Pub Date : 2023-01-03DOI: 10.1177/01436244221148306
Xinwen Zhang, K. Rhee, G. Jung
A ground source heat pump (GSHP) delivers heat from a condenser to the ground when it operates with cooling mode. However, the ground temperature increases when the GSHP system operates for a long time. The increased ground temperature can deteriorate the GSHP’s coefficient of performance (COP). To maintain the balance between the ground temperature and COP, the condensation heat from the cooling GSHP can be used for other heating systems before it is transferred to the ground. This study proposes a combined GSHP system connecting a three RT cooling GSHP with a 1.5 RT domestic hot water (DHW) heat pump, and the performance of the system was evaluated through mock-up experiments. In the combined GSHP system, the condensation heat of the cooling system was used as the heat source of the DHW system. Therefore, the ground temperature could be reduced, and the performances of both the GSHP cooler and DHW heater pump could be enhanced. Mock-up experiments for performance evaluation were conducted with cooling-only, DHW-only, and cooling-DHW operational modes. The results showed that cooling-DHW operation slowed down the change in heat source temperature. In comparison with those of the cooling-only and DWH-only heat pumps, the COPs of the cooling heat pump and DHW heat pump of the combined system were increased by 12.93% and 15.47%, respectively. Moreover, the total COP of the cooling-DHW combined GSHP system increased by 4.4% and 29.55% in comparison with those of the cooling-only GSHP and DHW-only GSHP systems, respectively. Practical application A combined GSHP system was proposed by connecting a GSHP for space cooling with a heat pump for DHW to mitigate the ground temperature changes due to the long-term operation of the GSHP system. The combined system reuses the condensation heat generated by the cooling heat pump as the heat source of the DHW heat pump for ensuring the system performance and building energy saving. Therefore, this system is suitable for buildings with large energy use and heavy hot water demand, especially in summer, such as hospital and hotel buildings.
{"title":"Mock-up experimental study on the performance of a combined cooling-domestic hot water-ground source heat pump system","authors":"Xinwen Zhang, K. Rhee, G. Jung","doi":"10.1177/01436244221148306","DOIUrl":"https://doi.org/10.1177/01436244221148306","url":null,"abstract":"A ground source heat pump (GSHP) delivers heat from a condenser to the ground when it operates with cooling mode. However, the ground temperature increases when the GSHP system operates for a long time. The increased ground temperature can deteriorate the GSHP’s coefficient of performance (COP). To maintain the balance between the ground temperature and COP, the condensation heat from the cooling GSHP can be used for other heating systems before it is transferred to the ground. This study proposes a combined GSHP system connecting a three RT cooling GSHP with a 1.5 RT domestic hot water (DHW) heat pump, and the performance of the system was evaluated through mock-up experiments. In the combined GSHP system, the condensation heat of the cooling system was used as the heat source of the DHW system. Therefore, the ground temperature could be reduced, and the performances of both the GSHP cooler and DHW heater pump could be enhanced. Mock-up experiments for performance evaluation were conducted with cooling-only, DHW-only, and cooling-DHW operational modes. The results showed that cooling-DHW operation slowed down the change in heat source temperature. In comparison with those of the cooling-only and DWH-only heat pumps, the COPs of the cooling heat pump and DHW heat pump of the combined system were increased by 12.93% and 15.47%, respectively. Moreover, the total COP of the cooling-DHW combined GSHP system increased by 4.4% and 29.55% in comparison with those of the cooling-only GSHP and DHW-only GSHP systems, respectively. Practical application A combined GSHP system was proposed by connecting a GSHP for space cooling with a heat pump for DHW to mitigate the ground temperature changes due to the long-term operation of the GSHP system. The combined system reuses the condensation heat generated by the cooling heat pump as the heat source of the DHW heat pump for ensuring the system performance and building energy saving. Therefore, this system is suitable for buildings with large energy use and heavy hot water demand, especially in summer, such as hospital and hotel buildings.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"187 - 209"},"PeriodicalIF":1.7,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46882186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-26DOI: 10.1177/01436244221145392
R. Bunn, E. Burman, James Warne, Jamie Bull, J. Field
New and refurbished non-domestic buildings are failing to live up to their anticipated performance. Shortfalls show in excess energy consumption, high carbon dioxide emissions and other failings in quantitative and qualitative performance metrics. This paper describes the component parts of the performance gap using evidence from building performance evaluations. It introduces a way of visualising the consequences of decisions and actions that are known to compromise performance outcomes using a performance curve methodology (the S-curve) which plots performance, and the root causes of underperformance, from project inception to initial operation and beyond. The paper tests the hypothesis with two case studies. It also covers the initial development of a prototype visualisation tool designed to enable live projects to track emerging operational energy and emissions against a high energy