首页 > 最新文献

Carbon Letters最新文献

英文 中文
Correction to: A study on the development of C-dots via green chemistry: a state-of-the-art review 更正为通过绿色化学开发 C 点的研究:最新进展综述
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s42823-024-00764-8
Nazia Tarannum, Km. Pooja, Manvi Singh, Anurag Panwar
{"title":"Correction to: A study on the development of C-dots via green chemistry: a state-of-the-art review","authors":"Nazia Tarannum, Km. Pooja, Manvi Singh, Anurag Panwar","doi":"10.1007/s42823-024-00764-8","DOIUrl":"10.1007/s42823-024-00764-8","url":null,"abstract":"","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2455 - 2455"},"PeriodicalIF":5.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Revealing the effect of graphite source on the properties of synthesized graphene oxide 更正为揭示石墨源对合成氧化石墨烯特性的影响
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-24 DOI: 10.1007/s42823-024-00765-7
Yulia Ioni, Timur Khamidullin, Ivan Sapkov, Vasiliy Brusko, Ayrat M. Dimiev
{"title":"Correction to: Revealing the effect of graphite source on the properties of synthesized graphene oxide","authors":"Yulia Ioni, Timur Khamidullin, Ivan Sapkov, Vasiliy Brusko, Ayrat M. Dimiev","doi":"10.1007/s42823-024-00765-7","DOIUrl":"10.1007/s42823-024-00765-7","url":null,"abstract":"","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2457 - 2457"},"PeriodicalIF":5.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bifunctional nanocomposite of hybrid quaternary nanocomposite as electrodes for an integrated Pt-free DSSC powered supercapacitor–photosupercapacitor 一种用作无铂 DSSC 供电超级电容器-光电超级电容器集成电极的双功能混合季纳米复合材料
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-23 DOI: 10.1007/s42823-024-00762-w
Joselene Suzan Jennifer Patrick, Niranjana Subrayapillai Ramakrishna, Muthupandi Sankar, Dinesh Ayyar, Madhavan Joseph, Victor Antony Raj Moses, Malarkodi Ammavasi, Manikandan Ayyar

Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with areal-specific capacitance, energy and power density of 190.12 mF cm−2, 17.325 μW h cm−2 and 0.162 mW cm−2, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.

基于石墨烯的太阳能电池和超级电容器与光电超级电容器的集成是一项开创性的进步。这些设备利用石墨烯的特殊性能,如高导电性和大表面积,提高了太阳能转换和能量存储能力。将这些技术集成到光电超级电容器中,可以创造出一种能够利用太阳能并有效储存太阳能的多功能装置。这种创新方法有望成为可持续的多功能能源解决方案,标志着向开发高效、紧凑型储能系统迈出了重要一步。这种集成通过储能提供持续可靠的电力供应,解决了太阳能发电的间歇性问题。超级电容器就是这样一种具有高功率密度和出色比电容的能源装置,它与染料敏化太阳能电池(DSSC)集成在一起,构成了一个单一的光电超级电容器系统。研究人员合成了一种新型的 NiO/CuO/Co3O4/rGO 电极材料,这种材料可用作 DSSC 的无铂对电极和超级电容器的工作电极或存储电极,之后又被用作光upercapacitor 的中间电极和存储电极。该集成光超级电容器装置的光电压为 0.81 V,等面积电容、能量和功率密度分别为 190.12 mF cm-2、17.325 μW h cm-2 和 0.162 mW cm-2。该装置的自放电时间为 385 秒,整体转换效率为 2.17%,是一种自充电能源装置。
{"title":"A bifunctional nanocomposite of hybrid quaternary nanocomposite as electrodes for an integrated Pt-free DSSC powered supercapacitor–photosupercapacitor","authors":"Joselene Suzan Jennifer Patrick,&nbsp;Niranjana Subrayapillai Ramakrishna,&nbsp;Muthupandi Sankar,&nbsp;Dinesh Ayyar,&nbsp;Madhavan Joseph,&nbsp;Victor Antony Raj Moses,&nbsp;Malarkodi Ammavasi,&nbsp;Manikandan Ayyar","doi":"10.1007/s42823-024-00762-w","DOIUrl":"10.1007/s42823-024-00762-w","url":null,"abstract":"<div><p>Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co<sub>3</sub>O<sub>4</sub>/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with areal-specific capacitance, energy and power density of 190.12 mF cm<sup>−2</sup>, 17.325 μW h cm<sup>−2</sup> and 0.162 mW cm<sup>−2</sup>, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2357 - 2367"},"PeriodicalIF":5.5,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coal-derived fluorescent carbon quantum dots for sensitive and selective detection of Cu2+ and Fe3+ 用于灵敏和选择性检测 Cu2+ 和 Fe3+ 的煤衍生荧光碳量子点
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-18 DOI: 10.1007/s42823-024-00763-9
Xiyu Zhao, Yuqi Han, Xiangwen Miao, Xingmei You, Cheng Cao

