Pub Date : 2024-08-07DOI: 10.1016/j.biosystems.2024.105280
Richard Gordon
Over more than the past century, reports that chromosomes in Eukaryotes are linked have been published. Recently this has been confirmed by micromanipulation. The chromolinkers are DNAse sensitive, as has been previously reported. The arguments for and against chromolinkers have been reviewed, and a call for definitive research made, because if chromolinkers do exist, the whole basis for nuclear DNA genetics may require revision.
在过去的一个多世纪里,关于真核生物染色体相连的报道屡见报端。最近,微操作证实了这一点。正如之前所报道的,染色单体对 DNAse 敏感。我们回顾了支持和反对染色单体的论点,并呼吁进行明确的研究,因为如果染色单体真的存在,那么核 DNA 遗传学的整个基础可能需要修改。
{"title":"The chromolinker hypothesis: Are eukaryotic genomes also circular?","authors":"Richard Gordon","doi":"10.1016/j.biosystems.2024.105280","DOIUrl":"10.1016/j.biosystems.2024.105280","url":null,"abstract":"<div><p>Over more than the past century, reports that chromosomes in Eukaryotes are linked have been published. Recently this has been confirmed by micromanipulation. The chromolinkers are DNAse sensitive, as has been previously reported. The arguments for and against chromolinkers have been reviewed, and a call for definitive research made, because if chromolinkers do exist, the whole basis for <del>nuclear DNA</del> genetics may require revision.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"244 ","pages":"Article 105280"},"PeriodicalIF":2.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.biosystems.2024.105283
Gabriel Trueba , Paul Cardenas , German Romo , Bernardo Gutierrez
The prevailing consensus in scientific literature underscores the mutualistic bond between the microbiota and the human host, suggesting a finely tuned coevolutionary partnership that enhances the fitness of both parties. This symbiotic relationship has been extensively studied, with certain bacterial attributes being construed as hallmarks of natural selection favoring the benefit of the human host. Some scholars go as far as equating the intricate interplay between humans and their intestinal microbiota to that of endosymbiotic relationships, even conceptualizing microbiota as an integral human organ.
However, amidst the prevailing narrative of bacterial species being categorized as beneficial or detrimental to human health, a critical oversight often emerges – the inherent functional diversity within bacterial strains. Such reductionist perspectives risk oversimplifying the complex dynamics at play within the microbiome. Recent genomic analysis at the strain level is highly limited, which is surprising given that strain information provides critical data about selective pressures in the intestine. These pressures appear to focus more on the well-being of bacteria rather than human health. Connected to this is the extent to which animals depend on metabolic activity from intestinal bacteria, which varies widely across species. While omnivores like humans exhibit lower dependency, certain herbivores rely entirely on bacterial activity and have developed specialized compartments to house these bacteria.
{"title":"Reevaluating human-microbiota symbiosis: Strain-level insights and evolutionary perspectives across animal species","authors":"Gabriel Trueba , Paul Cardenas , German Romo , Bernardo Gutierrez","doi":"10.1016/j.biosystems.2024.105283","DOIUrl":"10.1016/j.biosystems.2024.105283","url":null,"abstract":"<div><p>The prevailing consensus in scientific literature underscores the mutualistic bond between the microbiota and the human host, suggesting a finely tuned coevolutionary partnership that enhances the fitness of both parties. This symbiotic relationship has been extensively studied, with certain bacterial attributes being construed as hallmarks of natural selection favoring the benefit of the human host. Some scholars go as far as equating the intricate interplay between humans and their intestinal microbiota to that of endosymbiotic relationships, even conceptualizing microbiota as an integral human organ.</p><p>However, amidst the prevailing narrative of bacterial species being categorized as beneficial or detrimental to human health, a critical oversight often emerges – the inherent functional diversity within bacterial strains. Such reductionist perspectives risk oversimplifying the complex dynamics at play within the microbiome. Recent genomic analysis at the strain level is highly limited, which is surprising given that strain information provides critical data about selective pressures in the intestine. These pressures appear to focus more on the well-being of bacteria rather than human health. Connected to this is the extent to which animals depend on metabolic activity from intestinal bacteria, which varies widely across species. While omnivores like humans exhibit lower dependency, certain herbivores rely entirely on bacterial activity and have developed specialized compartments to house these bacteria.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"244 ","pages":"Article 105283"},"PeriodicalIF":2.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.biosystems.2024.105284
