Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with areal-specific capacitance, energy and power density of 190.12 mF cm−2, 17.325 μW h cm−2 and 0.162 mW cm−2, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.