A simple and effective method was developed to prepare fluorescent carbon quantum dots (CQDs) for the detection of Fe3+ and Cu2+ in aqueous solution. The water-soluble CQDs with the diameter around 2–5 nm were synthesized using anthracite coal as the precursor. In addition, the as-prepared CQDs exhibits sensitive detection properties for Fe3+ and Cu2+ metal cations with a detection limit of 18.4 nM and 15.6 nM, respectively, indicating that the coal-derived CQDs sensor is superior for heavy metal recognition and environmental monitoring.

本研究开发了一种简单有效的方法来制备用于检测水溶液中 Fe3+ 和 Cu2+ 的荧光碳量子点(CQDs)。该方法以无烟煤为前驱体,合成了直径约为 2-5 nm 的水溶性碳量子点。此外,所制备的 CQDs 对 Fe3+ 和 Cu2+ 金属阳离子具有灵敏的检测特性,检测限分别为 18.4 nM 和 15.6 nM,这表明煤制 CQDs 传感器在重金属识别和环境监测方面具有优越性。
{"title":"Coal-derived fluorescent carbon quantum dots for sensitive and selective detection of Cu2+ and Fe3+","authors":"Xiyu Zhao,&nbsp;Yuqi Han,&nbsp;Xiangwen Miao,&nbsp;Xingmei You,&nbsp;Cheng Cao","doi":"10.1007/s42823-024-00763-9","DOIUrl":"10.1007/s42823-024-00763-9","url":null,"abstract":"<div><p>A simple and effective method was developed to prepare fluorescent carbon quantum dots (CQDs) for the detection of Fe<sup>3+</sup> and Cu<sup>2+</sup> in aqueous solution. The water-soluble CQDs with the diameter around 2–5 nm were synthesized using anthracite coal as the precursor. In addition, the as-prepared CQDs exhibits sensitive detection properties for Fe<sup>3+</sup> and Cu<sup>2+</sup> metal cations with a detection limit of 18.4 nM and 15.6 nM, respectively, indicating that the coal-derived CQDs sensor is superior for heavy metal recognition and environmental monitoring.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2369 - 2376"},"PeriodicalIF":5.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of supercritical-CO2 treatment on the pore structure and H2 adsorptivity of single-walled carbon nanohorns 超临界二氧化碳处理对单壁纳米碳角孔隙结构和 H2 吸附性的影响
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-15 DOI: 10.1007/s42823-024-00757-7
Nam Ryeol Kim, Jae-Hyung Wee, Chang Hyo Kim, Dong Young Kim, Katsumi Kaneko, Cheol-Min Yang

We investigated the effects of supercritical-CO2 treatment on the pore structure and consequent H2 adsorption behavior of single-walled carbon nanohorns (SWCNHs) and SWCNH aggregates. High-resolution transmission electron microscopy and adsorption characterization techniques were employed to elucidate the alterations in the SWCNH morphology and aggregate pore characteristics induced by supercritical-CO2 treatment. Our results confirm that supercritical-CO2 treatment reduces the interstitial pore surface area and volume of SWCNH aggregates, notably affecting the adsorption of N2 (77 K), CO2 (273 K), and H2 (77 K) gasses. The interstitial porosity strongly depends on the supercritical-CO2 pressure. Supercritical-CO2 treatment softens the individual SWCNHs and opens the core of SWCNH aggregates, producing a partially orientated structure with interstitial ultramicropores. These nanopores are formed by the diffusion and intercalation of CO2 molecules during treatment. An increase in the amount of H2 adsorbed per interstitial micropore of the supercritically modified SWCNHs was observed. Moreover, the increase in the number and volume of ultramicropores enable the selective adsorption of H2 and CO2 molecules. This study reveals that supercritical-CO2 treatment can modulate the pore structure of SWCNH aggregates and provides an effective strategy for tailoring the H2 adsorption properties of nanomaterials.

