首页 > 最新文献

Bulletin of the Australian Mathematical Society最新文献

英文 中文
CONGRUENCES FOR RANKS OF PARTITIONS 分区等级的同余
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2024-01-29 DOI: 10.1017/s0004972723001454
RENRONG MAO
Ranks of partitions play an important role in the theory of partitions. They provide combinatorial interpretations for Ramanujan’s famous congruences for partition functions. We establish a family of congruences modulo powers of $5$ for ranks of partitions.
分区秩在分区理论中发挥着重要作用。它们为拉马努扬著名的分区函数全等提供了组合解释。我们为分区的秩建立了一个调制 5$ 的幂的全等族。
{"title":"CONGRUENCES FOR RANKS OF PARTITIONS","authors":"RENRONG MAO","doi":"10.1017/s0004972723001454","DOIUrl":"https://doi.org/10.1017/s0004972723001454","url":null,"abstract":"Ranks of partitions play an important role in the theory of partitions. They provide combinatorial interpretations for Ramanujan’s famous congruences for partition functions. We establish a family of congruences modulo powers of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001454_inline1.png\" /> <jats:tex-math> $5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for ranks of partitions.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139586215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HOMOLOGICAL LINEAR QUOTIENTS AND EDGE IDEALS OF GRAPHS 图的同源线性商和边沿理想
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2024-01-29 DOI: 10.1017/s0004972723001363
NADIA TAGHIPOUR, SHAMILA BAYATI, FARHAD RAHMATI
It is well known that the edge ideal $I(G)$ of a simple graph G has linear quotients if and only if $G^c$ is chordal. We investigate when the property of having linear quotients is inherited by homological shift ideals of an edge ideal. We will see that adding a cluster to the graph $G^c$ when $I(G)$ has homological linear quotients results in a graph with the same property. In particular, $I(G)$ has homological linear quotients when $G^c$ is a block graph. We also show that adding pinnacles to trees preserves the property of having homological linear quotients for the edge ideal of their complements. Furthermore, $I(G)$ has homological linear quotients for every graph G such that $G^c$ is a $lambda $ -min
众所周知,简单图 G 的边理想 $I(G)$ 具有线性商,当且仅当 $G^c$ 是弦性的。我们将研究边理想的同调移动理想何时继承了线性商的性质。我们将看到,当 $I(G)$ 具有同调线性商时,给图 $G^c$ 添加一个簇会得到具有相同性质的图。特别是,当 $G^c$ 是块图时,$I(G)$ 具有同调线性商。我们还证明,将尖顶添加到树中会保留其补集的边理想具有同调线性商的特性。此外,$I(G)$ 对每个图 G 都有同调线性商,这样 $G^c$ 就是一个 $lambda $ 最小弦图。
{"title":"HOMOLOGICAL LINEAR QUOTIENTS AND EDGE IDEALS OF GRAPHS","authors":"NADIA TAGHIPOUR, SHAMILA BAYATI, FARHAD RAHMATI","doi":"10.1017/s0004972723001363","DOIUrl":"https://doi.org/10.1017/s0004972723001363","url":null,"abstract":"It is well known that the edge ideal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline1.png\" /> <jats:tex-math> $I(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a simple graph <jats:italic>G</jats:italic> has linear quotients if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline2.png\" /> <jats:tex-math> $G^c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is chordal. We investigate when the property of having linear quotients is inherited by homological shift ideals of an edge ideal. We will see that adding a cluster to the graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline3.png\" /> <jats:tex-math> $G^c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline4.png\" /> <jats:tex-math> $I(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has homological linear quotients results in a graph with the same property. In particular, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline5.png\" /> <jats:tex-math> $I(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has homological linear quotients when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline6.png\" /> <jats:tex-math> $G^c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a block graph. We also show that adding pinnacles to trees preserves the property of having homological linear quotients for the edge ideal of their complements. Furthermore, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline7.png\" /> <jats:tex-math> $I(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has homological linear quotients for every graph <jats:italic>G</jats:italic> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline8.png\" /> <jats:tex-math> $G^c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001363_inline9.png\" /> <jats:tex-math> $lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-min","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139586223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAXIMAL SUBSEMIGROUPS OF INFINITE SYMMETRIC GROUPS 无限对称群的最大子群
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2024-01-29 DOI: 10.1017/s0004972723001375
SUZANA MENDES-GONÇALVES, R. P. SULLIVAN
Brazil et al. [‘Maximal subgroups of infinite symmetric groups’, Proc. Lond. Math. Soc. (3)68(1) (1994), 77–111] provided a new family of maximal subgroups of the symmetric group $G(X)$ defined on an infinite set X. It is easy to see that, in this case, $G(X)$ contains subsemigroups that are not groups, but nothing is known about nongroup maximal subsemigroups of $G(X)$ . We provide infinitely many examples of such semigroups.