and emissions trajectory created from empirical evidence. The tool aims to help practitioners identify key risk factors that could compromise building performance and mitigate these risks at different stages of procurement. Practical application: The Operational Energy and Carbon (OpEC) visualisation tool is designed for wide industrial application, on all sizes of a non-domestic building project, large and small. It aims to visualise the likely outturn energy performance of a project by calculating the penalties for shortcomings in project delivery. The penalties are visualised as weighted trajectories of energy and carbon dioxide emissions. The prototype tool aims to fill a gap between the capabilities of powerful energy modelling tools used in design and the capacity of non-specialist stakeholders to understand the emerging energy characteristics of a project as it moves through procurement, design, construction, and delivery.
{"title":"Tracking building operational energy and carbon emissions using S-curve trajectories—a prototype tool","authors":"R. Bunn, E. Burman, James Warne, Jamie Bull, J. Field","doi":"10.1177/01436244221145392","DOIUrl":"https://doi.org/10.1177/01436244221145392","url":null,"abstract":"New and refurbished non-domestic buildings are failing to live up to their anticipated performance. Shortfalls show in excess energy consumption, high carbon dioxide emissions and other failings in quantitative and qualitative performance metrics. This paper describes the component parts of the performance gap using evidence from building performance evaluations. It introduces a way of visualising the consequences of decisions and actions that are known to compromise performance outcomes using a performance curve methodology (the S-curve) which plots performance, and the root causes of underperformance, from project inception to initial operation and beyond. The paper tests the hypothesis with two case studies. It also covers the initial development of a prototype visualisation tool designed to enable live projects to track emerging operational energy and emissions against a high energy and emissions trajectory created from empirical evidence. The tool aims to help practitioners identify key risk factors that could compromise building performance and mitigate these risks at different stages of procurement. Practical application: The Operational Energy and Carbon (OpEC) visualisation tool is designed for wide industrial application, on all sizes of a non-domestic building project, large and small. It aims to visualise the likely outturn energy performance of a project by calculating the penalties for shortcomings in project delivery. The penalties are visualised as weighted trajectories of energy and carbon dioxide emissions. The prototype tool aims to fill a gap between the capabilities of powerful energy modelling tools used in design and the capacity of non-specialist stakeholders to understand the emerging energy characteristics of a project as it moves through procurement, design, construction, and delivery.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"135 - 154"},"PeriodicalIF":1.7,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45084141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-16DOI: 10.1177/01436244221146028
Building simulation engineers have much to offer the humanitarian shelter sector, however they are not often brought into play in a disaster. Hence, we suggest a practical role they can take is in examining strategies before disasters and in creating knowledge or analysis methods that aid agency staff can apply on the ground. Here we showcase this approach. It is clear that although dynamic thermal simulation is highly useful, psycho-social aspects are equally important, thus engineers are likely to need to use tools that consider such aspects in order to maximize the usefulness of their conclusions
{"title":"Practical applications","authors":"","doi":"10.1177/01436244221146028","DOIUrl":"https://doi.org/10.1177/01436244221146028","url":null,"abstract":"Building simulation engineers have much to offer the humanitarian shelter sector, however they are not often brought into play in a disaster. Hence, we suggest a practical role they can take is in examining strategies before disasters and in creating knowledge or analysis methods that aid agency staff can apply on the ground. Here we showcase this approach. It is clear that although dynamic thermal simulation is highly useful, psycho-social aspects are equally important, thus engineers are likely to need to use tools that consider such aspects in order to maximize the usefulness of their conclusions","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"3 - 4"},"PeriodicalIF":1.7,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46446023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-29DOI: 10.1177/01436244221143308
Xi Zhang, J. Du, S. Sharples
Prefabricated timber houses have received growing attention in China recently as being one possible approach to mitigating climate change impacts. This article presents the results from a dynamic thermal simulation parametric analysis of building characteristics and primary energy consumption, embodied and operational carbon of newly built prefabricated timber house types in northern China for current and future climates (2050 and 2080). The dynamic thermal modelling software DesignBuilder (+EnergyPlus) was adopted as the simulation package. The main findings from the study were: (i) by 2080 climate change could increase energy demand by 13% for a terraced house, by 10% for a semi-detached house, and by 6% for a detached house, with corresponding increased carbon emissions of 27%, 26% and 23% respectively; (ii) in 2080, a terraced house would achieve 74% energy demand and 90% carbon emissions of a detached house; (iii) increasing the window-to-wall ratio from 0.25 to 0.45 would lead to 31% increase in energy demand, and 42% increase in carbon emissions in 2080; (iv) adjusting the configuration of key timber structural components (walls and floors) could lead to reductions of 19% in primary energy demand, 23% in operational carbon, and 6% in embodied carbon. Practical applications A terraced timber house with south-facing and a window-to-wall ratio of 0.25 would be an optimal configuration to mitigate climate change impacts in northern China. The adjustment of prefabricated timber wall structure could give rise to significant reductions in primary energy consumption, operational carbon emissions, and embodied carbon.
