Pub Date : 2024-06-04DOI: 10.1017/s0004972724000443
ANDRÉ CARVALHO
We prove that centralisers of elements in [finitely generated free]-by-cyclic groups are computable. As a corollary, given two conjugate elements in a [finitely generated free]-by-cyclic group, the set of conjugators can be computed and the conjugacy problem with context-free constraints is decidable. We pose several problems arising naturally from this work.
{"title":"COMPUTING CENTRALISERS IN [FINITELY GENERATED FREE]-BY-CYCLIC GROUPS","authors":"ANDRÉ CARVALHO","doi":"10.1017/s0004972724000443","DOIUrl":"https://doi.org/10.1017/s0004972724000443","url":null,"abstract":"<p>We prove that centralisers of elements in [finitely generated free]-by-cyclic groups are computable. As a corollary, given two conjugate elements in a [finitely generated free]-by-cyclic group, the set of conjugators can be computed and the conjugacy problem with context-free constraints is decidable. We pose several problems arising naturally from this work.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"55 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1017/s000497272400039x
HAN WANG, ZHI-WEI SUN
<p>We determine the characteristic polynomials of the matrices <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline3.png"><span data-mathjax-type="texmath"><span>$[q^{,j-k}+t]_{1le ,j,kle n}$</span></span></img></span></span> and <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline4.png"><span data-mathjax-type="texmath"><span>$[q^{,j+k}+t]_{1le ,j,kle n}$</span></span></img></span></span> for any complex number <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline5.png"><span data-mathjax-type="texmath"><span>$qnot =0,1$</span></span></img></span></span>. As an application, for complex numbers <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline6.png"><span data-mathjax-type="texmath"><span>$a,b,c$</span></span></img></span></span> with <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline7.png"><span data-mathjax-type="texmath"><span>$bnot =0$</span></span></img></span></span> and <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline8.png"><span data-mathjax-type="texmath"><span>$a^2not =4b$</span></span></img></span></span>, and the sequence <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline9.png"><span data-mathjax-type="texmath"><span>$(w_m)_{min mathbb Z}$</span></span></img></span></span> with <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline10.png"><span data-mathjax-type="texmath"><span>$w_{m+1}=aw_m-bw_{m-1}$</span></span></img></span></span> for all <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline11.png"><span data-mathjax-type="texmath"><span>$min mathbb Z$</span></span></img></span></span>, we determine the exact value of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.
{"title":"CHARACTERISTIC POLYNOMIALS OF THE MATRICES WITH","authors":"HAN WANG, ZHI-WEI SUN","doi":"10.1017/s000497272400039x","DOIUrl":"https://doi.org/10.1017/s000497272400039x","url":null,"abstract":"<p>We determine the characteristic polynomials of the matrices <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$[q^{,j-k}+t]_{1le ,j,kle n}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$[q^{,j+k}+t]_{1le ,j,kle n}$</span></span></img></span></span> for any complex number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$qnot =0,1$</span></span></img></span></span>. As an application, for complex numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$a,b,c$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$bnot =0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$a^2not =4b$</span></span></img></span></span>, and the sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$(w_m)_{min mathbb Z}$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$w_{m+1}=aw_m-bw_{m-1}$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111027021-0956:S000497272400039X:S000497272400039X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$min mathbb Z$</span></span></img></span></span>, we determine the exact value of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"34 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1017/s000497272400042x
PRANJAL TALUKDAR
<p>An integer partition of a positive integer <span>n</span> is called <span>t</span>-core if none of its hook lengths is divisible by <span>t</span>. Gireesh <span>et al.</span> [‘A new analogue of <span>t</span>-core partitions’, <span>Acta Arith.</span> <span>199</span> (2021), 33–53] introduced an analogue <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline1.png"><span data-mathjax-type="texmath"><span>$overline {a}_t(n)$</span></span></img></span></span> of the <span>t</span>-core partition function. They obtained multiplicative formulae and arithmetic identities for <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline2.png"><span data-mathjax-type="texmath"><span>$overline {a}_t(n)$</span></span></img></span></span> where <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline3.png"><span data-mathjax-type="texmath"><span>$t in {3,4,5,8}$</span></span></img></span></span> and studied the arithmetic density of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline4.png"><span data-mathjax-type="texmath"><span>$overline {a}_t(n)$</span></span></img></span></span> modulo <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline5.png"><span data-mathjax-type="texmath"><span>$p_i^{,j}$</span></span></img></span></span> where <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline6.png"><span data-mathjax-type="texmath"><span>$t=p_1^{a_1}cdots p_m^{a_m}$</span></span></img></span></span> and <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline7.png"><span data-mathjax-type="texmath"><span>$p_igeq 5$</span></span></img></span></span> are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, <span>J. Integer Seq.</span> <span>27</span> (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline8