Brazil et al. ['Maximal subgroups of infinite symmetric groups', Proc.Lond.Math.(3)68(1) (1994), 77-111] 提供了定义在无限集 X 上的对称群 $G(X)$ 的最大子群的新族。我们提供了无限多此类半群的例子。
{"title":"MAXIMAL SUBSEMIGROUPS OF INFINITE SYMMETRIC GROUPS","authors":"SUZANA MENDES-GONÇALVES, R. P. SULLIVAN","doi":"10.1017/s0004972723001375","DOIUrl":"https://doi.org/10.1017/s0004972723001375","url":null,"abstract":"Brazil <jats:italic>et al</jats:italic>. [‘Maximal subgroups of infinite symmetric groups’, <jats:italic>Proc. Lond. Math. Soc. (3)</jats:italic>68(1) (1994), 77–111] provided a new family of maximal subgroups of the symmetric group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001375_inline1.png\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defined on an infinite set <jats:italic>X</jats:italic>. It is easy to see that, in this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001375_inline2.png\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains subsemigroups that are not groups, but nothing is known about nongroup maximal subsemigroups of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001375_inline3.png\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide infinitely many examples of such semigroups.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139586222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON THE CHARACTERISATION OF ALTERNATING GROUPS BY CODEGREES 关于交替群的编码度特征
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2024-01-26 DOI: 10.1017/s0004972723001429
MALLORY DOLORFINO, LUKE MARTIN, ZACHARY SLONIM, YUXUAN SUN, YONG YANG
Let G be a finite group and $mathrm {Irr}(G)$ the set of all irreducible complex characters of G. Define the codegree of $chi in mathrm {Irr}(G)$ as $mathrm {cod}(chi ):={|G:mathrm {ker}(chi ) |}/{chi (1)}$ and let $mathrm {cod}(G):={mathrm {cod}(chi ) mid chi in mathrm {Irr}(G)}$ be the codegree set of G. Let $mathrm {A}_n$ be an alternating group of degree $n ge 5$ . We show that $mathrm {A}_n$ is determined up to isomorphism by $operatorname {cod}(mathrm {A}_n)$ .
让 G 是一个有限群,$mathrm {Irrr}(G)$ 是 G 所有不可还原复字符的集合。定义 $chi 在 mathrm {Irr}(G)$ 中的codegree为 $mathrm {cod}(chi ):={|G:|}/{chi (1)}$ 并且让 $mathrm {cod}(G):={mathrm {cod}(chi ) mid chi in mathrm {Irrr}(G)}$ 是 G 的codegree集合。让 $mathrm {A}_n$ 是一个度数为 $nge 5$ 的交替群。我们证明 $mathrm {A}_n$ 是由 $operatorname {cod}(mathrm {A}_n)$ 同构决定的。
{"title":"ON THE CHARACTERISATION OF ALTERNATING GROUPS BY CODEGREES","authors":"MALLORY DOLORFINO, LUKE MARTIN, ZACHARY SLONIM, YUXUAN SUN, YONG YANG","doi":"10.1017/s0004972723001429","DOIUrl":"https://doi.org/10.1017/s0004972723001429","url":null,"abstract":"Let <jats:italic>G</jats:italic> be a finite group and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001429_inline1.png\" /> <jats:tex-math> $mathrm {Irr}(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> the set of all irreducible complex characters of <jats:italic>G</jats:italic>. Define the codegree of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001429_inline2.png\" /> <jats:tex-math> $chi in mathrm {Irr}(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001429_inline3.png\" /> <jats:tex-math> $mathrm {cod}(chi ):={|G:mathrm {ker}(chi ) |}/{chi (1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001429_inline4.png\" /> <jats:tex-math> $mathrm {cod}(G):={mathrm {cod}(chi ) mid chi in mathrm {Irr}(G)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the codegree set of <jats:italic>G</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001429_inline5.png\" /> <jats:tex-math> $mathrm {A}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an alternating group of degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001429_inline6.png\" /> <jats:tex-math> $n ge 5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001429_inline7.png\" /> <jats:tex-math> $mathrm {A}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is determined up to isomorphism by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001429_inline8.png\" /> <jats:tex-math> $operatorname {cod}(mathrm {A}_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139586153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COMPLETE EMBEDDINGS OF GROUPS 群的完全嵌入
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2024-01-26 DOI: 10.1017/s0004972723001442
MARTIN R. BRIDSON, HAMISH SHORT
Every countable group G can be embedded in a finitely generated group $G^*$ that is hopfian and complete, that is, $G^*$ has trivial centre and every epimorphism $G^*to G^*$ is an inner automorphism. Every finite subgroup of $G^*$ is conjugate to a finite subgroup of G. If G has a finite presentation (respectively, a finite classifying space), then so does $G^*$ . Our construction of $G^*$ relies on the existence of closed hyperbolic 3-manifolds that are asymmetric and non-Haken.