{"title":"A parametric analysis of future climate change effects on the energy performance and carbon emissions of a Chinese prefabricated timber house","authors":"Xi Zhang, J. Du, S. Sharples","doi":"10.1177/01436244221143308","DOIUrl":"https://doi.org/10.1177/01436244221143308","url":null,"abstract":"Prefabricated timber houses have received growing attention in China recently as being one possible approach to mitigating climate change impacts. This article presents the results from a dynamic thermal simulation parametric analysis of building characteristics and primary energy consumption, embodied and operational carbon of newly built prefabricated timber house types in northern China for current and future climates (2050 and 2080). The dynamic thermal modelling software DesignBuilder (+EnergyPlus) was adopted as the simulation package. The main findings from the study were: (i) by 2080 climate change could increase energy demand by 13% for a terraced house, by 10% for a semi-detached house, and by 6% for a detached house, with corresponding increased carbon emissions of 27%, 26% and 23% respectively; (ii) in 2080, a terraced house would achieve 74% energy demand and 90% carbon emissions of a detached house; (iii) increasing the window-to-wall ratio from 0.25 to 0.45 would lead to 31% increase in energy demand, and 42% increase in carbon emissions in 2080; (iv) adjusting the configuration of key timber structural components (walls and floors) could lead to reductions of 19% in primary energy demand, 23% in operational carbon, and 6% in embodied carbon. \u0000 Practical applications\u0000 A terraced timber house with south-facing and a window-to-wall ratio of 0.25 would be an optimal configuration to mitigate climate change impacts in northern China. The adjustment of prefabricated timber wall structure could give rise to significant reductions in primary energy consumption, operational carbon emissions, and embodied carbon.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"167 - 185"},"PeriodicalIF":1.7,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43150566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-22DOI: 10.1177/01436244221138778
Roger Hitchin
The energy performance of appliances, buildings and groups of buildings is commonly assessed in terms of equivalent carbon emissions or primary energy, usually following procedures defined by regulations. The most appropriate treatment of energy (usually heat) that is rejected as waste from one process, but which may be a useful input to another process, is not obvious and has proved to be problematic. This note describes and illustrates how the situation can be handled by adapting a procedure that is already in use for somewhat similar purposes. The direct users of the approach are likely to be developers and system designers, but since the procedures are often set by regulation, the most important potential users are those responsible for the regulations The principal features of the procedure are that • The use of waste energy reduces the primary energy (or carbon emissions) attributed to the “donor” process: by allocating some of it to the eventual user: an equitable principle. • The total primary energy (or carbon emissions) of the output streams equals the input to the transformation process: a fundamental requirement • The PEF values of outputs are never negative: required for physical plausibility • If there is only one useful output, all the primary energy is assigned to it: for consistency with the fundamental assumptions of the policy metric • The PEF assigned to the recipient user is lower than that of the alternative supply (if its PEF is zero, so is the that of the waste heat) The principal challenge is the need to define a “counterfactual” alternative source of energy for the recipient’s energy needs: options for this this discussed in the note Practical application : The question of the most appropriate convention for the assignment of primary energy and carbon emissions to the application of energy flows that have traditionally considered to be waste has gained importance in recent years, especially in the context of energy distribution systems that transfer energy between buildings. It seems reasonable that the “donor” of the waste energy should be incentivised by a reduction of the primary energy consumption or carbon emissions that is attributed to them (with the reduction balanced by a compensating attribution to the user of the “waste” energy). This is not reflected by the currently widespread convention that waste energy can always be considered to have a carbon intensity and primary energy factor (PEF) of zero. This Technical Note sets out a procedure to achieve this. It is suggested that its application would result in a more equitable and consistent attribution of primary energy and carbon emissions and therefore more robust design of systems that reuse “waste” energy.