Gireesh 等人['A new analogue of t-core partitions', Acta Arith.他们得到了 $overline {a}_t(n)$ 的乘法公式和算术等式,其中 $t in {3,4,5,8}$ 并研究了 $overline {a}_t(n)$ modulo $p_i^{,j}$ 的算术密度,其中 $t=p_1^{a_1}cdots p_m^{a_m}$ 和 $p_igeq 5$ 都是素数。Bandyopadhyay 和 Baruah [' Arithmetic identities for some analogs of the 5-core partition function', J. Integer Seq.27 (2024), 文章编号 24.4.5]证明了 $overline {a}_5(n)$ 所满足的新算术等式。我们研究了 $/overline {a}_t(n)$ modulo arbitrary powers of 2 and 3 for $t=3^alpha m$ 的算术密度,其中 $gcd (m,6)$=1.另外,利用小野和田口的一个结果['某些模块形式的 2-adic 属性及其在算术函数中的应用',Int.J. Number Theory 1 (2005), 75-101]关于赫克算子零点性的结果,我们证明了 $overline {a}_3(n)$ modulo arbitrary powers of 2 的无穷同余族。
{"title":"ARITHMETIC PROPERTIES OF AN ANALOGUE OF t-CORE PARTITIONS","authors":"PRANJAL TALUKDAR","doi":"10.1017/s000497272400042x","DOIUrl":"https://doi.org/10.1017/s000497272400042x","url":null,"abstract":"<p>An integer partition of a positive integer <span>n</span> is called <span>t</span>-core if none of its hook lengths is divisible by <span>t</span>. Gireesh <span>et al.</span> [‘A new analogue of <span>t</span>-core partitions’, <span>Acta Arith.</span> <span>199</span> (2021), 33–53] introduced an analogue <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$overline {a}_t(n)$</span></span></img></span></span> of the <span>t</span>-core partition function. They obtained multiplicative formulae and arithmetic identities for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$overline {a}_t(n)$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$t in {3,4,5,8}$</span></span></img></span></span> and studied the arithmetic density of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$overline {a}_t(n)$</span></span></img></span></span> modulo <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$p_i^{,j}$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$t=p_1^{a_1}cdots p_m^{a_m}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p_igeq 5$</span></span></img></span></span> are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, <span>J. Integer Seq.</span> <span>27</span> (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline8","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"16 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1017/s0004972724000406
ILPO LAINE, ZINELAABIDINE LATREUCH
We consider the existence problem of meromorphic solutions of the Fermat-type difference equation $$ begin{align*} f(z)^p+f(z+c)^q=h(z), end{align*} $$
where $p,q$ are positive integers, and h has few zeros and poles in the sense that $N(r,h) + N(r,1/h) = S(r,h)$. As a particular case, we consider $h=e^g$, where g is an entire function. Additionally, we briefly discuss the case where h is small with respect to f in the standard sense $T(r,h)=S(r,f)$.
我们考虑费马型差分方程 $$ begin{align*}f(z)^p+f(z+c)^q=h(z), end{align*}的同态解的存在性问题。其中,$p,q$ 为正整数,而 h 的零点和极点很少,即 $N(r,h) + N(r,1/h) = S(r,h)$。作为一种特殊情况,我们考虑 $h=e^g$,其中 g 是一次函数。此外,我们还简要讨论了 h 相对于 f 较小的情况,即标准意义上的 $T(r,h)=S(r,f)$。
{"title":"NOTES ON FERMAT-TYPE DIFFERENCE EQUATIONS","authors":"ILPO LAINE, ZINELAABIDINE LATREUCH","doi":"10.1017/s0004972724000406","DOIUrl":"https://doi.org/10.1017/s0004972724000406","url":null,"abstract":"<p>We consider the existence problem of meromorphic solutions of the Fermat-type difference equation <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ begin{align*} f(z)^p+f(z+c)^q=h(z), end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$p,q$</span></span></img></span></span> are positive integers, and <span>h</span> has few zeros and poles in the sense that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$N(r,h) + N(r,1/h) = S(r,h)$</span></span></img></span></span>. As a particular case, we consider <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$h=e^g$</span></span></img></span></span>, where <span>g</span> is an entire function. Additionally, we briefly discuss the case where <span>h</span> is small with respect to <span>f</span> in the standard sense <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$T(r,h)=S(r,f)$</span></span></img></span></span>.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"69 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1017/s0004972724000364
CHUNHONG LI, YUTIAN LEI
We use potential analysis to study the properties of positive solutions of a discrete Wolff-type equation $$ begin{align*} w(i)=W_{beta,gamma}(w^q)(i), quad i in mathbb{Z}^n. end{align*} $$
Here, $n geq 1$, $min {q,beta }>0$, $1<gamma leq 2$ and $beta gamma <n$. Such an equation can be used to study nonlinear problems on graphs appearing in the study of crystal lattices, neural networks and other discrete models. We use the method of regularity lifting to obtain an optimal summability of positive solutions of the equation. From this result, we obtain the decay rate of $w(i)$ when $|i| to infty $.
