首页 > 最新文献

Bulletin of the Australian Mathematical Society最新文献

英文 中文
ON MATRICES ARISING IN FINITE FIELD HYPERGEOMETRIC FUNCTIONS 关于有限域超几何函数中出现的矩阵
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-04-22 DOI: 10.1017/s0004972724000261
SATOSHI KUMABE, HASAN SAAD
Lehmer [‘On certain character matrices’, Pacific J. Math.6 (1956), 491–499, and ‘Power character matrices’, Pacific J. Math.10 (1960), 895–907] defines four classes of matrices constructed from roots of unity for which the characteristic polynomials and the kth powers can be determined explicitly. We study a class of matrices which arise naturally in transformation formulae of finite field hypergeometric functions and whose entries are roots of unity and zeroes. We determine the characteristic polynomial, eigenvalues, eigenvectors and kth powers of these matrices. The eigenvalues are natural families of products of Jacobi sums.
雷默['论某些特征矩阵',《太平洋数学杂志》,6 (1956),491-499,以及'幂特征矩阵',《太平洋数学杂志》,10 (1960),895-907]定义了四类由统一根构造的矩阵,它们的特征多项式和第 k 次幂都可以明确确定。我们研究了一类在有限域超几何函数的变换公式中自然出现的矩阵,它们的条目是合一根和零。我们确定了这些矩阵的特征多项式、特征值、特征向量和 k 次方。特征值是雅可比和积的自然族。
{"title":"ON MATRICES ARISING IN FINITE FIELD HYPERGEOMETRIC FUNCTIONS","authors":"SATOSHI KUMABE, HASAN SAAD","doi":"10.1017/s0004972724000261","DOIUrl":"https://doi.org/10.1017/s0004972724000261","url":null,"abstract":"Lehmer [‘On certain character matrices’, <jats:italic>Pacific J. Math.</jats:italic>6 (1956), 491–499, and ‘Power character matrices’, <jats:italic>Pacific J. Math.</jats:italic>10 (1960), 895–907] defines four classes of matrices constructed from roots of unity for which the characteristic polynomials and the <jats:italic>k</jats:italic>th powers can be determined explicitly. We study a class of matrices which arise naturally in transformation formulae of finite field hypergeometric functions and whose entries are roots of unity and zeroes. We determine the characteristic polynomial, eigenvalues, eigenvectors and <jats:italic>k</jats:italic>th powers of these matrices. The eigenvalues are natural families of products of Jacobi sums.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"48 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON GENERALISED LEGENDRE MATRICES INVOLVING ROOTS OF UNITY OVER FINITE FIELDS 关于有限域上涉及同根的广义图例矩阵
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-04-22 DOI: 10.1017/s0004972724000303
NING-LIU WEI, YU-BO LI, HAI-LIANG WU
Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, <jats:italic>Acta Arith.</jats:italic>115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_inline1.png" /> <jats:tex-math> $a_1,ldots ,a_{(q-1)/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be all the nonzero squares in the finite field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_inline2.png" /> <jats:tex-math> $mathbb {F}_q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> containing <jats:italic>q</jats:italic> elements with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_inline3.png" /> <jats:tex-math> $2nmid q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we give the explicit value of the determinant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_inline4.png" /> <jats:tex-math> $D_{(q-1)/2}=det [(a_i+a_j)^{(q-3)/2}]_{1le i,jle (q-1)/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_inline5.png" /> <jats:tex-math> $q=p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime greater than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_inline6.png" /> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_eqnu1.png" /> <jats:tex-math> $$ begin{align*}bigg(frac{det D_{(p-1)/2}}{p}bigg)= begin{cases} 1 & mbox{if} pequiv1pmod4, (-1)^{(h(-p)+1)/2} & mbox{if} pequiv 3pmod4 text{and} p>3, end{cases}end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_inline7.png" /> <jats:tex-math> $(frac {cdot }{p})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Legendre symbol and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000303_inline8.png" /> <jats:tex-math> $h(-p)$ </jats:tex-