{"title":"The primary energy factor and carbon intensity of waste energy","authors":"Roger Hitchin","doi":"10.1177/01436244221138778","DOIUrl":"https://doi.org/10.1177/01436244221138778","url":null,"abstract":"The energy performance of appliances, buildings and groups of buildings is commonly assessed in terms of equivalent carbon emissions or primary energy, usually following procedures defined by regulations. The most appropriate treatment of energy (usually heat) that is rejected as waste from one process, but which may be a useful input to another process, is not obvious and has proved to be problematic. This note describes and illustrates how the situation can be handled by adapting a procedure that is already in use for somewhat similar purposes. The direct users of the approach are likely to be developers and system designers, but since the procedures are often set by regulation, the most important potential users are those responsible for the regulations The principal features of the procedure are that • The use of waste energy reduces the primary energy (or carbon emissions) attributed to the “donor” process: by allocating some of it to the eventual user: an equitable principle. • The total primary energy (or carbon emissions) of the output streams equals the input to the transformation process: a fundamental requirement • The PEF values of outputs are never negative: required for physical plausibility • If there is only one useful output, all the primary energy is assigned to it: for consistency with the fundamental assumptions of the policy metric • The PEF assigned to the recipient user is lower than that of the alternative supply (if its PEF is zero, so is the that of the waste heat) The principal challenge is the need to define a “counterfactual” alternative source of energy for the recipient’s energy needs: options for this this discussed in the note Practical application : The question of the most appropriate convention for the assignment of primary energy and carbon emissions to the application of energy flows that have traditionally considered to be waste has gained importance in recent years, especially in the context of energy distribution systems that transfer energy between buildings. It seems reasonable that the “donor” of the waste energy should be incentivised by a reduction of the primary energy consumption or carbon emissions that is attributed to them (with the reduction balanced by a compensating attribution to the user of the “waste” energy). This is not reflected by the currently widespread convention that waste energy can always be considered to have a carbon intensity and primary energy factor (PEF) of zero. This Technical Note sets out a procedure to achieve this. It is suggested that its application would result in a more equitable and consistent attribution of primary energy and carbon emissions and therefore more robust design of systems that reuse “waste” energy.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"81 - 89"},"PeriodicalIF":1.7,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48238586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-08DOI: 10.1177/01436244221137241
N. Kunwar, M. Bhandari, Piljae Im, Brian Fricke, Jason DeGraw, T. Kuruganti
Calibrated building energy simulation is an important pathway to more energy-efficient buildings, but the information requirements of some approaches to this problem are significant. This is particularly true for supermarkets and other so-called “big-box” retail stores. Another characteristic of supermarkets is the significant interaction between Heating Ventilating and Air Conditioning (HVAC) and refrigeration systems in these buildings. These buildings could contain a wide variety of systems and a degree of load diversity that makes calibrated modeling a challenge. This paper describes a simplified approach that uses OpenStudio and EnergyPlus to combine known building parameters with “typical” parameters, resulting in a simplified building that is amenable to calibration. This approach was applied to a big-box store located in Nashville, Tennessee, and a calibrated model was obtained that was used to study potential energy conservation measures. The paper also explores the capabilities of whole-building energy modeling tools, such as EnergyPlus, for modeling the HVAC controls and sequences and their impact evaluation. Although some measures are precluded by the model simplicity, several measures were found to improve the efficiency of the model and demonstrate that the simplified modeling approach is effective. Practical Application : This paper introduces a hybrid approach of building energy model calibration using limited information available from the actual building in combination with characteristics of a “typical” building of the same type. This hybrid approach would also be applicable for other building types than discussed in this paper to calibrate the building energy model using limited information from the actual building.
