较高的 433.7 mAh g-1 容量和良好的循环稳定性。等离子体工程化的 FeSe2@C2 复合材料得益于小尺寸 FeSe2 NPs 和大比表面积碳骨架的协同效应,在各种动力学分析中表现出卓越的离子/电子传输能力,并揭示了以表面介导的电容行为为主导的储能机制。这种新型低成本合成策略可为开发过渡金属基复合材料储能材料提供有价值的指导。
{"title":"Plasma-engineered FeSe2-encapsulated carbon composites with enhanced kinetics for high-performance lithium and sodium ion batteries","authors":"Junmei Luo, Shufeng Bo, Seohyun Park, Beom-Kyeong Park, Oi Lun Li","doi":"10.1007/s42823-024-00771-9","DOIUrl":"https://doi.org/10.1007/s42823-024-00771-9","url":null,"abstract":"<p>Iron selenides with high capacity and excellent chemical properties have been considered as outstanding anodes for alkali metal-ion batteries. However, its further development is hindered by sluggish kinetics and fading capacity caused by volume expansion. Herein, a series of FeSe<sub>2</sub> nanoparticles (NPs)-encapsulated carbon composites were successfully synthesized by tailoring the amount of Fe species through facile plasma engineering and followed by a simple selenization transformation process. Such a stable structure can effectively mitigate volume changes and accelerate kinetics, leading to excellent electrochemical performance. The optimized electrode (FeSe<sub>2</sub>@C<sub><i>2</i></sub>) exhibits outstanding reversible capacity of 853.1 mAh g<sup>−1</sup> after 150 cycles and exceptional rate capacity of 444.9 mAh g<sup>−1</sup> at 5.0 A g<sup>−1</sup> for Li<sup>+</sup> storage. In Na<sup>+</sup> batteries, it possesses a relatively high capacity of 433.7 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> as well as good cycle stability. The plasma-engineered FeSe<sub>2</sub>@C<sub><i>2</i></sub> composite, which profits from synergistic effect of small FeSe<sub>2</sub> NPs and carbon framework with large specific surface area, exhibits remarkable ions/electrons transportation abilities during various kinetic analyses and unveils the energy storage mechanism dominated by surface-mediated capacitive behavior. This novel cost-efficient synthesis strategy might offer valuable guidance for developing transition metal-based composites towards energy storage materials.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical and physical adsorption properties of activated carbon with ultrahigh specific surface area using 2,9-dimethyl quinacridone (2,9-DMQA) 使用 2,9 二甲基喹吖啶酮 (2,9-DMQA) 的超高比表面积活性炭的电化学和物理吸附特性
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-04 DOI: 10.1007/s42823-024-00772-8
Taemin Ahn, Woong Kwon, Byong Chol Bai, Euigyung Jeong

Activated carbon is generally recognized as an applicable material for gas or liquid adsorption and electrochemical devices, such as electric double-layer capacitors (EDLCs). Owing to the continuous increase in its price, research aimed at discovering alternative materials and improving its fabrication yield is important. Herein, organic pigments were ingeniously employed to enhance the fabrication of high-surface-area activated carbon with remarkable efficiency. Moreover, the focus was centered on the assessment of activated carbon derived from 2,9-dimethylquinacridone, also known as CI Pigment Red 122 for its capacity to adsorb tetracycline (TC) and its applicability as an electrode material for EDLCs. Activating these organic pigments with varying potassium hydroxide ratios allowed the fabrication of activated carbon with a higher yield than that for conventional activated carbon. Furthermore, it was confirmed that activated carbon with a very high specific surface area can be efficiently fabricated, demonstrating a remarkable potential in various application fields. Notably, this activated carbon exhibited an impressive maximum specific surface area and a total pore volume of 3,935 m2/g and 2.324 cm3/g, respectively, showcasing its substantial surface area and distinctive porous characteristics. Additionally, the Langmuir and Freundlich isotherm models were employed to examine the TC adsorption on the activated carbon, with the Langmuir model demonstrating superior suitability than the Freundlich model. Furthermore, the electrochemical performance of an activated carbon-based electrode for EDLCs was rigorously evaluated through cyclic voltammetry. The specific capacitance exhibited a considerable increase in proportion to the expanding specific surface area of the activated carbon.