我们研究了超临界二氧化碳处理对单壁碳纳米管(SWCNHs)和单壁碳纳米管聚合体的孔隙结构及H2吸附行为的影响。我们采用了高分辨率透射电子显微镜和吸附表征技术来阐明超临界二氧化碳处理对 SWCNH 形态和聚集体孔隙特征的改变。我们的结果证实,超临界-CO2 处理降低了 SWCNH 聚合物的间隙孔表面积和体积,明显影响了对 N2(77 K)、CO2(273 K)和 H2(77 K)气体的吸附。间隙孔隙率在很大程度上取决于超临界二氧化碳压力。超临界二氧化碳处理会软化单个超临界碳化萘,并打开超临界碳化萘聚集体的核心,产生具有间隙超微孔的部分定向结构。这些纳米孔是在处理过程中通过二氧化碳分子的扩散和插层形成的。据观察,超临界改性 SWCNHs 的每个间隙微孔吸附的 H2 量有所增加。此外,超微孔数量和体积的增加使 H2 和 CO2 分子的吸附具有选择性。这项研究揭示了超临界二氧化碳处理可以调节 SWCNH 聚合物的孔隙结构,为定制纳米材料的 H2 吸附特性提供了一种有效的策略。
{"title":"Effects of supercritical-CO2 treatment on the pore structure and H2 adsorptivity of single-walled carbon nanohorns","authors":"Nam Ryeol Kim,&nbsp;Jae-Hyung Wee,&nbsp;Chang Hyo Kim,&nbsp;Dong Young Kim,&nbsp;Katsumi Kaneko,&nbsp;Cheol-Min Yang","doi":"10.1007/s42823-024-00757-7","DOIUrl":"10.1007/s42823-024-00757-7","url":null,"abstract":"<div><p>We investigated the effects of supercritical-CO<sub>2</sub> treatment on the pore structure and consequent H<sub>2</sub> adsorption behavior of single-walled carbon nanohorns (SWCNHs) and SWCNH aggregates. High-resolution transmission electron microscopy and adsorption characterization techniques were employed to elucidate the alterations in the SWCNH morphology and aggregate pore characteristics induced by supercritical-CO<sub>2</sub> treatment. Our results confirm that supercritical-CO<sub>2</sub> treatment reduces the interstitial pore surface area and volume of SWCNH aggregates, notably affecting the adsorption of N<sub>2</sub> (77 K), CO<sub>2</sub> (273 K), and H<sub>2</sub> (77 K) gasses. The interstitial porosity strongly depends on the supercritical-CO<sub>2</sub> pressure. Supercritical-CO<sub>2</sub> treatment softens the individual SWCNHs and opens the core of SWCNH aggregates, producing a partially orientated structure with interstitial ultramicropores. These nanopores are formed by the diffusion and intercalation of CO<sub>2</sub> molecules during treatment. An increase in the amount of H<sub>2</sub> adsorbed per interstitial micropore of the supercritically modified SWCNHs was observed. Moreover, the increase in the number and volume of ultramicropores enable the selective adsorption of H<sub>2</sub> and CO<sub>2</sub> molecules. This study reveals that supercritical-CO<sub>2</sub> treatment can modulate the pore structure of SWCNH aggregates and provides an effective strategy for tailoring the H<sub>2</sub> adsorption properties of nanomaterials.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2317 - 2323"},"PeriodicalIF":5.5,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid using Au decorated carbon nanofibers modified screen printed electrode 使用金修饰碳纳米纤维改性丝网印刷电极同时电化学检测抗坏血酸、多巴胺和尿酸
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-11 DOI: 10.1007/s42823-024-00759-5
P. Sakthivel, K. Ramachandran, K. Maheshvaran, T. S. Senthil, P. Manivel