{"title":"Development of a simplified calibrated building simulation model of a supermarket for proposed ECMs and control strategies impact evaluation","authors":"N. Kunwar, M. Bhandari, Piljae Im, Brian Fricke, Jason DeGraw, T. Kuruganti","doi":"10.1177/01436244221137241","DOIUrl":"https://doi.org/10.1177/01436244221137241","url":null,"abstract":"Calibrated building energy simulation is an important pathway to more energy-efficient buildings, but the information requirements of some approaches to this problem are significant. This is particularly true for supermarkets and other so-called “big-box” retail stores. Another characteristic of supermarkets is the significant interaction between Heating Ventilating and Air Conditioning (HVAC) and refrigeration systems in these buildings. These buildings could contain a wide variety of systems and a degree of load diversity that makes calibrated modeling a challenge. This paper describes a simplified approach that uses OpenStudio and EnergyPlus to combine known building parameters with “typical” parameters, resulting in a simplified building that is amenable to calibration. This approach was applied to a big-box store located in Nashville, Tennessee, and a calibrated model was obtained that was used to study potential energy conservation measures. The paper also explores the capabilities of whole-building energy modeling tools, such as EnergyPlus, for modeling the HVAC controls and sequences and their impact evaluation. Although some measures are precluded by the model simplicity, several measures were found to improve the efficiency of the model and demonstrate that the simplified modeling approach is effective. Practical Application : This paper introduces a hybrid approach of building energy model calibration using limited information available from the actual building in combination with characteristics of a “typical” building of the same type. This hybrid approach would also be applicable for other building types than discussed in this paper to calibrate the building energy model using limited information from the actual building.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"25 - 44"},"PeriodicalIF":1.7,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43762968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-03DOI: 10.1177/01436244221137846
Lingjie Zeng, Yuqing Chen, Mingyao Ma, Bowen Du, Jun Gao, Guoqing Cao, Jingguang Li
Mould growth is a common problem in building envelopes. This issue is usually caused by poor design and construction of walls and results from the difference between indoor and outdoor climatic conditions. Mould spores produced by mouldy walls may diffuse into the air, thereby affecting indoor air quality and threatening occupant health. Therefore, it is important to predict the risk of mould growth in building envelopes under various conditions. This study selected three buildings from a traditional community in Shanghai, China. First, the mould species in these building envelopes were identified. Based on the identification results, the growth rate of the corresponding genera was extracted from the literature to establish an isoline model that describes mould growth on the agar surface. In addition, the mould growth rate between and outside the isoline areas was predicted by modifying the Sautour model to relevant air temperature and humidity conditions. According to the results of the proposed model, the critical temperature and humidity that allow the growth of representative moulds from the buildings selected for this study can be expressed as φ=0.002633·cosh[0.10083·(θ-30)]+0.7153. The accuracy of the above model was verified experimentally, and the maximum relative error of the growth rate was within 25%.