活性炭被普遍认为是一种适用于气体或液体吸附和电化学装置(如双电层电容器)的材料。由于其价格不断上涨,旨在发现替代材料和提高其制造率的研究非常重要。在本文中,有机颜料被巧妙地用于提高高比表面积活性炭的制造效率。此外,研究还重点评估了由 2,9-二甲基喹吖啶酮(又称 CI 颜料红 122)衍生的活性炭对四环素(TC)的吸附能力及其作为 EDLC 电极材料的适用性。用不同比例的氢氧化钾对这些有机颜料进行活化,可以制造出比传统活性炭产量更高的活性炭。此外,研究还证实可以有效地制造出具有极高比表面积的活性炭,从而在各种应用领域展现出巨大的潜力。值得注意的是,这种活性炭的最大比表面积和总孔容积分别达到了 3,935 平方米/克和 2.324 立方厘米/克,显示出其巨大的比表面积和独特的多孔特性。此外,研究人员还采用 Langmuir 和 Freundlich 等温线模型来检验活性炭对 TC 的吸附情况,结果表明 Langmuir 模型比 Freundlich 模型更适用。此外,还通过循环伏安法对用于 EDLC 的活性炭电极的电化学性能进行了严格评估。随着活性炭比表面积的扩大,比电容也呈现出相当大的比例增长。
{"title":"Electrochemical and physical adsorption properties of activated carbon with ultrahigh specific surface area using 2,9-dimethyl quinacridone (2,9-DMQA)","authors":"Taemin Ahn, Woong Kwon, Byong Chol Bai, Euigyung Jeong","doi":"10.1007/s42823-024-00772-8","DOIUrl":"https://doi.org/10.1007/s42823-024-00772-8","url":null,"abstract":"<p>Activated carbon is generally recognized as an applicable material for gas or liquid adsorption and electrochemical devices, such as electric double-layer capacitors (EDLCs). Owing to the continuous increase in its price, research aimed at discovering alternative materials and improving its fabrication yield is important. Herein, organic pigments were ingeniously employed to enhance the fabrication of high-surface-area activated carbon with remarkable efficiency. Moreover, the focus was centered on the assessment of activated carbon derived from 2,9-dimethylquinacridone, also known as CI Pigment Red 122 for its capacity to adsorb tetracycline (TC) and its applicability as an electrode material for EDLCs. Activating these organic pigments with varying potassium hydroxide ratios allowed the fabrication of activated carbon with a higher yield than that for conventional activated carbon. Furthermore, it was confirmed that activated carbon with a very high specific surface area can be efficiently fabricated, demonstrating a remarkable potential in various application fields. Notably, this activated carbon exhibited an impressive maximum specific surface area and a total pore volume of 3,935 m<sup>2</sup>/g and 2.324 cm<sup>3</sup>/g, respectively, showcasing its substantial surface area and distinctive porous characteristics. Additionally, the Langmuir and Freundlich isotherm models were employed to examine the TC adsorption on the activated carbon, with the Langmuir model demonstrating superior suitability than the Freundlich model. Furthermore, the electrochemical performance of an activated carbon-based electrode for EDLCs was rigorously evaluated through cyclic voltammetry. The specific capacitance exhibited a considerable increase in proportion to the expanding specific surface area of the activated carbon.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deposition of polyaniline nanofibers on activated carbon textile for high-performance pseudocapacitors 在活性炭织物上沉积聚苯胺纳米纤维以制造高性能伪电容器
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-02 DOI: 10.1007/s42823-024-00770-w
Gyumin Kim, Hong Jun Park, Sung Tae Jang, Bong Gill Choi

Despite the widespread use of polyaniline as a pseudocapacitor material, the cycling stability and rate capability of polyaniline-based electrodes are of concern because of the structural instability caused by repeated volumetric swelling and shrinking during the charge/discharge process. Herein, nanofiber-structured polyaniline was synthesized onto activated carbon textiles to ensure the long-term stability and high-rate capability of pseudocapacitors. The nanoporous structures of polyaniline nanofibers and activated textile substrate enhanced the ion and electron transfer during charge/discharge cycles. The resulting pseudocapacitor electrodes showed high gravimetric, areal, and volumetric capacitance of 769 F g−1, 2638 mF cm−2, and 845.9 F cm−3, respectively; fast charge/discharge capability of 92.6% capacitance retention at 55 mA cm−2; and good long-term stability of 97.6% capacitance retention over 2000 cycles. Moreover, a symmetric supercapacitor based on polyaniline nanofibers exhibited a high energy of 21.45 Wh cm−3 at a power density of 341.2 mW cm−3 in an aqueous electrolyte.