每个可数群 G 都可以嵌入一个有限生成的群 $G^*$,而这个群是跳化的和完全的,也就是说,$G^*$ 有微不足道的中心,并且每个外变 $G^*to G^*$ 都是一个内自变。$G^*$ 的每个有限子群都与 G 的一个有限子群共轭。如果 G 有一个有限的呈现(分别是有限的分类空间),那么 $G^*$ 也是如此。我们对 $G^*$ 的构造依赖于非对称和非哈肯的封闭双曲 3-manifolds。
{"title":"COMPLETE EMBEDDINGS OF GROUPS","authors":"MARTIN R. BRIDSON, HAMISH SHORT","doi":"10.1017/s0004972723001442","DOIUrl":"https://doi.org/10.1017/s0004972723001442","url":null,"abstract":"Every countable group <jats:italic>G</jats:italic> can be embedded in a finitely generated group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001442_inline1.png\" /> <jats:tex-math> $G^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that is hopfian and <jats:italic>complete</jats:italic>, that is, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001442_inline2.png\" /> <jats:tex-math> $G^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has trivial centre and every epimorphism <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001442_inline3.png\" /> <jats:tex-math> $G^*to G^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an inner automorphism. Every finite subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001442_inline4.png\" /> <jats:tex-math> $G^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is conjugate to a finite subgroup of <jats:italic>G</jats:italic>. If <jats:italic>G</jats:italic> has a finite presentation (respectively, a finite classifying space), then so does <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001442_inline5.png\" /> <jats:tex-math> $G^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our construction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001442_inline6.png\" /> <jats:tex-math> $G^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> relies on the existence of closed hyperbolic 3-manifolds that are asymmetric and non-Haken.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139586224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NEAR OPTIMAL THRESHOLDS FOR EXISTENCE OF DILATED CONFIGURATIONS IN 中存在扩张构型的近似最佳阈值
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2024-01-26 DOI: 10.1017/s0004972723001399
PABLO BHOWMIK, FIRDAVS RAKHMONOV
Let $mathbb {F}_q^d$ denote the d-dimensional vector space over the finite field $mathbb {F}_q$ with q elements. Define for $alpha = (alpha _1, dots , alpha _d) in mathbb {F}_q^d$ . Let $kin mathbb {N}$ , A be a nonempty subset of ${(i, j): 1 leq i < j leq k + 1}$ and $rin (mathbb {F}_q)^2setminus {0}$ , where $(mathbb {F}_q)^2={a^2:ain mathbb {F}_q}$ . If $Esubset mathbb {F}_q^d$ , our main result demonstrates that when the size of the set E satisfies $|E| geq C_k q^{d/2}$ , where