受查普曼(Chapman)的研究成果['Legendre 符号矩阵的确定性',Acta Arith.115 (2004),231-244]的启发,我们研究了有限域上广义 Legendre 矩阵的一些算术性质。例如,假设 $a_1,ldots ,a_{(q-1)/2}$ 是有限域 $mathbb {F}_q$ 中包含 q 个元素且 2nmid q$ 的所有非零方阵,我们给出了行列式 $D_{(q-1)/2}=det [(a_i+a_j)^{(q-3)/2}]_{1le i,jle (q-1)/2}$ 的显式值。特别是,如果 $q=p$ 是一个大于 $3$ 的素数,那么 $$ begin{align*}bigg(frac{det D_{(p-1)/2}}{p}bigg)= begin{cases} 1 &;(-1)^{(h(-p)+1)/2} & mbox{if} pequiv 3pmod4 text{and} p>3, end{cases}end{align*}其中 $(frac {cdot }{p})$ 是 Legendre 符号,$h(-p)$ 是 $mathbb {Q}(sqrt {-p})$ 的类数。
{"title":"ON GENERALISED LEGENDRE MATRICES INVOLVING ROOTS OF UNITY OVER FINITE FIELDS","authors":"NING-LIU WEI, YU-BO LI, HAI-LIANG WU","doi":"10.1017/s0004972724000303","DOIUrl":"https://doi.org/10.1017/s0004972724000303","url":null,"abstract":"Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, &lt;jats:italic&gt;Acta Arith.&lt;/jats:italic&gt;115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline1.png\" /&gt; &lt;jats:tex-math&gt; $a_1,ldots ,a_{(q-1)/2}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be all the nonzero squares in the finite field &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline2.png\" /&gt; &lt;jats:tex-math&gt; $mathbb {F}_q$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; containing &lt;jats:italic&gt;q&lt;/jats:italic&gt; elements with &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline3.png\" /&gt; &lt;jats:tex-math&gt; $2nmid q$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, we give the explicit value of the determinant &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline4.png\" /&gt; &lt;jats:tex-math&gt; $D_{(q-1)/2}=det [(a_i+a_j)^{(q-3)/2}]_{1le i,jle (q-1)/2}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. In particular, if &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline5.png\" /&gt; &lt;jats:tex-math&gt; $q=p$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is a prime greater than &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline6.png\" /&gt; &lt;jats:tex-math&gt; $3$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, then &lt;jats:disp-formula&gt; &lt;jats:alternatives&gt; &lt;jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_eqnu1.png\" /&gt; &lt;jats:tex-math&gt; $$ begin{align*}bigg(frac{det D_{(p-1)/2}}{p}bigg)= begin{cases} 1 &amp; mbox{if} pequiv1pmod4, (-1)^{(h(-p)+1)/2} &amp; mbox{if} pequiv 3pmod4 text{and} p&gt;3, end{cases}end{align*} $$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:disp-formula&gt; where &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline7.png\" /&gt; &lt;jats:tex-math&gt; $(frac {cdot }{p})$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the Legendre symbol and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline8.png\" /&gt; &lt;jats:tex-math&gt; $h(-p)$ &lt;/jats:tex-","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"39 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SECOND HANKEL DETERMINANT FOR LOGARITHMIC INVERSE COEFFICIENTS OF CONVEX AND STARLIKE FUNCTIONS 凸函数和星形函数对数逆系数的第二汉克尔行列式
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-04-18 DOI: 10.1017/s0004972724000200
VASUDEVARAO ALLU, AMAL SHAJI

We obtain sharp bounds for the second Hankel determinant of logarithmic inverse coefficients for starlike and convex functions.

我们得到了星形函数和凸函数对数反系数的第二汉克尔行列式的尖锐边界。
{"title":"SECOND HANKEL DETERMINANT FOR LOGARITHMIC INVERSE COEFFICIENTS OF CONVEX AND STARLIKE FUNCTIONS","authors":"VASUDEVARAO ALLU, AMAL SHAJI","doi":"10.1017/s0004972724000200","DOIUrl":"https://doi.org/10.1017/s0004972724000200","url":null,"abstract":"<p>We obtain sharp bounds for the second Hankel determinant of logarithmic inverse coefficients for starlike and convex functions.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"15 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASYMPTOTIC BEHAVIOUR FOR PRODUCTS OF CONSECUTIVE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS 连续部分商乘积在连续分数中的渐近行为
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-04-18 DOI: 10.1017/s000497272400025x
XIAO CHEN, LULU FANG, JUNJIE LI, LEI SHANG, XIN ZENG

Let $[a_1(x),a_2(x),a_3(x),ldots ]$ be the continued fraction expansion of an irrational number $xin [0,1)$. We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of x. We prove that, for Lebesgue almost all $xin [0,1)$, $$ begin{align*} liminf_{n to infty} frac{log (a_n(x)a_{n+1}(x))}{log n} = 0quad text{and}quad limsup_{n to infty} frac{log (a_n(x)a_{n+1}(x))}{log n}=1. end{align*} $$

We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.