尽管聚苯胺作为一种伪电容器材料已被广泛使用,但由于在充放电过程中反复的体积膨胀和收缩会导致结构不稳定,因此聚苯胺基电极的循环稳定性和速率能力令人担忧。在此,我们在活性碳纺织品上合成了纳米纤维结构的聚苯胺,以确保伪电容器的长期稳定性和高速率能力。聚苯胺纳米纤维和活性纺织品基底的纳米多孔结构增强了充放电循环过程中的离子和电子转移。所制备的伪电容器电极具有较高的重力电容、面积电容和体积电容,分别为 769 F g-1、2638 mF cm-2 和 845.9 F cm-3;具有快速充放电能力,在 55 mA cm-2 时电容保持率为 92.6%;具有良好的长期稳定性,在 2000 次循环中电容保持率为 97.6%。此外,基于聚苯胺纳米纤维的对称超级电容器在水性电解液中的功率密度为 341.2 mW cm-3 时,能量高达 21.45 Wh cm-3。
{"title":"Deposition of polyaniline nanofibers on activated carbon textile for high-performance pseudocapacitors","authors":"Gyumin Kim, Hong Jun Park, Sung Tae Jang, Bong Gill Choi","doi":"10.1007/s42823-024-00770-w","DOIUrl":"https://doi.org/10.1007/s42823-024-00770-w","url":null,"abstract":"<p>Despite the widespread use of polyaniline as a pseudocapacitor material, the cycling stability and rate capability of polyaniline-based electrodes are of concern because of the structural instability caused by repeated volumetric swelling and shrinking during the charge/discharge process. Herein, nanofiber-structured polyaniline was synthesized onto activated carbon textiles to ensure the long-term stability and high-rate capability of pseudocapacitors. The nanoporous structures of polyaniline nanofibers and activated textile substrate enhanced the ion and electron transfer during charge/discharge cycles. The resulting pseudocapacitor electrodes showed high gravimetric, areal, and volumetric capacitance of 769 F g<sup>−1</sup>, 2638 mF cm<sup>−2</sup>, and 845.9 F cm<sup>−3</sup>, respectively; fast charge/discharge capability of 92.6% capacitance retention at 55 mA cm<sup>−2</sup>; and good long-term stability of 97.6% capacitance retention over 2000 cycles. Moreover, a symmetric supercapacitor based on polyaniline nanofibers exhibited a high energy of 21.45 Wh cm<sup>−3</sup> at a power density of 341.2 mW cm<sup>−3</sup> in an aqueous electrolyte.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the adsorption of volatile organic compounds by biomass-based porous carbon (BPC) and its mechanism 生物质多孔碳(BPC)对挥发性有机化合物的吸附及其机理综述
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-02 DOI: 10.1007/s42823-024-00766-6
Haifan Yang, Guannan Liang, Xinyang Sun, Simiao Wu

Volatile organic compounds (VOCs) are commonly produced in the combustion of fossil fuels and in chemical industries such as detergents and paints. VOCs in atmosphere cause different degrees of harm to human bodies and environments. Adsorption has become one of the most concerned methods to remove VOCs in atmosphere due to its high efficiency, simple operation and low energy consumption. Biomass-based porous carbon (BPC) has been considered as the most promising adsorption material because of the low cost and high absorption rate. In this paper, the key characteristic (e.g., specific surface area, pore structure, surface functional groups and basic composition) of BPC affecting the adsorption of VOCs in atmosphere were analyzed. The improvement of adsorption capacity of BPC by common modification methods, such as surface oxidation, surface reduction, surface loading and other modification methods, were discussed. Examples of BPC adsorption on different types of VOCs including aldehydes, ketones, aromatic VOCs, and halogenated hydrocarbons, were also reviewed. The specific adsorption mechanism was discussed. Finally, some unsolved problems and future research directions about BPC for adsorbing VOCs were propounded. This review can serve as a valuable reference for future developing effective biomass-based porous carbon VOCs adsorption technology.