{"title":"Prediction of mould growth rate within building envelopes: development and validation of an improved model","authors":"Lingjie Zeng, Yuqing Chen, Mingyao Ma, Bowen Du, Jun Gao, Guoqing Cao, Jingguang Li","doi":"10.1177/01436244221137846","DOIUrl":"https://doi.org/10.1177/01436244221137846","url":null,"abstract":"Mould growth is a common problem in building envelopes. This issue is usually caused by poor design and construction of walls and results from the difference between indoor and outdoor climatic conditions. Mould spores produced by mouldy walls may diffuse into the air, thereby affecting indoor air quality and threatening occupant health. Therefore, it is important to predict the risk of mould growth in building envelopes under various conditions. This study selected three buildings from a traditional community in Shanghai, China. First, the mould species in these building envelopes were identified. Based on the identification results, the growth rate of the corresponding genera was extracted from the literature to establish an isoline model that describes mould growth on the agar surface. In addition, the mould growth rate between and outside the isoline areas was predicted by modifying the Sautour model to relevant air temperature and humidity conditions. According to the results of the proposed model, the critical temperature and humidity that allow the growth of representative moulds from the buildings selected for this study can be expressed as φ=0.002633·cosh[0.10083·(θ-30)]+0.7153. The accuracy of the above model was verified experimentally, and the maximum relative error of the growth rate was within 25%.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"63 - 79"},"PeriodicalIF":1.7,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44565314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-17DOI: 10.1177/01436244221132688
H. Metzmacher, Marc Syndicus, Alexander Warthmann, J. Frisch, C. van Treeck
Heating and ventilation in buildings and vehicles are responsible for over a third of global final energy usage and the resulting emissions. Local climatization can help to save energy while at the same time enable more individualized and adapted micro-climates around people. For the domain of local comfort, integrative test environments for sensors, actuators, and control software are scarce, and oftentimes tailored to a specific set of components. Here, a server-based modular testing infrastructure which allows integration and evaluation of sensors, actuators, and control strategies is presented. Currently, the system is able to integrate, monitor, and log data of thermal imaging, motion sensing, environmental sensor such as temperature or air velocity and to forward signals to actuators such as fans, infrared- or contact-heaters. The generation of control signals is model-based and relies on user feedback provided via the system’s smartphone app. Lastly, learning algorithms can be trained and compared during user studies. Practical Application: Although developed in a laboratory based research context, the proposed system is based on open standards and protocols. It therefore can be applied by practitioners, developers, and manufacturers in order to test stand-alone components as well as ensembles of sensors and actuators for personalized climatization in an integrative and replicable manner.
{"title":"Modular personalized climatization testing infrastructure with smartphone-based user feedback","authors":"H. Metzmacher, Marc Syndicus, Alexander Warthmann, J. Frisch, C. van Treeck","doi":"10.1177/01436244221132688","DOIUrl":"https://doi.org/10.1177/01436244221132688","url":null,"abstract":"Heating and ventilation in buildings and vehicles are responsible for over a third of global final energy usage and the resulting emissions. Local climatization can help to save energy while at the same time enable more individualized and adapted micro-climates around people. For the domain of local comfort, integrative test environments for sensors, actuators, and control software are scarce, and oftentimes tailored to a specific set of components. Here, a server-based modular testing infrastructure which allows integration and evaluation of sensors, actuators, and control strategies is presented. Currently, the system is able to integrate, monitor, and log data of thermal imaging, motion sensing, environmental sensor such as temperature or air velocity and to forward signals to actuators such as fans, infrared- or contact-heaters. The generation of control signals is model-based and relies on user feedback provided via the system’s smartphone app. Lastly, learning algorithms can be trained and compared during user studies. Practical Application: Although developed in a laboratory based research context, the proposed system is based on open standards and protocols. It therefore can be applied by practitioners, developers, and manufacturers in order to test stand-alone components as well as ensembles of sensors and actuators for personalized climatization in an integrative and replicable manner.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"91 - 105"},"PeriodicalIF":1.7,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42118309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-28DOI: 10.1177/01436244221129763
Youxian Huang, S. Yeboah, Jingjing Shao
Double skin façades (DSFs), offer great views, architectural aesthetics, and energy savings. Yet, in a fire event the glass façade breaks leading to risks to human life and firefighting difficulties. Shading devices incorporated to prevent unfavourable heat gains to reduce cooling load though offer energy savings potentially present other challenges in firefighting and occupants’ evacuation. In this study, Fire Dynamic Simulator (FDS) was used to numerically investigate the spread of a 5 MW HRR polyurethane GM27 fire in a multi-storey double skin façade building with Venetian blinds placed in its cavity. The blinds were positioned 0.4 m away from the internal glazing, middle of the cavity and 0.4 m away from the external glazing respectively. In each blind position the slat angle was opened at 0°, 45°, 90° and 135° respectively. The results show peak inner glazing surface temperature ranged between 283°C to 840°C depending on the thermocouple position, the Venetian blind position and slat opening angle. Without Venetian blinds, peak inner glazing surface temperatures ranged between 468°C to 614°C. In all cases except when the slat angle was 0° and the blind was positioned closer to the outer glazing, the inner glazing surface temperature from the closest thermocouple (TC 14) above the fire room exceeded 600°C, the glass breakage temperature threshold. Overall, the Venetian blind position and slat opening angle influenced the spread of fire. Venetian blind combustibility and flammability were not considered and therefore recommended for future studies. Practical Application: Our manuscript helps to develop new thinking on mitigation of fire risks in buildings for architects, engineers and designers when incorporating Venetian blinds in Double Skin Façades (DSFs).