让 $mathbb {F}_q^d$ 表示有限域 $mathbb {F}_q$ 上有 q 个元素的 d 维向量空间。在 mathbb {F}_q^d$ 中定义 $alpha = (alpha _1, dots , alpha _d) 。让 $kin mathbb {N}$ , A 是 ${(i, j) 的一个非空子集:1 leq i < j leq k + 1}$ 和 $rin (mathbb {F}_q)^2setminus {0}$ , 其中 $(mathbb {F}_q)^2={a^2:a in mathbb {F}_q}$ .如果 $Esubset mathbb {F}_q^d$ ,我们的主要结果表明,当集合 E 的大小满足 $|E| geq C_k q^{d/2}$ 时,其中 $C_k$ 是一个完全取决于 k 的常数,那么就有可能在 E 中找到两个 $(k+1)$ 图元,使得其中一个图元相对于另一个图元扩张了 r,但只沿着 $|A|$ 边。更准确地说,我们确定在 E^{k+1}$ 中存在 $(x_1, dots , x_{k+1}) ,在 E^{k+1}$ 中存在 $(y_1, dots , y_{k+1}) ,这样,对于 $(i, j) in A$ 、我们有 $lVert y_i - y_j rVert = r lVert x_i - x_j rVert $ ,条件是 $x_i neq x_j$ 和 $y_i neq y_j$ for $1 leq i <;j leq k + 1$ 条件是 $|E| geq C_k q^{d/2}$ 和 $rin (mathbb {F}_q)^2setminus {0}$ 。我们为这一结果提供了两个不同的证明。第一个证明使用了群作用技术,这是解决此类问题的一种强有力的方法;第二个证明则基于基本的组合推理。此外,我们还证明了在维度 2 中,当 $q equiv 3 pmod 4$ 时,阈值 $d/2$ 是尖锐的。作为主要结果的推论,通过改变底层集合 A,我们确定了扩张 k 循环、k 路径和 k 星(其中 $k geq 3$ )存在的阈值,其扩张比为 $rin (mathbb {F}_q)^2setminus {0}$ 。这些结果改进并概括了 Xie 和 Ge 的发现['Some results on similar configurations in subsets of $mathbb {F}_q^d$ ', Finite Fields Appl.91 (2023), Article no.102252, 20 pages].
{"title":"NEAR OPTIMAL THRESHOLDS FOR EXISTENCE OF DILATED CONFIGURATIONS IN","authors":"PABLO BHOWMIK, FIRDAVS RAKHMONOV","doi":"10.1017/s0004972723001399","DOIUrl":"https://doi.org/10.1017/s0004972723001399","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline2.png\" /> <jats:tex-math> $mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the <jats:italic>d</jats:italic>-dimensional vector space over the finite field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline3.png\" /> <jats:tex-math> $mathbb {F}_q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>q</jats:italic> elements. Define <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline4.png\" /> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline5.png\" /> <jats:tex-math> $alpha = (alpha _1, dots , alpha _d) in mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline6.png\" /> <jats:tex-math> $kin mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:italic>A</jats:italic> be a nonempty subset of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline7.png\" /> <jats:tex-math> ${(i, j): 1 leq i &lt; j leq k + 1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline8.png\" /> <jats:tex-math> $rin (mathbb {F}_q)^2setminus {0}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline9.png\" /> <jats:tex-math> $(mathbb {F}_q)^2={a^2:ain mathbb {F}_q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline10.png\" /> <jats:tex-math> $Esubset mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, our main result demonstrates that when the size of the set <jats:italic>E</jats:italic> satisfies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline11.png\" /> <jats:tex-math> $|E| geq C_k q^{d/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <ja","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139589880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BOUNDING ZETA ON THE 1-LINE UNDER THE PARTIAL RIEMANN HYPOTHESIS 部分里曼假设下的单线上的Zeta界限
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2024-01-10 DOI: 10.1017/s0004972723001338
ANDRÉS CHIRRE

We provide explicit bounds for the Riemann zeta-function on the line $mathrm {Re},{s}=1$, assuming that the Riemann hypothesis holds up to height T. In particular, we improve some bounds in finite regions for the logarithmic derivative and the reciprocal of the Riemann zeta-function.