挥发性有机化合物(VOC)通常产生于化石燃料的燃烧以及洗涤剂和油漆等化学工业。大气中的挥发性有机化合物会对人体和环境造成不同程度的危害。吸附法因其效率高、操作简单、能耗低等优点,已成为去除大气中挥发性有机化合物最常用的方法之一。生物质多孔碳(BPC)因其低成本和高吸附率被认为是最有前途的吸附材料。本文分析了影响生物质多孔炭吸附大气中 VOCs 的关键特性(如比表面积、孔结构、表面官能团和基本成分)。讨论了通过常见的改性方法,如表面氧化、表面还原、表面负载和其他改性方法来提高 BPC 的吸附能力。此外,还综述了 BPC 对不同类型挥发性有机化合物(包括醛类、酮类、芳香族挥发性有机化合物和卤代烃)的吸附实例。还讨论了具体的吸附机理。最后,就 BPC 吸附 VOCs 提出了一些尚未解决的问题和未来的研究方向。本综述可为今后开发有效的生物质多孔碳 VOCs 吸附技术提供有价值的参考。
{"title":"A review on the adsorption of volatile organic compounds by biomass-based porous carbon (BPC) and its mechanism","authors":"Haifan Yang, Guannan Liang, Xinyang Sun, Simiao Wu","doi":"10.1007/s42823-024-00766-6","DOIUrl":"https://doi.org/10.1007/s42823-024-00766-6","url":null,"abstract":"<p>Volatile organic compounds (VOCs) are commonly produced in the combustion of fossil fuels and in chemical industries such as detergents and paints. VOCs in atmosphere cause different degrees of harm to human bodies and environments. Adsorption has become one of the most concerned methods to remove VOCs in atmosphere due to its high efficiency, simple operation and low energy consumption. Biomass-based porous carbon (BPC) has been considered as the most promising adsorption material because of the low cost and high absorption rate. In this paper, the key characteristic (e.g., specific surface area, pore structure, surface functional groups and basic composition) of BPC affecting the adsorption of VOCs in atmosphere were analyzed. The improvement of adsorption capacity of BPC by common modification methods, such as surface oxidation, surface reduction, surface loading and other modification methods, were discussed. Examples of BPC adsorption on different types of VOCs including aldehydes, ketones, aromatic VOCs, and halogenated hydrocarbons, were also reviewed. The specific adsorption mechanism was discussed. Finally, some unsolved problems and future research directions about BPC for adsorbing VOCs were propounded. This review can serve as a valuable reference for future developing effective biomass-based porous carbon VOCs adsorption technology.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating the thermophysical properties of diamond/SiC composites via controlling the diamond graphitization 通过控制金刚石石墨化来调节金刚石/碳化硅复合材料的热物理性质
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s42823-024-00767-5
Xulei Wang, Yikang Li, Yabo Huang, Yalong Zhang, Pei Wang, Li Guan, Xinbo He, Rongjun Liu, Xuanhui Qu, Xiaoge Wu

Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micro-morphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.

通过原位硅碳反应的真空硅气相渗透制备了金刚石/碳化硅复合材料,并通过控制金刚石的石墨化来调节复合材料的热物理性质。研究了金刚石表面状态和真空渗硅温度对金刚石石墨化的影响,观察并表征了复合材料的微观形貌、相组成和性能。结果表明,金刚石预处理可以降低石墨化的概率;当渗透温度大于 1600 ℃ 时,金刚石发生石墨化相变,微观形貌呈现片状。在实验设计的渗透温度范围内,复合材料的热导率、密度和抗弯强度随着渗透温度的升高先增大后减小。当温度在 50 至 400 °C 之间时,不同渗透温度下制备的复合材料的热膨胀系数变化范围为 0.8 至 3.0 ppm/K。
{"title":"Modulating the thermophysical properties of diamond/SiC composites via controlling the diamond graphitization","authors":"Xulei Wang, Yikang Li, Yabo Huang, Yalong Zhang, Pei Wang, Li Guan, Xinbo He, Rongjun Liu, Xuanhui Qu, Xiaoge Wu","doi":"10.1007/s42823-024-00767-5","DOIUrl":"https://doi.org/10.1007/s42823-024-00767-5","url":null,"abstract":"<p>Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micro-morphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of NH3 addition on the preparation of nitrogen-doped carbon nanomaterials by flame synthesis method 添加 NH3 对火焰合成法制备掺氮碳纳米材料的影响
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s42823-024-00760-y
Hui Zhou, Yuhang Yang, Fen Qiao, Run Hong, Hanfang Zhang, Huaqiang Chu