{"title":"Numerical investigation of fire in the cavity of naturally ventilated double skin façade with venetian blinds","authors":"Youxian Huang, S. Yeboah, Jingjing Shao","doi":"10.1177/01436244221129763","DOIUrl":"https://doi.org/10.1177/01436244221129763","url":null,"abstract":"Double skin façades (DSFs), offer great views, architectural aesthetics, and energy savings. Yet, in a fire event the glass façade breaks leading to risks to human life and firefighting difficulties. Shading devices incorporated to prevent unfavourable heat gains to reduce cooling load though offer energy savings potentially present other challenges in firefighting and occupants’ evacuation. In this study, Fire Dynamic Simulator (FDS) was used to numerically investigate the spread of a 5 MW HRR polyurethane GM27 fire in a multi-storey double skin façade building with Venetian blinds placed in its cavity. The blinds were positioned 0.4 m away from the internal glazing, middle of the cavity and 0.4 m away from the external glazing respectively. In each blind position the slat angle was opened at 0°, 45°, 90° and 135° respectively. The results show peak inner glazing surface temperature ranged between 283°C to 840°C depending on the thermocouple position, the Venetian blind position and slat opening angle. Without Venetian blinds, peak inner glazing surface temperatures ranged between 468°C to 614°C. In all cases except when the slat angle was 0° and the blind was positioned closer to the outer glazing, the inner glazing surface temperature from the closest thermocouple (TC 14) above the fire room exceeded 600°C, the glass breakage temperature threshold. Overall, the Venetian blind position and slat opening angle influenced the spread of fire. Venetian blind combustibility and flammability were not considered and therefore recommended for future studies. Practical Application: Our manuscript helps to develop new thinking on mitigation of fire risks in buildings for architects, engineers and designers when incorporating Venetian blinds in Double Skin Façades (DSFs).","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"44 1","pages":"45 - 61"},"PeriodicalIF":1.7,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41638894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-21DOI: 10.1177/01436244221129169
ectors. to of heating systems on the design of lightweight fl oor heating. The analysis focuses on the radiant sheet, which is commonly used in dry systems to increase their ef fi ciency. The fl oor heating market offers many radiant sheet design solutions, varying in material, width and panel thickness. However, there are no systematic guidelines that de fi ne the performance of lightweight fl oor heating depending on the radiant sheet solution used. This study proposes an optimum gap between radiant sheets (10 – 20 mm), that provides high system ef fi ciency with low aluminium consumption.
{"title":"Practical applications","authors":"","doi":"10.1177/01436244221129169","DOIUrl":"https://doi.org/10.1177/01436244221129169","url":null,"abstract":"ectors. to of heating systems on the design of lightweight fl oor heating. The analysis focuses on the radiant sheet, which is commonly used in dry systems to increase their ef fi ciency. The fl oor heating market offers many radiant sheet design solutions, varying in material, width and panel thickness. However, there are no systematic guidelines that de fi ne the performance of lightweight fl oor heating depending on the radiant sheet solution used. This study proposes an optimum gap between radiant sheets (10 – 20 mm), that provides high system ef fi ciency with low aluminium consumption.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"43 1","pages":"667 - 668"},"PeriodicalIF":1.7,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42485401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}