我们使用势分析来研究离散的沃尔夫型方程 $$ 的正解的性质: w(i)=W_{beta,gamma}(w^q)(i), quad i in mathbb{Z}^n.end{align*}$$Here, $n geq 1$, $min {q,beta }>0$, $1<gamma leq 2$ and $beta gamma <n$.这样的方程可以用来研究晶格、神经网络和其他离散模型研究中出现的图形上的非线性问题。我们利用正则性提升的方法获得了方程正解的最优求和性。根据这一结果,我们得到了当 $|i| to infty $ 时 $w(i)$ 的衰减率。
{"title":"SUMMABILITY AND ASYMPTOTICS OF POSITIVE SOLUTIONS OF AN EQUATION OF WOLFF TYPE","authors":"CHUNHONG LI, YUTIAN LEI","doi":"10.1017/s0004972724000364","DOIUrl":"https://doi.org/10.1017/s0004972724000364","url":null,"abstract":"<p>We use potential analysis to study the properties of positive solutions of a discrete Wolff-type equation <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ begin{align*} w(i)=W_{beta,gamma}(w^q)(i), quad i in mathbb{Z}^n. end{align*} $$</span></span></img></span></p><p>Here, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$n geq 1$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$min {q,beta }>0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1<gamma leq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$beta gamma <n$</span></span></img></span></span>. Such an equation can be used to study nonlinear problems on graphs appearing in the study of crystal lattices, neural networks and other discrete models. We use the method of regularity lifting to obtain an optimal summability of positive solutions of the equation. From this result, we obtain the decay rate of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$w(i)$</span></span></img></span></span> when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$|i| to infty $</span></span></img></span></span>.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1017/s0004972724000376
COLIN PETITJEAN
We prove that the set of elementary tensors is weakly closed in the projective tensor product of two Banach spaces. As a result, we answer a question of Rodríguez and Rueda Zoca [‘Weak precompactness in projective tensor products’, Indag. Math. (N.S.)35(1) (2024), 60–75], proving that if $(x_n) subset X$ and $(y_n) subset Y$ are two weakly null sequences such that $(x_n otimes y_n)$ converges weakly in $X widehat {otimes }_pi Y$ , then $(x_n otimes y_n)$ is also weakly null.
{"title":"THE SET OF ELEMENTARY TENSORS IS WEAKLY CLOSED IN PROJECTIVE TENSOR PRODUCTS","authors":"COLIN PETITJEAN","doi":"10.1017/s0004972724000376","DOIUrl":"https://doi.org/10.1017/s0004972724000376","url":null,"abstract":"We prove that the set of elementary tensors is weakly closed in the projective tensor product of two Banach spaces. As a result, we answer a question of Rodríguez and Rueda Zoca [‘Weak precompactness in projective tensor products’, <jats:italic>Indag. Math. (N.S.)</jats:italic>35(1) (2024), 60–75], proving that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000376_inline1.png\"/> <jats:tex-math> $(x_n) subset X$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000376_inline2.png\"/> <jats:tex-math> $(y_n) subset Y$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are two weakly null sequences such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000376_inline3.png\"/> <jats:tex-math> $(x_n otimes y_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> converges weakly in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000376_inline4.png\"/> <jats:tex-math> $X widehat {otimes }_pi Y$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000376_inline5.png\"/> <jats:tex-math> $(x_n otimes y_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is also weakly null.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"1153 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1017/s0004972724000248
XUJIAN HUANG, JIABIN LIU, SHUMING WANG
We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping $f: Xrightarrow Y$ satisfying $$ begin{align*} {|f(x)+alpha f(y)|: alphain mathbb{T}}={|x+alpha y|: alphain mathbb{T}}, quad x,yin X, end{align*} $$ where $mathbb {T}$ is the unit circle of the complex plane, there exists a function $sigma : Xrightarrow mathbb {T}$ such that $sigma cdot f$ is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.