Gold nanoparticles (Au NPs) decorated carbon nanofibers (CNFs) have been prepared by an electrospinning approach and then carbonized. The prepared Au-CNFs were employed to modifying a screen printed electrode (SPE) for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Au NPs are uniformly dispersed on carbon nanofibers were confirmed by the structure and morphological studies. The modified electrodes were tested in cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) to characterize their electrochemical responses. Compared to bare SPE, the Au-CNFs/SPE had a better sensing response to AA, DA, and UA. The electrochemical oxidation signal of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 280 mV, 159 mV and 439 mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separation in DPV studies are 290 mV, 166 mV and 456 mV. The Au-CNFs/SPE has a wide linear response of AA, DA and UA in DPV analysis over the range of 5–40 µM (R2 = 0.9984), 2–16 µM (R2 = 0.9962) and 2–16 µM (R2 = 0.9983) with corresponding detection limits of 0.9 µM, 0.4 µM and 0.3 µM at S/N = 3, respectively. The developed modified SPE based sensor exhibits excellent reproducibility, stability, and repeatability. The excellent sensing response of Au-CNFs could reveal to a promising approach in electrochemical sensor.

Graphical abstract

通过电纺丝方法制备了金纳米粒子(Au NPs)装饰碳纳米纤维(CNFs),然后对其进行碳化。制备的 Au-CNFs 被用于改性丝网印刷电极 (SPE),以同时测定抗坏血酸 (AA)、多巴胺 (DA) 和尿酸 (UA)。通过结构和形态研究证实,金纳米粒子均匀地分散在碳纳米纤维上。对修饰电极进行了循环伏安法(CV)、差分脉冲伏安法(DPV)和时变分析法(CA)测试,以确定其电化学响应特性。与裸 SPE 相比,Au-CNFs/SPE 对 AA、DA 和 UA 具有更好的传感响应。在 CV 研究中,AA、DA 和 UA 的电化学氧化信号被很好地分离成三个不同的峰,AA-DA、DA-UA 和 AA-UA 之间的峰电位分离值分别为 280 mV、159 mV 和 439 mV;在 DPV 研究中,相应的峰电位分离值分别为 290 mV、166 mV 和 456 mV。在 5-40 µM(R2 = 0.9984)、2-16 µM(R2 = 0.9962)和 2-16 µM(R2 = 0.9983)的 DPV 分析中,Au-CNFs/SPE 对 AA、DA 和 UA 具有较宽的线性响应,在信噪比为 3 时,相应的检测限分别为 0.9 µM、0.4 µM 和 0.3 µM。所开发的基于改进型 SPE 的传感器具有极佳的重现性、稳定性和可重复性。Au-CNFs 卓越的传感响应为电化学传感器提供了一种前景广阔的方法。
{"title":"Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid using Au decorated carbon nanofibers modified screen printed electrode","authors":"P. Sakthivel,&nbsp;K. Ramachandran,&nbsp;K. Maheshvaran,&nbsp;T. S. Senthil,&nbsp;P. Manivel","doi":"10.1007/s42823-024-00759-5","DOIUrl":"10.1007/s42823-024-00759-5","url":null,"abstract":"<div><p>Gold nanoparticles (Au NPs) decorated carbon nanofibers (CNFs) have been prepared by an electrospinning approach and then carbonized. The prepared Au-CNFs were employed to modifying a screen printed electrode (SPE) for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Au NPs are uniformly dispersed on carbon nanofibers were confirmed by the structure and morphological studies. The modified electrodes were tested in cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) to characterize their electrochemical responses. Compared to bare SPE, the Au-CNFs/SPE had a better sensing response to AA, DA, and UA. The electrochemical oxidation signal of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 280 mV, 159 mV and 439 mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separation in DPV studies are 290 mV, 166 mV and 456 mV. The Au-CNFs/SPE has a wide linear response of AA, DA and UA in DPV analysis over the range of 5–40 µM (R<sup>2</sup> = 0.9984), 2–16 µM (R<sup>2</sup> = 0.9962) and 2–16 µM (R<sup>2</sup> = 0.9983) with corresponding detection limits of 0.9 µM, 0.4 µM and 0.3 µM at S/N = 3, respectively. The developed modified SPE based sensor exhibits excellent reproducibility, stability, and repeatability. The excellent sensing response of Au-CNFs could reveal to a promising approach in electrochemical sensor.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2325 - 2341"},"PeriodicalIF":5.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141357270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing the sensing properties of green carbon dots for monitoring carbon dioxide and carbon monoxide at room temperature 革新绿色碳点在室温下监测二氧化碳和一氧化碳的传感特性
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-10 DOI: 10.1007/s42823-024-00751-z
Mohd Abdullah Sheikh, R. S. Chandok, Abida Bashir