Chen Hou
In biological systems, solitary organisms or eusocial groups, the metabolic rate often scales allometrically with systems’ size, when they are inactive, and the scaling becomes nearly isometric when the systems are active. Here I propose a hypothesis attempting to offer a departing point for a general joint understanding of the difference in the scaling powers between inactive and active states. When the system is inactive, there exist inactive components, which consume less energy than the active ones, and the larger the system is, the larger the fraction of the inactive components, which leads to sublinear scaling. When the system is active, most inactive components are activated, which leads to nearly isometric scaling. I hypothesize that the disproportional fraction of the inactive components is caused by the diffusants screening in the complex transportation network. I.e., when metabolites or information diffuses in the system, due to the physical limitation of the network structure and the diffusant’s physical feature, not all the components can equally receive the diffusants so that these components are inactive. Using the mammalian pulmonary system, ant colonies, and other few systems as examples, I discuss how the screening leads to the allometric and isometric metabolic scaling powers in inactive and active states respectively. It is noteworthy that there are a few exceptions, in which the metabolic rate of the system has an isometric scaling relationship with size at rest. I show that these exceptions not only do not disapprove the hypothesis, but actually support it.
{"title":"Disproportional fraction of inactive components leads to the variation in metabolic scaling","authors":"Chen Hou","doi":"10.1016/j.biosystems.2024.105284","DOIUrl":"10.1016/j.biosystems.2024.105284","url":null,"abstract":"<div><p>In biological systems, solitary organisms or eusocial groups, the metabolic rate often scales allometrically with systems’ size, when they are inactive, and the scaling becomes nearly isometric when the systems are active. Here I propose a hypothesis attempting to offer a departing point for a general joint understanding of the difference in the scaling powers between inactive and active states. When the system is inactive, there exist inactive components, which consume less energy than the active ones, and the larger the system is, the larger the fraction of the inactive components, which leads to sublinear scaling. When the system is active, most inactive components are activated, which leads to nearly isometric scaling. I hypothesize that the disproportional fraction of the inactive components is caused by the diffusants screening in the complex transportation network. I.e., when metabolites or information diffuses in the system, due to the physical limitation of the network structure and the diffusant’s physical feature, not all the components can equally receive the diffusants so that these components are inactive. Using the mammalian pulmonary system, ant colonies, and other few systems as examples, I discuss how the screening leads to the allometric and isometric metabolic scaling powers in inactive and active states respectively. It is noteworthy that there are a few exceptions, in which the metabolic rate of the system has an isometric scaling relationship with size at rest. I show that these exceptions not only do not disapprove the hypothesis, but actually support it.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"243 ","pages":"Article 105284"},"PeriodicalIF":2.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.biosystems.2024.105281
Nawwaf Kharma , Rémi Bédard-Couture
Building on and extending existing definitions of robustness and evolvability, we propose and utilize new formal definitions, with matching measures, of robustness and evolvability of systems with genotypes and corresponding phenotypes. We explain and show how these measures are more general and more representative of the concepts they stand for, than the commonly used/referenced measures originally proposed by Wagner. Further, a versatile digital modeling approach (BNK) is proposed that is inspired by NK systems. However, unlike NK systems, BNK incorporates a genotype and a phenotype, in addition to fitness. We develop and apply an Evolutionary Algorithm to a BNK-modeled system to find different types of perfect oscillators. We then map the resulting oscillating systems to possible genetic circuit realizations. Continuing with the synthetic biology theme, we also investigate the effect of noise in DNA synthesis on the predicted functionality of a DNA-based biosensor (i.e., its robustness), and we carry out a theoretical assessment of the evolvability of different types of ribozymes, undergoing directed evolution.