让 $[a_1(x),a_2(x),a_3(x),ldots ]$ 是无理数 $xin [0,1)$ 的连续分数展开。我们关注的是 x 的连续部分商乘积的渐近行为。我们证明,对于 Lebesgue 几乎所有的 $xin [0,1)$, $$ (begin{align*})。liminf_{ntoinfty}{log (a_n(x)a_{n+1}(x))}{log n} = 0(四边形){text{and}(四边形) limsup_{n toinfty}frac{log (a_n(x)a_{n+1}(x))}{log n}=1.end{align*}$$We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.
{"title":"ASYMPTOTIC BEHAVIOUR FOR PRODUCTS OF CONSECUTIVE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS","authors":"XIAO CHEN, LULU FANG, JUNJIE LI, LEI SHANG, XIN ZENG","doi":"10.1017/s000497272400025x","DOIUrl":"https://doi.org/10.1017/s000497272400025x","url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$[a_1(x),a_2(x),a_3(x),ldots ]$</span></span></img></span></span> be the continued fraction expansion of an irrational number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$xin [0,1)$</span></span></img></span></span>. We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of <span>x</span>. We prove that, for Lebesgue almost all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$xin [0,1)$</span></span></img></span></span>, <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ begin{align*} liminf_{n to infty} frac{log (a_n(x)a_{n+1}(x))}{log n} = 0quad text{and}quad limsup_{n to infty} frac{log (a_n(x)a_{n+1}(x))}{log n}=1. end{align*} $$</span></span></img></span></p><p>We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"5 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NEW CONGRUENCES FOR THE TRUNCATED APPELL SERIES 截断阿贝尔数列的新同余式
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-04-18 DOI: 10.1017/s0004972724000236
XIAOXIA WANG, WENJIE YU

Liu [‘Supercongruences for truncated Appell series’, Colloq. Math. 158(2) (2019), 255–263] and Lin and Liu [‘Congruences for the truncated Appell series $F_3$ and $F_4$’, Integral Transforms Spec. Funct. 31(1) (2020), 10–17] confirmed four supercongruences for truncated Appell series. Motivated by their work, we give a new supercongruence for the truncated Appell series $F_{1}$, together with two generalisations of this supercongruence, by establishing its q-analogues.

Liu ['Supercongruences for truncated Appell series', Colloq.Math.158(2) (2019), 255-263] and Lin and Liu ['Congruences for the truncated Appell series $F_3$ and $F_4$', Integral Transforms Spec.Funct.31(1) (2020), 10-17] 确认了截断阿贝尔数列的四个超级共轭。受他们工作的启发,我们给出了截断阿贝尔数列 $F_{1}$ 的新超共假,并通过建立其 q-analogues ,给出了该超共假的两个广义。
{"title":"NEW CONGRUENCES FOR THE TRUNCATED APPELL SERIES","authors":"XIAOXIA WANG, WENJIE YU","doi":"10.1017/s0004972724000236","DOIUrl":"https://doi.org/10.1017/s0004972724000236","url":null,"abstract":"<p>Liu [‘Supercongruences for truncated Appell series’, <span>Colloq. Math.</span> <span>158</span>(2) (2019), 255–263] and Lin and Liu [‘Congruences for the truncated Appell series <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417092342642-0507:S0004972724000236:S0004972724000236_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$F_3$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417092342642-0507:S0004972724000236:S0004972724000236_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$F_4$</span></span></img></span></span>’, <span>Integral Transforms Spec. Funct.</span> <span>31</span>(1) (2020), 10–17] confirmed four supercongruences for truncated Appell series. Motivated by their work, we give a new supercongruence for the truncated Appell series <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417092342642-0507:S0004972724000236:S0004972724000236_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$F_{1}$</span></span></img></span></span>, together with two generalisations of this supercongruence, by establishing its <span>q</span>-analogues.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"440 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140608553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APPROXIMATION OF IRRATIONAL NUMBERS BY PAIRS OF INTEGERS FROM A LARGE SET 用大集中的成对整数逼近无理数
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-04-03 DOI: 10.1017/s0004972724000194
ARTŪRAS DUBICKAS
We show that there is a set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline1.png" /> <jats:tex-math> $S subseteq {mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with lower density arbitrarily close to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline2.png" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, for each sufficiently large real number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline3.png" /> <jats:tex-math> $alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the inequality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline4.png" /> <jats:tex-math> $|malpha -n| geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> holds for every pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline5.png" /> <jats:tex-math> $(m,n) in S^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. On the other hand, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline6.png" /> <jats:tex-math> $S subseteq {mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline7.png" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then, for each irrational <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline8.png" /> <jats:tex-math> $alpha>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any positive <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline9.png" /> <jats:tex-math> $varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exist <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972724000194_inline10.png" /> <jats:tex-math> $m,n in S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png