Complex structure constituting of several layers of heteroatom-doped N-CDs are used as a main sensing film along with aluminum electrodes in conductometric gas sensing system for sensitive and selective monitoring of CO2 and CO gases diluted with normal air, which are extensively prevalent in the atmosphere primarily due to the industrial revolution, locomotives, and numerous natural phenomena’s and the limit of detection (LOD) turned out to be 400 ppm and 30 ppm, respectively, with 20% relative humidity at 30 °C and pressure 1 (atm) which are good for healthy air quality checks. The sensor performance was satisfactory and bidirectional at ambient room temperature (30 °C) and pressure (1 atm) conditions but the relative humidity (50%) at 30 °C had a detrimental impact on the sensing responses, therefore intermittent heating at 80 °C for several minutes between the sensing responses was provided to the sensing chip or one should use gas filter membranes to block humidity, thereby maintaining its constant performance with great ease and accuracy. The cyclic voltammetry revealed well-defined oxidation and reduction peaks, with excellent stability and reversibility. In a nutshell, heteroatom-doped N-CDs’ nanocomposite material can revolutionize in a better environmental pollution monitoring by sensing gases in an extensively lesser response and recovery times.

Graphical Abstract

由多层掺杂杂原子的 N-CD 组成的复杂结构与铝电极一起被用作电导气体传感系统的主要传感薄膜,用于灵敏、选择性地监测稀释于普通空气中的 CO2 和 CO 气体。在环境室温(30 °C)和压力(1 atm)条件下,传感器的性能令人满意且具有双向性,但 30 °C 时的相对湿度(50%)对传感反应有不利影响,因此,在传感反应之间,应在 80 °C 下对传感芯片进行几分钟的间歇加热,或者使用气体过滤膜来阻挡湿度,从而轻松而准确地保持其恒定性能。循环伏安法显示了清晰的氧化峰和还原峰,具有极佳的稳定性和可逆性。总之,掺杂杂原子的 N-CDs 纳米复合材料可以在更短的响应时间和恢复时间内传感气体,为更好地监测环境污染带来革命性的变化。 图文摘要
{"title":"Revolutionizing the sensing properties of green carbon dots for monitoring carbon dioxide and carbon monoxide at room temperature","authors":"Mohd Abdullah Sheikh,&nbsp;R. S. Chandok,&nbsp;Abida Bashir","doi":"10.1007/s42823-024-00751-z","DOIUrl":"10.1007/s42823-024-00751-z","url":null,"abstract":"<div><p>Complex structure constituting of several layers of heteroatom-doped N-CDs are used as a main sensing film along with aluminum electrodes in conductometric gas sensing system for sensitive and selective monitoring of CO<sub>2</sub> and CO gases diluted with normal air, which are extensively prevalent in the atmosphere primarily due to the industrial revolution, locomotives, and numerous natural phenomena’s and the limit of detection (LOD) turned out to be 400 ppm and 30 ppm, respectively, with 20% relative humidity at 30 °C and pressure 1 (atm) which are good for healthy air quality checks. The sensor performance was satisfactory and bidirectional at ambient room temperature (30 °C) and pressure (1 atm) conditions but the relative humidity (50%) at 30 °C had a detrimental impact on the sensing responses, therefore intermittent heating at 80 °C for several minutes between the sensing responses was provided to the sensing chip or one should use gas filter membranes to block humidity, thereby maintaining its constant performance with great ease and accuracy. The cyclic voltammetry revealed well-defined oxidation and reduction peaks, with excellent stability and reversibility. In a nutshell, heteroatom-doped N-CDs’ nanocomposite material can revolutionize in a better environmental pollution monitoring by sensing gases in an extensively lesser response and recovery times.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2245 - 2257"},"PeriodicalIF":5.5,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Au-loaded alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation 用于光催化固氮的金负载碱金属改性结晶氮化碳
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-04 DOI: 10.1007/s42823-024-00755-9
Mimi Luo, Baibing Wang, Jiahui Shao, Yupeng Yan, Guanjie Jiang, Qin Zhang, Yang Li