我们为直线 $mathrm {Re},{s}=1$ 上的黎曼zeta函数提供了明确的边界,假定黎曼假设在高度 T 上成立。特别是,我们改进了黎曼zeta函数的对数导数和倒数在有限区域内的一些边界。
{"title":"BOUNDING ZETA ON THE 1-LINE UNDER THE PARTIAL RIEMANN HYPOTHESIS","authors":"ANDRÉS CHIRRE","doi":"10.1017/s0004972723001338","DOIUrl":"https://doi.org/10.1017/s0004972723001338","url":null,"abstract":"<p>We provide explicit bounds for the Riemann zeta-function on the line <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240109124905552-0701:S0004972723001338:S0004972723001338_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathrm {Re},{s}=1$</span></span></img></span></span>, assuming that the Riemann hypothesis holds up to height <span>T</span>. In particular, we improve some bounds in finite regions for the logarithmic derivative and the reciprocal of the Riemann zeta-function.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139414794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COUNTING UNIONS OF SCHREIER SETS 施赖尔集合的计数联合
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2023-12-27 DOI: 10.1017/s0004972723001326
KEVIN BEANLAND, DMITRIY GOROVOY, JĘDRZEJ HODOR, DANIIL HOMZA
A subset of positive integers F is a Schreier set if it is nonempty and $|F|leqslant min F$ (here $|F|$ is the cardinality of F). For each positive integer k, we define $kmathcal {S}$ as the collection of all the unions of at most k Schreier sets. Also, for each positive integer n, let $(kmathcal {S})^n$ be the collection of all sets in $kmathcal {S}$ with maximum element equal to n. It is well known that the sequence $(|(1mathcal {S})^n|)_{n=1}^infty $ is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence $(|(kmathcal {S})^n|)_{n=1}^infty $ satisfies a linear recurrence for every positive k.
如果一个正整数子集 F 是非空的,并且 $|F|leqslant min F$(这里 $|F|$ 是 F 的万有引力),那么它就是施赖耶集。对于每个正整数 k,我们定义 $kmathcal {S}$ 为最多 k 个施赖尔集合的所有联合的集合。另外,对于每个正整数 n,让 $(kmathcal {S})^n$ 成为 $kmathcal {S}$ 中最大元素等于 n 的所有集合的集合。众所周知,序列 $(|(1mathcal {S})^n|)_{n=1}^infty $ 就是斐波那契序列。特别是,该序列满足线性递推。我们证明了序列 $(|(kmathcal {S})^n|)_{n=1}^infty $ 满足每一个正 k 的线性递归。
{"title":"COUNTING UNIONS OF SCHREIER SETS","authors":"KEVIN BEANLAND, DMITRIY GOROVOY, JĘDRZEJ HODOR, DANIIL HOMZA","doi":"10.1017/s0004972723001326","DOIUrl":"https://doi.org/10.1017/s0004972723001326","url":null,"abstract":"A subset of positive integers <jats:italic>F</jats:italic> is a Schreier set if it is nonempty and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline1.png\" /> <jats:tex-math> $|F|leqslant min F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (here <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline2.png\" /> <jats:tex-math> $|F|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the cardinality of <jats:italic>F</jats:italic>). For each positive integer <jats:italic>k</jats:italic>, we define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline3.png\" /> <jats:tex-math> $kmathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as the collection of all the unions of at most <jats:italic>k</jats:italic> Schreier sets. Also, for each positive integer <jats:italic>n</jats:italic>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline4.png\" /> <jats:tex-math> $(kmathcal {S})^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the collection of all sets in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline5.png\" /> <jats:tex-math> $kmathcal {S}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with maximum element equal to <jats:italic>n</jats:italic>. It is well known that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline6.png\" /> <jats:tex-math> $(|(1mathcal {S})^n|)_{n=1}^infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Fibonacci sequence. In particular, the sequence satisfies a linear recurrence. We show that the sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001326_inline7.png\" /> <jats:tex-math> $(|(kmathcal {S})^n|)_{n=1}^infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a linear recurrence for every positive <jats:italic>k</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139052831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SOLVABLE GROUPS WHOSE NONNORMAL SUBGROUPS HAVE FEW ORDERS 非正常子群阶数少的可解群
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2023-12-27 DOI: 10.1017/s0004972723001168
LIJUAN HE, HENG LV, GUIYUN CHEN
Suppose that G is a finite solvable group. Let $t=n_c(G)$ denote the number of orders of nonnormal subgroups of G. We bound the derived length $dl(G)$ in terms of $n_c(G)$ . If G is a finite p-group, we show that $|G'|leq p^{2t+1}$ and $dl(G)leq lceil log _2(2t+3)rceil $ . If G is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of $|G'|$ is less than t and that $dl(G)leq lfloor 2(t+1)/3rfloor +1$ .