我们证明,有一个集合$S (subseteq {mathbb N}$的低密度任意地接近于$1$,这样,对于每个足够大的实数$alpha $,不等式$|malpha -n| geq 1$对于S^2$中的每一对$(m,n) 都成立。另一方面,如果 $S subseteq {mathbb N}$ 的密度为 $1$,那么,对于每个无理数 $alpha>0$ 和任何正的 $varepsilon $,在 S$ 中存在 $m,n,其中 $|malpha -n|<varepsilon $ 。
{"title":"APPROXIMATION OF IRRATIONAL NUMBERS BY PAIRS OF INTEGERS FROM A LARGE SET","authors":"ARTŪRAS DUBICKAS","doi":"10.1017/s0004972724000194","DOIUrl":"https://doi.org/10.1017/s0004972724000194","url":null,"abstract":"We show that there is a set &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline1.png\" /&gt; &lt;jats:tex-math&gt; $S subseteq {mathbb N}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; with lower density arbitrarily close to &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline2.png\" /&gt; &lt;jats:tex-math&gt; $1$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; such that, for each sufficiently large real number &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline3.png\" /&gt; &lt;jats:tex-math&gt; $alpha $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, the inequality &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline4.png\" /&gt; &lt;jats:tex-math&gt; $|malpha -n| geq 1$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; holds for every pair &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline5.png\" /&gt; &lt;jats:tex-math&gt; $(m,n) in S^2$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. On the other hand, if &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline6.png\" /&gt; &lt;jats:tex-math&gt; $S subseteq {mathbb N}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; has density &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline7.png\" /&gt; &lt;jats:tex-math&gt; $1$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, then, for each irrational &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline8.png\" /&gt; &lt;jats:tex-math&gt; $alpha&gt;0$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and any positive &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline9.png\" /&gt; &lt;jats:tex-math&gt; $varepsilon $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, there exist &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline10.png\" /&gt; &lt;jats:tex-math&gt; $m,n in S$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; for which &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"25 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS 划分一类多项式指数的素数的特征及其应用
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-04-01 DOI: 10.1017/s0004972724000182
ANUJ JAKHAR
<p>Let <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline1.png"><span data-mathjax-type="texmath"><span>${mathbb {Z}}_{K}$</span></span></img></span></span> denote the ring of algebraic integers of an algebraic number field <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline2.png"><span data-mathjax-type="texmath"><span>$K = {mathbb Q}(theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline3.png"><span data-mathjax-type="texmath"><span>$theta $</span></span></img></span></span> is a root of a monic irreducible polynomial <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline4.png"><span data-mathjax-type="texmath"><span>$f(x) = x^n + a(bx+c)^m in {mathbb {Z}}[x]$</span></span></img></span></span>, <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline5.png"><span data-mathjax-type="texmath"><span>$1leq m<n$</span></span></img></span></span>. We say <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline6.png"><span data-mathjax-type="texmath"><span>$f(x)$</span></span></img></span></span> is monogenic if <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline7.png"><span data-mathjax-type="texmath"><span>${1, theta , ldots , theta ^{n-1}}$</span></span></img></span></span> is a basis for <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline8.png"><span data-mathjax-type="texmath"><span>${mathbb {Z}}_K$</span></span></img></span></span>. We give necessary and sufficient conditions involving only <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline9.png"><span data-mathjax-type="texmath"><span>$a, b, c, m, n$</span></span></img></span></span> for <span><span><img data-mimesubtype="png" data-type="" src="https://static.