Crystalline heptazine carbon nitride (HCN) is an ideal photocatalyst for photocatalytic ammonia synthesis. However, the limited response to visible light has hindered its further development. As a noble metal, Au nanoparticles (NPs) can enhance the light absorption capability of photocatalysts by the surface plasmon resonance (SPR) effect. Therefore, a series of Au NPs-loaded crystalline carbon nitride materials (AH) were prepared for photocatalytic nitrogen fixation. The results showed that the AH displayed significantly improved light absorption and decreased recombination rate of photo-generated carriers owing to the introduction of Au NPs. The optimal 2AH (loaded with 2 wt% Au) sample demonstrated the best photocatalytic performance for ammonia production with a yield of 70.3 μmol g−1 h−1, which outperformed that of HCN. This can be attributed to the SPR effect of Au NPs and alkali metal of HCN structure. These findings provide a theoretical basis for studying noble metal-enhanced photocatalytic activity for nitrogen fixation and offer new insights into advances in efficient photocatalysts.

结晶氮化庚嗪(HCN)是光催化合成氨的理想光催化剂。然而,其对可见光的响应有限,阻碍了其进一步发展。作为一种贵金属,金纳米粒子(NPs)可以通过表面等离子共振(SPR)效应增强光催化剂的光吸收能力。因此,研究人员制备了一系列负载金纳米粒子的结晶氮化碳材料(AH),用于光催化固氮。结果表明,由于引入了 Au NPs,AH 显著提高了光吸收能力,降低了光生载流子的重组率。最佳的 2AH(负载 2 wt% 金)样品在合成氨生产中表现出最佳的光催化性能,产氨量为 70.3 μmol g-1 h-1,优于 HCN。这可归因于金纳米粒子和 HCN 结构中碱金属的 SPR 效应。这些发现为研究贵金属增强的固氮光催化活性提供了理论基础,并为高效光催化剂的发展提供了新的见解。
{"title":"Au-loaded alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation","authors":"Mimi Luo,&nbsp;Baibing Wang,&nbsp;Jiahui Shao,&nbsp;Yupeng Yan,&nbsp;Guanjie Jiang,&nbsp;Qin Zhang,&nbsp;Yang Li","doi":"10.1007/s42823-024-00755-9","DOIUrl":"10.1007/s42823-024-00755-9","url":null,"abstract":"<div><p>Crystalline heptazine carbon nitride (HCN) is an ideal photocatalyst for photocatalytic ammonia synthesis. However, the limited response to visible light has hindered its further development. As a noble metal, Au nanoparticles (NPs) can enhance the light absorption capability of photocatalysts by the surface plasmon resonance (SPR) effect. Therefore, a series of Au NPs-loaded crystalline carbon nitride materials (AH) were prepared for photocatalytic nitrogen fixation. The results showed that the AH displayed significantly improved light absorption and decreased recombination rate of photo-generated carriers owing to the introduction of Au NPs. The optimal 2AH (loaded with 2 wt% Au) sample demonstrated the best photocatalytic performance for ammonia production with a yield of 70.3 μmol g<sup>−1</sup> h<sup>−1</sup>, which outperformed that of HCN. This can be attributed to the SPR effect of Au NPs and alkali metal of HCN structure. These findings provide a theoretical basis for studying noble metal-enhanced photocatalytic activity for nitrogen fixation and offer new insights into advances in efficient photocatalysts.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2291 - 2303"},"PeriodicalIF":5.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical surface modification of carbon: a highly active metal-free electrocatalyst for hydrogen evolution reaction 碳的电化学表面改性:氢进化反应的高活性无金属电催化剂
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-04 DOI: 10.1007/s42823-024-00752-y
Bhavani Kalaidhasan, Lavanya Murugan, C. Jeyabharathi, R. Malini, S. Vengatesan, S. Vasudevan, S. Ravichandran

In recent years, the search on fabrication of highly efficient, stable, and cost-effective alternative to Pt for the hydrogen evolution reaction (HER) has led to the development of new catalysts. In this study, we investigated the electrocatalytic HER activity of the Toray carbon substrate by creating defect sites in its graphitic layer through ultrasonication and anodization process. A series of Toray carbon substrates with active sites are prepared by modifying its surface through ultrasonication, anodization, and ultrasonication followed by anodization procedures at different time periods. The anodization process significantly enhances the surface wettability, consequently resulting in a substantial increase in proton flux at the reaction sites. As an implication, the overpotential for HER is notably reduced for the Toray carbon (TC-3U-10A), subjected to 3 min of ultrasonification followed by 10 min of anodization, which exhibits a significantly lower Tafel slope value of 60 mV/dec. Furthermore, the reactivity of the anodized surface for HER is significantly elevated, especially at higher concentrations of sulfuric acid, owing to the enhanced wettability of the substrate. The lowest Tafel slope value recorded in this study stands at 60 mV/dec underscoring the substantial improvements achieved in catalytic efficiency of the defect-rich carbon materials. These findings hold promise for the advancement of electrocatalytic applications of carbon materials and may have significant implications for various technological and industrial processes.