{"title":"THE WIGNER PROPERTY OF SMOOTH NORMED SPACES","authors":"XUJIAN HUANG, JIABIN LIU, SHUMING WANG","doi":"10.1017/s0004972724000248","DOIUrl":"https://doi.org/10.1017/s0004972724000248","url":null,"abstract":"We prove that every smooth complex normed space <jats:italic>X</jats:italic> has the Wigner property. That is, for any complex normed space <jats:italic>Y</jats:italic> and every surjective mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_inline1.png\"/> <jats:tex-math> $f: Xrightarrow Y$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_eqnu1.png\"/> <jats:tex-math> $$ begin{align*} {|f(x)+alpha f(y)|: alphain mathbb{T}}={|x+alpha y|: alphain mathbb{T}}, quad x,yin X, end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_inline2.png\"/> <jats:tex-math> $mathbb {T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the unit circle of the complex plane, there exists a function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_inline3.png\"/> <jats:tex-math> $sigma : Xrightarrow mathbb {T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_inline4.png\"/> <jats:tex-math> $sigma cdot f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"2 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1017/s0004972724000339
YOSHINORI HAMAHATA
In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.
{"title":"NORMAL BASES FOR FUNCTION FIELDS","authors":"YOSHINORI HAMAHATA","doi":"10.1017/s0004972724000339","DOIUrl":"https://doi.org/10.1017/s0004972724000339","url":null,"abstract":"<p>In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"64 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1017/s0004972724000327
PENG GAO, LIANGYI ZHAO
We establish upper bounds for moments of smoothed quadratic Dirichlet character sums under the generalized Riemann hypothesis, confirming a conjecture of M. Jutila [‘On sums of real characters’, Tr. Mat. Inst. Steklova132 (1973), 247–250].
我们建立了广义黎曼假设下平滑二次狄利克特特征和的矩上限,证实了 M. 尤蒂拉的猜想['论实数特征和',Tr. Mat. Inst. Steklova 132 (1973), 247-250]。
{"title":"BOUNDS FOR MOMENTS OF QUADRATIC DIRICHLET CHARACTER SUMS","authors":"PENG GAO, LIANGYI ZHAO","doi":"10.1017/s0004972724000327","DOIUrl":"https://doi.org/10.1017/s0004972724000327","url":null,"abstract":"<p>We establish upper bounds for moments of smoothed quadratic Dirichlet character sums under the generalized Riemann hypothesis, confirming a conjecture of M. Jutila [‘On sums of real characters’, <span>Tr. Mat. Inst. Steklova</span> <span>132</span> (1973), 247–250].</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"161 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1017/s0004972724000297
MARCIO COLOMBO FENILLE
Given maps $f_1,ldots ,f_n:Xto Y$ between (finite and connected) graphs, with $ngeq 3$ (the case $n=2$ is well known), we say that they are loose if they can be deformed by homotopy to coincidence free maps, and totally loose if they can be deformed by homotopy to maps which are two by two coincidence free. We prove that: (i) if Y is not homeomorphic to the circle, then any maps are totally loose; (ii) otherwise, any maps are loose and they are totally loose if and only if they are homotopic.
{"title":"MULTIPLE LOOSE MAPS BETWEEN GRAPHS","authors":"MARCIO COLOMBO FENILLE","doi":"10.1017/s0004972724000297","DOIUrl":"https://doi.org/10.1017/s0004972724000297","url":null,"abstract":"Given maps <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000297_inline1.png\" /> <jats:tex-math> $f_1,ldots ,f_n:Xto Y$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between (finite and connected) graphs, with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000297_inline2.png\" /> <jats:tex-math> $ngeq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (the case <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000297_inline3.png\" /> <jats:tex-math> $n=2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is well known), we say that they are <jats:italic>loose</jats:italic> if they can be deformed by homotopy to coincidence free maps, and <jats:italic>totally loose</jats:italic> if they can be deformed by homotopy to maps which are two by two coincidence free. We prove that: (i) if <jats:italic>Y</jats:italic> is not homeomorphic to the circle, then any maps are totally loose; (ii) otherwise, any maps are loose and they are totally loose if and only if they are homotopic.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"211 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}