假设 G 是一个有限可解群。让 $t=n_c(G)$ 表示 G 的非正则子群的阶数。我们用 $n_c(G)$ 约束派生长度 $dl(G)$ 。如果 G 是有限 p 群,我们证明 $|G'|leq p^{2t+1}$ 和 $dl(G)leq lceil log _2(2t+3)rceil $ 。如果 G 是一个有限可解的非幂群,我们证明 $|G'|$ 的素除数的幂和小于 t 并且 $dl(G)leq lfloor 2(t+1)/3rfloor +1$ .
{"title":"SOLVABLE GROUPS WHOSE NONNORMAL SUBGROUPS HAVE FEW ORDERS","authors":"LIJUAN HE, HENG LV, GUIYUN CHEN","doi":"10.1017/s0004972723001168","DOIUrl":"https://doi.org/10.1017/s0004972723001168","url":null,"abstract":"Suppose that <jats:italic>G</jats:italic> is a finite solvable group. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline1.png\" /> <jats:tex-math> $t=n_c(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the number of orders of nonnormal subgroups of <jats:italic>G</jats:italic>. We bound the derived length <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline2.png\" /> <jats:tex-math> $dl(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline3.png\" /> <jats:tex-math> $n_c(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:italic>G</jats:italic> is a finite <jats:italic>p</jats:italic>-group, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline4.png\" /> <jats:tex-math> $|G'|leq p^{2t+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline5.png\" /> <jats:tex-math> $dl(G)leq lceil log _2(2t+3)rceil $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:italic>G</jats:italic> is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline6.png\" /> <jats:tex-math> $|G'|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is less than <jats:italic>t</jats:italic> and that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline7.png\" /> <jats:tex-math> $dl(G)leq lfloor 2(t+1)/3rfloor +1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139052909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
INTERSECTING THE TORSION OF ELLIPTIC CURVES 与椭圆曲线的扭转相交
IF 0.7 4区 数学 Q3 Mathematics Pub Date : 2023-12-27 DOI: 10.1017/s000497272300134x
NATALIA GARCIA-FRITZ, HECTOR PASTEN
Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, Diophantine Geometry, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves $E_1$ and $E_2$ along with even degree- $2$ maps $pi _jcolon E_jto mathbb {P}^1$ having different branch loci, the intersection of the image of the torsion points of $E_1$ and $E_2$ under their respective $pi _j$ is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree- $2$ maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna th
), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73-91]证明,给定两条复椭圆曲线 $E_1$ 和 $E_2$ 以及具有不同分支位置的偶数阶-2$ 映射 $pi _jcolon E_jto mathbb {P}^1$, $E_1$ 和 $E_2$ 在各自的 $pi _j$ 下的扭转点的像的交集是有限的。他们猜想(也是在与傅雷的合作中),这个交点的心率是均匀有界的,与椭圆曲线无关。最近对均匀马宁-芒福德猜想的证明意味着博戈莫洛夫-傅-茨钦克尔猜想的全解。在本文中,我们证明了博戈莫洛夫-傅-茨钦克尔猜想的广义化,即我们可以使用椭圆曲线上任何有界度的有理函数,只要它们有不同的分支位置,而不是偶数度-2$映射。我们的方法结合了内万林纳理论和统一马宁-芒福德猜想。通过类似的技术,我们还证明了一个关于数域上椭圆曲线秩下界的结果。
{"title":"INTERSECTING THE TORSION OF ELLIPTIC CURVES","authors":"NATALIA GARCIA-FRITZ, HECTOR PASTEN","doi":"10.1017/s000497272300134x","DOIUrl":"https://doi.org/10.1017/s000497272300134x","url":null,"abstract":"Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, <jats:italic>Diophantine Geometry</jats:italic>, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline1.png\" /> <jats:tex-math> $E_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline2.png\" /> <jats:tex-math> $E_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> along with even degree-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline3.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> maps <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline4.png\" /> <jats:tex-math> $pi _jcolon E_jto mathbb {P}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having different branch loci, the intersection of the image of the torsion points of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline5.png\" /> <jats:tex-math> $E_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline6.png\" /> <jats:tex-math> $E_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under their respective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline7.png\" /> <jats:tex-math> $pi _j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272300134X_inline8.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna th","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bulletin of the Australian Mathematical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1