近年来,为氢气进化反应(HER)寻找高效、稳定、低成本的铂金替代物的工作促使了新型催化剂的开发。在本研究中,我们通过超声和阳极氧化工艺在东丽碳基底的石墨层中制造缺陷位点,研究了东丽碳基底的电催化氢催化活性。通过不同时间段的超声处理、阳极氧化以及先超声处理后阳极氧化过程对其表面进行改性,制备了一系列具有活性位点的东丽碳衬底。阳极氧化过程大大提高了表面润湿性,从而使反应位点的质子通量大幅增加。因此,经过 3 分钟超声处理和 10 分钟阳极氧化处理的东丽碳(TC-3U-10A)的 HER 过电位明显降低,其塔菲尔斜率值明显降低,为 60 mV/dec。此外,由于基底的润湿性增强,阳极氧化表面对 HER 的反应活性显著提高,特别是在硫酸浓度较高的情况下。本研究中记录的最低塔菲尔斜率值为 60 mV/dec,这表明富缺陷碳材料的催化效率得到了大幅提高。这些发现为推动碳材料的电催化应用带来了希望,并可能对各种技术和工业过程产生重大影响。
{"title":"Electrochemical surface modification of carbon: a highly active metal-free electrocatalyst for hydrogen evolution reaction","authors":"Bhavani Kalaidhasan,&nbsp;Lavanya Murugan,&nbsp;C. Jeyabharathi,&nbsp;R. Malini,&nbsp;S. Vengatesan,&nbsp;S. Vasudevan,&nbsp;S. Ravichandran","doi":"10.1007/s42823-024-00752-y","DOIUrl":"10.1007/s42823-024-00752-y","url":null,"abstract":"<div><p>In recent years, the search on fabrication of highly efficient, stable, and cost-effective alternative to Pt for the hydrogen evolution reaction (HER) has led to the development of new catalysts. In this study, we investigated the electrocatalytic HER activity of the Toray carbon substrate by creating defect sites in its graphitic layer through ultrasonication and anodization process. A series of Toray carbon substrates with active sites are prepared by modifying its surface through ultrasonication, anodization, and ultrasonication followed by anodization procedures at different time periods. The anodization process significantly enhances the surface wettability, consequently resulting in a substantial increase in proton flux at the reaction sites. As an implication, the overpotential for HER is notably reduced for the Toray carbon (TC-3U-10A), subjected to 3 min of ultrasonification followed by 10 min of anodization, which exhibits a significantly lower Tafel slope value of 60 mV/dec. Furthermore, the reactivity of the anodized surface for HER is significantly elevated, especially at higher concentrations of sulfuric acid, owing to the enhanced wettability of the substrate. The lowest Tafel slope value recorded in this study stands at 60 mV/dec underscoring the substantial improvements achieved in catalytic efficiency of the defect-rich carbon materials. These findings hold promise for the advancement of electrocatalytic applications of carbon materials and may have significant implications for various technological and industrial processes.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2259 - 2267"},"PeriodicalIF":5.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of heteroatoms and temperature ramping rate on pyrolysis of coal tar pitch for high value of β-resin 杂原子和升温速率对煤焦油沥青热解产生高β-树脂值的影响
IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-03 DOI: 10.1007/s42823-024-00753-x
Seungjoo Park, Seon Ho Lee, Song Mi Lee, Gyusang Lee, Doo-Hwan Jung