Nitrogen-doped carbon nanomaterials (N-CNMs) were prepared using Ni(NO3)2 as a catalyst in the laminar diffusion flame. Doping the structure of carbon nanomaterials (CNMs) with nitrogen can significantly change the characteristics of CNMs. The purpose of this research is to study the effect of adding ammonia (NH3) on the evolution of CNMs structure in the laminar flame of ethylene. Raman analysis shows that the intensity ratio (ID/IG) of the D-band and G-band of N-CNMs increases and then decreases after the addition of NH3. The intensity ratio is a maximum of 0.99, which has a good degree of disorder and defect density. The binding distribution of nitrogen was analyzed by X-ray photoelectron spectroscopy (XPS), and a correlation was found between the amount of nitrogen and the morphology of N-CNMs. Nitrogen atoms predominantly present in the forms of pyrrolic-N, pyridinic-N, graphitized-N and oxidized-N, with a doping ratio of nitrogen atoms reaching up to 2.44 at.%. This study found that smaller nickel (Ni) nanoparticles were the main catalysts for carbon nanotubes (CNTs), and their synthesis followed the ‘hollow growth mechanism’ and carbon nanofibers (CNFs) were synthesized from larger Ni nanoparticles according to the ‘solid growth mechanism’. Furthermore, a growth mechanism for the synthesis of bamboo-like CNTs using a specific particle size of the Ni catalyst is proposed. It is noteworthy that the synthesis and modulation of high-performance N-CNMs by flame method represents a simple and efficient approach.

Graphical Abstract

以 Ni(NO3)2 为催化剂,在层流扩散火焰中制备了掺氮碳纳米材料(N-CNMs)。在碳纳米材料(CNMs)结构中掺入氮元素可显著改变 CNMs 的特性。本研究旨在研究添加氨气(NH3)对乙烯层流火焰中 CNMs 结构演化的影响。拉曼分析表明,添加 NH3 后,N-CNMs 的 D 波段和 G 波段的强度比(ID/IG)先增大后减小。其强度比最大值为 0.99,具有良好的无序度和缺陷密度。通过 X 射线光电子能谱(XPS)分析了氮的结合分布,发现氮的数量与 N-CNMs 的形态之间存在相关性。氮原子主要以吡咯-N、吡啶-N、石墨化-N 和氧化-N 的形式存在,氮原子的掺杂率高达 2.44%。该研究发现,较小的镍纳米粒子是碳纳米管(CNTs)的主要催化剂,其合成遵循 "空心生长机制",而碳纳米纤维(CNFs)则根据 "固体生长机制 "由较大的镍纳米粒子合成。此外,还提出了利用特定粒径的镍催化剂合成竹节状 CNTs 的生长机制。值得注意的是,利用火焰法合成和调制高性能 N-CNMs 是一种简单而高效的方法。
{"title":"Effect of NH3 addition on the preparation of nitrogen-doped carbon nanomaterials by flame synthesis method","authors":"Hui Zhou, Yuhang Yang, Fen Qiao, Run Hong, Hanfang Zhang, Huaqiang Chu","doi":"10.1007/s42823-024-00760-y","DOIUrl":"https://doi.org/10.1007/s42823-024-00760-y","url":null,"abstract":"<p>Nitrogen-doped carbon nanomaterials (N-CNMs) were prepared using Ni(NO<sub>3</sub>)<sub>2</sub> as a catalyst in the laminar diffusion flame. Doping the structure of carbon nanomaterials (CNMs) with nitrogen can significantly change the characteristics of CNMs. The purpose of this research is to study the effect of adding ammonia (NH<sub>3</sub>) on the evolution of CNMs structure in the laminar flame of ethylene. Raman analysis shows that the intensity ratio (I<sub>D</sub>/I<sub>G</sub>) of the D-band and G-band of N-CNMs increases and then decreases after the addition of NH<sub>3</sub>. The intensity ratio is a maximum of 0.99, which has a good degree of disorder and defect density. The binding distribution of nitrogen was analyzed by X-ray photoelectron spectroscopy (XPS), and a correlation was found between the amount of nitrogen and the morphology of N-CNMs. Nitrogen atoms predominantly present in the forms of pyrrolic-N, pyridinic-N, graphitized-N and oxidized-N, with a doping ratio of nitrogen atoms reaching up to 2.44 at.%. This study found that smaller nickel (Ni) nanoparticles were the main catalysts for carbon nanotubes (CNTs), and their synthesis followed the ‘hollow growth mechanism’ and carbon nanofibers (CNFs) were synthesized from larger Ni nanoparticles according to the ‘solid growth mechanism’. Furthermore, a growth mechanism for the synthesis of bamboo-like CNTs using a specific particle size of the Ni catalyst is proposed. It is noteworthy that the synthesis and modulation of high-performance N-CNMs by flame method represents a simple and efficient approach.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bifunctional nanocomposite of hybrid quaternary nanocomposite as electrodes for an integrated Pt-free DSSC powered supercapacitor–photosupercapacitor 一种用作无铂 DSSC 供电超级电容器-光电超级电容器集成电极的双功能混合季纳米复合材料
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-23 DOI: 10.1007/s42823-024-00762-w
Joselene Suzan Jennifer Patrick, Niranjana Subrayapillai Ramakrishna, Muthupandi Sankar, Dinesh Ayyar, Madhavan Joseph, Victor Antony Raj Moses, Malarkodi Ammavasi, Manikandan Ayyar

Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with areal-specific capacitance, energy and power density of 190.12 mF cm−2, 17.325 μW h cm−2 and 0.162 mW cm−2, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.

基于石墨烯的太阳能电池和超级电容器与光电超级电容器的集成是一项开创性的进步。这些设备利用石墨烯的特殊性能,如高导电性和大表面积,提高了太阳能转换和能量存储能力。将这些技术集成到光电超级电容器中,可以创造出一种能够利用太阳能并有效储存太阳能的多功能装置。这种创新方法有望成为可持续的多功能能源解决方案,标志着向开发高效、紧凑型储能系统迈出了重要一步。这种集成通过储能提供持续可靠的电力供应,解决了太阳能发电的间歇性问题。超级电容器就是这样一种具有高功率密度和出色比电容的能源装置,它与染料敏化太阳能电池(DSSC)集成在一起,构成了一个单一的光电超级电容器系统。研究人员合成了一种新型的 NiO/CuO/Co3O4/rGO 电极材料,这种材料可用作 DSSC 的无铂对电极和超级电容器的工作电极或存储电极,之后又被用作光upercapacitor 的中间电极和存储电极。该集成光超级电容器装置的光电压为 0.81 V,等面积电容、能量和功率密度分别为 190.12 mF cm-2、17.325 μW h cm-2 和 0.162 mW cm-2。该装置的自放电时间为 385 秒,整体转换效率为 2.17%,是一种自充电能源装置。
{"title":"A bifunctional nanocomposite of hybrid quaternary nanocomposite as electrodes for an integrated Pt-free DSSC powered supercapacitor–photosupercapacitor","authors":"Joselene Suzan Jennifer Patrick, Niranjana Subrayapillai Ramakrishna, Muthupandi Sankar, Dinesh Ayyar, Madhavan Joseph, Victor Antony Raj Moses, Malarkodi Ammavasi, Manikandan Ayyar","doi":"10.1007/s42823-024-00762-w","DOIUrl":"https://doi.org/10.1007/s42823-024-00762-w","url":null,"abstract":"<p>Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co<sub>3</sub>O<sub>4</sub>/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with areal-specific capacitance, energy and power density of 190.12 mF cm<sup>−2</sup>, 17.325 μW h cm<sup>−2</sup> and 0.162 mW cm<sup>−2</sup>, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1