我们以现有的鲁棒性和可演化性定义为基础并加以扩展,提出并使用了新的正式定义,并对具有基因型和相应表型的系统的鲁棒性和可演化性进行了匹配度量。我们解释并展示了这些测量方法如何比瓦格纳最初提出的常用/参考测量方法更通用,更能代表它们所代表的概念。此外,我们还受 NK 系统的启发,提出了一种多功能数字建模方法(BNK)。不过,与 NK 系统不同的是,BNK 除了适合度之外,还包含基因型和表型。我们开发了一种进化算法,并将其应用于 BNK 模型系统,以找到不同类型的完美振荡器。然后,我们将得到的振荡系统映射到可能的基因电路实现中。在合成生物学的主题下,我们还研究了 DNA 合成中的噪声对基于 DNA 的生物传感器的预测功能(即鲁棒性)的影响,并对不同类型的核糖酶在定向进化过程中的可进化性进行了理论评估。
{"title":"Robustness and evolvability: Revisited, redefined and applied","authors":"Nawwaf Kharma , Rémi Bédard-Couture","doi":"10.1016/j.biosystems.2024.105281","DOIUrl":"10.1016/j.biosystems.2024.105281","url":null,"abstract":"<div><p>Building on and extending existing definitions of robustness and evolvability, we propose and utilize new formal definitions, with matching measures, of robustness and evolvability of systems with genotypes and corresponding phenotypes. We explain and show how these measures are more general and more representative of the concepts they stand for, than the commonly used/referenced measures originally proposed by Wagner. Further, a versatile digital modeling approach (BNK) is proposed that is inspired by NK systems. However, unlike NK systems, BNK incorporates a genotype and a phenotype, in addition to fitness. We develop and apply an Evolutionary Algorithm to a BNK-modeled system to find different types of perfect oscillators. We then map the resulting oscillating systems to possible genetic circuit realizations. Continuing with the synthetic biology theme, we also investigate the effect of noise in DNA synthesis on the predicted functionality of a DNA-based biosensor (i.e., its robustness), and we carry out a theoretical assessment of the evolvability of different types of ribozymes, undergoing directed evolution.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"246 ","pages":"Article 105281"},"PeriodicalIF":2.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303264724001667/pdfft?md5=5304e31c02c8bbc9c1755c1c322cbb41&pid=1-s2.0-S0303264724001667-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1016/j.biosystems.2024.105279
Ruirui Ji , Mengfei Yan , Meng Zhao , Yi Geng
The pan-cancer initiative aims to study the origin patterns of cancer cell, the processes of carcinogenesis, and the signaling pathways from a perspective that spans across different types of cancer. The construction of the pan-cancer related gene regulatory network is helpful to excavate the commonalities in regulatory relationships among different types of cancers. It also aids in understanding the mechanisms behind cancer occurrence and development, which is of great scientific significance for cancer prevention and treatment. In light of the high dimension and large sample size of pan-cancer omics data, a causal pan-cancer gene regulation network inference algorithm based on stochastic complexity is proposed. With the network construction strategy of local first and then global, the stochastic complexity is used in the conditional independence test and causal direction inference for the candidate adjacent node set of the target nodes. This approach aims to decrease the time complexity and error rate of causal network learning. By applying this algorithm to the sample data of seven types of cancers in the TCGA database, including breast cancer, lung adenocarcinoma, and so on, the pan-cancer related causal regulatory networks are constructed, and their biological significance is verified. The experimental results show that this algorithm can eliminate the redundant regulatory relationships effectively and infer the pan-cancer regulatory network more accurately (https://github.com/LindeEugen/CNI-SC).