Coal tar pitch is a raw material that can be made from various carbon materials such as activated carbon, carbon fiber, and artificial graphite through heat treatment. In particular, it is an important raw material used as a binder and impregnated pitch when manufacturing carbon composite materials. In order to improve the physical properties of such a carbon composite material, the content of β-resin is an important factor. Although β-resin plays the role of a binder, it also corresponds to fixed carbon, so it can determine the physical properties after carbonization. In this study, we compared the physical properties of coal tar pitch various temperature ramping rate, and found through Py-GC/MS analysis that intermediate materials were generated by heteroatoms such as oxygen and nitrogen. MALDI-TOF/MS analysis revealed that these intermediate materials overlapped with the molecular weight region of β-resin. Therefore, the content of β-resin is in the following order: 430–5 (12.8 wt%), 430–10 (10.2 wt%), and 430–2 (6.3 wt%), and when 430–5 is used as a binder, the highest density appeared at 1.75 g/cm3. However, such intermediate materials undergo thermal decomposition even at temperatures above 900 °C. As a result, after carbonization, 430–5 had a density of 1.60 g/cm3, which was similar or lower than that of 430–2 (1.72 → 1.63 g/cm3) and 430–10 (1.73 → 1.61 g/cm3). From these results, it is expected that if the heteroatom content is distributed in an appropriate amount and the heating rate is well controlled, it will be possible to maintain a high density even after carbonization while ensuring a high beta-resin content.

煤沥青是一种原材料,可以通过热处理制成各种碳材料,如活性炭、碳纤维和人造石墨。特别是在制造碳复合材料时,它是一种重要的粘合剂和浸渍沥青原料。为了提高碳复合材料的物理性能,β-树脂的含量是一个重要因素。虽然 β 树脂起着粘合剂的作用,但它也相当于固定碳,因此它能决定碳化后的物理性质。本研究比较了煤沥青不同升温速率下的物理性质,通过 Py-GC/MS 分析发现,中间物质是由氧和氮等杂原子生成的。MALDI-TOF/MS 分析表明,这些中间物质与 β 树脂的分子量区域重叠。因此,β 树脂的含量依次为当使用 430-5 作为粘合剂时,密度最高,达到 1.75 克/立方厘米。然而,即使在高于 900 °C 的温度下,这些中间材料也会发生热分解。因此,碳化后,430-5 的密度为 1.60 g/cm3,与 430-2(1.72 → 1.63 g/cm3)和 430-10(1.73 → 1.61 g/cm3)的密度相近或更低。从这些结果可以看出,如果杂原子含量分布适当,加热速度控制得当,即使在碳化后也能保持较高的密度,同时确保较高的β-树脂含量。
{"title":"The effect of heteroatoms and temperature ramping rate on pyrolysis of coal tar pitch for high value of β-resin","authors":"Seungjoo Park,&nbsp;Seon Ho Lee,&nbsp;Song Mi Lee,&nbsp;Gyusang Lee,&nbsp;Doo-Hwan Jung","doi":"10.1007/s42823-024-00753-x","DOIUrl":"10.1007/s42823-024-00753-x","url":null,"abstract":"<div><p>Coal tar pitch is a raw material that can be made from various carbon materials such as activated carbon, carbon fiber, and artificial graphite through heat treatment. In particular, it is an important raw material used as a binder and impregnated pitch when manufacturing carbon composite materials. In order to improve the physical properties of such a carbon composite material, the content of β-resin is an important factor. Although β-resin plays the role of a binder, it also corresponds to fixed carbon, so it can determine the physical properties after carbonization. In this study, we compared the physical properties of coal tar pitch various temperature ramping rate, and found through Py-GC/MS analysis that intermediate materials were generated by heteroatoms such as oxygen and nitrogen. MALDI-TOF/MS analysis revealed that these intermediate materials overlapped with the molecular weight region of β-resin. Therefore, the content of β-resin is in the following order: 430–5 (12.8 wt%), 430–10 (10.2 wt%), and 430–2 (6.3 wt%), and when 430–5 is used as a binder, the highest density appeared at 1.75 g/cm<sup>3</sup>. However, such intermediate materials undergo thermal decomposition even at temperatures above 900 °C. As a result, after carbonization, 430–5 had a density of 1.60 g/cm<sup>3</sup>, which was similar or lower than that of 430–2 (1.72 → 1.63 g/cm<sup>3</sup>) and 430–10 (1.73 → 1.61 g/cm<sup>3</sup>). From these results, it is expected that if the heteroatom content is distributed in an appropriate amount and the heating rate is well controlled, it will be possible to maintain a high density even after carbonization while ensuring a high beta-resin content.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2269 - 2278"},"PeriodicalIF":5.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1