让 ${mathbb {Z}}_{K}$ 表示代数数域 $K = {mathbb Q}(theta )$ 的代数整数环,其中 $theta $ 是在 {mathbb {Z}}[x]$, $1leq m<n$ 中的一元不可约多项式 $f(x) = x^n + a(bx+c)^m 的根。如果 ${1, theta , ldots , theta ^{n-1}}$ 是 ${mathbb {Z}}_K$ 的基,我们就说 $f(x)$ 是单源的。我们给出了只涉及 $a,b,c,m,n$ 的 $f(x)$ 单调性的必要条件和充分条件。此外,我们还描述了 ${mathbb {Z}}[theta ]$ 在 ${mathbb {Z}}_K$ 中划分子群 ${mathbb {Z}}[theta ]$ 索引的所有素数的特征。作为应用,我们还提供了一类具有非无平方判别式和伽罗瓦群 $S_n$(n 个字母上的对称群)的单元多项式。
{"title":"CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS","authors":"ANUJ JAKHAR","doi":"10.1017/s0004972724000182","DOIUrl":"https://doi.org/10.1017/s0004972724000182","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;${mathbb {Z}}_{K}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; denote the ring of algebraic integers of an algebraic number field &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$K = {mathbb Q}(theta )$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, where &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$theta $&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is a root of a monic irreducible polynomial &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$f(x) = x^n + a(bx+c)^m in {mathbb {Z}}[x]$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$1leq m&lt;n$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. We say &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$f(x)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is monogenic if &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;${1, theta , ldots , theta ^{n-1}}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is a basis for &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;${mathbb {Z}}_K$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. We give necessary and sufficient conditions involving only &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline9.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$a, b, c, m, n$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; for &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"301 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE SUMMED PAPERFOLDING SEQUENCE 汇总折纸序列
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-03-25 DOI: 10.1017/s0004972724000169
MARTIN BUNDER, BRUCE BATES, STEPHEN ARNOLD
The sequence $a( 1) ,a( 2) ,a( 3) ,ldots, $ labelled A088431 in the Online Encyclopedia of Integer Sequences, is defined by: $a( n) $ is half of the $( n+1) $ th component, that is, the $( n+2) $ th term, of the continued fraction expansion of $$ begin{align*} sum_{k=0}^{infty }frac{1}{2^{2^{k}}}. end{align*} $$ Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.
序列 $a( 1) ,a( 2) ,a( 3) ,ldots, $ 在《整数序列在线百科全书》中标为 A088431, 其定义如下: $a( n) $ 是 $$ begin{align*} 的续分数展开式中 $( n+1) $ 第三项分量的一半,即 $( n+2) $ 第三项。sum_{k=0}^{infty }frac{1}{2^{2^{k}}}.end{align*}$$ Dimitri Hendriks 认为它是折纸序列 A014577 的运行长度序列。本文证明了这个求和折纸序列的几个结果,并证实了亨德里克斯的猜想。
{"title":"THE SUMMED PAPERFOLDING SEQUENCE","authors":"MARTIN BUNDER, BRUCE BATES, STEPHEN ARNOLD","doi":"10.1017/s0004972724000169","DOIUrl":"https://doi.org/10.1017/s0004972724000169","url":null,"abstract":"The sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline1.png\" /> <jats:tex-math> $a( 1) ,a( 2) ,a( 3) ,ldots, $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> labelled A088431 in the <jats:italic>Online Encyclopedia of Integer Sequences</jats:italic>, is defined by: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline2.png\" /> <jats:tex-math> $a( n) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is half of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline3.png\" /> <jats:tex-math> $( n+1) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th component, that is, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline4.png\" /> <jats:tex-math> $( n+2) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th term, of the continued fraction expansion of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_eqnu1.png\" /> <jats:tex-math> $$ begin{align*} sum_{k=0}^{infty }frac{1}{2^{2^{k}}}. end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"21 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS choquet 积分、hausdorff 内容和分式算子
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-03-19 DOI: 10.1017/s000497272400011x
NAOYA HATANO, RYOTA KAWASUMI, HIROKI SAITO, HITOSHI TANAKA
We show that the fractional integral operator $I_{alpha }$ , $0<alpha <n$ , and the fractional maximal operator $M_{alpha }$ , $0le alpha <n$ , are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator $M_alpha $ are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, Georgian Math. J.18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator $I_{alpha }$ are essentially new.
我们证明了分数积分算子 $I_{alpha }$ , $0<alpha <n$ 和分数最大算子 $M_{alpha }$ , $0le alpha <n$ 在弱 Choquet 空间上关于 Hausdorff 内容是有界的。我们还在 Choquet-Morrey 空间上研究了这些算子。小数最大算子 $M_alpha $ 的结果是唐['Choquet 积分、加权 Hausdorff 内容和最大算子',Georgian Math.J.18(3)(2011),587-596] 以及亚当斯和奥罗比特及韦尔德拉的早期工作。分数积分算子 $I_{alpha }$ 的结果本质上是新的。
{"title":"CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS","authors":"NAOYA HATANO, RYOTA KAWASUMI, HIROKI SAITO, HITOSHI TANAKA","doi":"10.1017/s000497272400011x","DOIUrl":"https://doi.org/10.1017/s000497272400011x","url":null,"abstract":"We show that the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline1.png\" /> <jats:tex-math> $I_{alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline2.png\" /> <jats:tex-math> $0&lt;alpha &lt;n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline3.png\" /> <jats:tex-math> $M_{alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline4.png\" /> <jats:tex-math> $0le alpha &lt;n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline5.png\" /> <jats:tex-math> $M_alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, <jats:italic>Georgian Math. J.</jats:italic>18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline6.png\" /> <jats:tex-math> $I_{alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are essentially new.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"101 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140170704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A CHARACTERISATION OF SOLUBLE -GROUPS 可溶性-群的特征
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-03-15 DOI: 10.1017/s0004972724000157
ZHIGANG WANG, A-MING LIU, VASILY G. SAFONOV, ALEXANDER N. SKIBA
Let G be a finite group. A subgroup A of G is said to be S-permutable in G if A permutes with every Sylow subgroup P of G, that is, $AP=PA$ . Let $A_{sG}$ be the subgroup of A generated by all S-permutable subgroups of G contained in A and $A^{sG}$ be the intersection of all S-permutable subgroups of G containing A. We prove that if G is a soluble group, then S-permutability is a transitive relation in G if and only if the nilpotent residual $G^{mathfrak {N}}$ of G avoids the pair $(A^{s G}, A_{sG})$ , that is, $G^{mathfrak {N}}cap A^{sG}= G^{mathfrak {N}}cap A_{sG}$ for every subnormal subgroup A of G.
设 G 是一个有限群。如果 G 的子群 A 与 G 的每个 Sylow 子群 P 都发生包络,即 $AP=PA$ ,则称 G 的子群 A 在 G 中是 S 可包络的。设 $A_{sG}$ 是由包含在 A 中的所有 G 的 S-permutable 子群生成的 A 子群,而 $A^{sG}$ 是包含 A 的所有 G 的 S-permutable 子群的交集。我们证明,如果 G 是可解群,那么当且仅当 G 的零能残差 $G^{mathfrak {N}}$ 避免了一对 $(A^{s G}、A_{sG})$ ,也就是说,对于 G 的每个子正常子群 A,$G^{mathfrak {N}cap A^{sG}= G^{mathfrak {N}cap A_{sG}$ 。
{"title":"A CHARACTERISATION OF SOLUBLE -GROUPS","authors":"ZHIGANG WANG, A-MING LIU, VASILY G. SAFONOV, ALEXANDER N. SKIBA","doi":"10.1017/s0004972724000157","DOIUrl":"https://doi.org/10.1017/s0004972724000157","url":null,"abstract":"Let <jats:italic>G</jats:italic> be a finite group. A subgroup <jats:italic>A</jats:italic> of <jats:italic>G</jats:italic> is said to be <jats:italic>S-permutable</jats:italic> in <jats:italic>G</jats:italic> if <jats:italic>A</jats:italic> permutes with every Sylow subgroup <jats:italic>P</jats:italic> of <jats:italic>G</jats:italic>, that is, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline2.png\" /> <jats:tex-math> $AP=PA$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline3.png\" /> <jats:tex-math> $A_{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the subgroup of <jats:italic>A</jats:italic> generated by all <jats:italic>S</jats:italic>-permutable subgroups of <jats:italic>G</jats:italic> contained in <jats:italic>A</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline4.png\" /> <jats:tex-math> $A^{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the intersection of all <jats:italic>S</jats:italic>-permutable subgroups of <jats:italic>G</jats:italic> containing <jats:italic>A</jats:italic>. We prove that if <jats:italic>G</jats:italic> is a soluble group, then <jats:italic>S</jats:italic>-permutability is a transitive relation in <jats:italic>G</jats:italic> if and only if the nilpotent residual <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline5.png\" /> <jats:tex-math> $G^{mathfrak {N}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>G</jats:italic> avoids the pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline6.png\" /> <jats:tex-math> $(A^{s G}, A_{sG})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline7.png\" /> <jats:tex-math> $G^{mathfrak {N}}cap A^{sG}= G^{mathfrak {N}}cap A_{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for every subnormal subgroup <jats:italic>A</jats:italic> of <jats:italic>G</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"28 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140155547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bulletin of the Australian Mathematical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1