{"title":"Construction of pan-cancer regulatory networks based on causal inference","authors":"Ruirui Ji , Mengfei Yan , Meng Zhao , Yi Geng","doi":"10.1016/j.biosystems.2024.105279","DOIUrl":"10.1016/j.biosystems.2024.105279","url":null,"abstract":"<div><p>The pan-cancer initiative aims to study the origin patterns of cancer cell, the processes of carcinogenesis, and the signaling pathways from a perspective that spans across different types of cancer. The construction of the pan-cancer related gene regulatory network is helpful to excavate the commonalities in regulatory relationships among different types of cancers. It also aids in understanding the mechanisms behind cancer occurrence and development, which is of great scientific significance for cancer prevention and treatment. In light of the high dimension and large sample size of pan-cancer omics data, a causal pan-cancer gene regulation network inference algorithm based on stochastic complexity is proposed. With the network construction strategy of local first and then global, the stochastic complexity is used in the conditional independence test and causal direction inference for the candidate adjacent node set of the target nodes. This approach aims to decrease the time complexity and error rate of causal network learning. By applying this algorithm to the sample data of seven types of cancers in the TCGA database, including breast cancer, lung adenocarcinoma, and so on, the pan-cancer related causal regulatory networks are constructed, and their biological significance is verified. The experimental results show that this algorithm can eliminate the redundant regulatory relationships effectively and infer the pan-cancer regulatory network more accurately (<span><span>https://github.com/LindeEugen/CNI-SC</span><svg><path></path></svg></span>).</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"243 ","pages":"Article 105279"},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303264724001643/pdfft?md5=a088be360dd2019e5970afb9510f0100&pid=1-s2.0-S0303264724001643-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1016/j.biosystems.2024.105278
Tommy Wood , Tuomas Sorakivi , Phil Ayres , Andrew Adamatzky
Fungal mycelium networks are large scale biological networks along which nutrients, metabolites flow. Recently, we discovered a rich spectrum of electrical activity in mycelium networks, including action-potential spikes and trains of spikes. Reasoning by analogy with animals and plants, where travelling patterns of electrical activity perform integrative and communicative mechanisms, we speculated that waves of electrical activity transfer information in mycelium networks. Using a new discrete space–time model with emergent radial spanning-tree topology, hypothetically comparable mycelial morphology and physically comparable information transfer, we provide physical arguments for the use of such a model, and by considering growing mycelium network by analogy with growing network of matter in the cosmic web, we develop mathematical models and theoretical concepts to characterise the parameters of the information transfer.
{"title":"Exploring discrete space–time models for information transfer: Analogies from mycelial networks to the cosmic web","authors":"Tommy Wood , Tuomas Sorakivi , Phil Ayres , Andrew Adamatzky","doi":"10.1016/j.biosystems.2024.105278","DOIUrl":"10.1016/j.biosystems.2024.105278","url":null,"abstract":"<div><p>Fungal mycelium networks are large scale biological networks along which nutrients, metabolites flow. Recently, we discovered a rich spectrum of electrical activity in mycelium networks, including action-potential spikes and trains of spikes. Reasoning by analogy with animals and plants, where travelling patterns of electrical activity perform integrative and communicative mechanisms, we speculated that waves of electrical activity transfer information in mycelium networks. Using a new discrete space–time model with emergent radial spanning-tree topology, hypothetically comparable mycelial morphology and physically comparable information transfer, we provide physical arguments for the use of such a model, and by considering growing mycelium network by analogy with growing network of matter in the cosmic web, we develop mathematical models and theoretical concepts to characterise the parameters of the information transfer.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"243 ","pages":"Article 105278"},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303264724001631/pdfft?md5=6414ee06e4dd685a97a448cafbe60bfb&pid=1-s2.0-S0303264724001631-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.biosystems.2024.105271
Alessandro Fontana, Marios Kyriazis
At any moment in time, evolution is faced with a formidable challenge: refining the already highly optimised design of biological species, a feat accomplished through all preceding generations. In such a scenario, the impact of random changes (the method employed by evolution) is much more likely to be harmful than advantageous, potentially lowering the reproductive fitness of the affected individuals. Our hypothesis is that ageing is, at least in part, caused by the cumulative effect of all the experiments carried out by evolution to improve a species’ design. These experiments are almost always unsuccessful, as expected given their pseudorandom nature, cause harm to the body and ultimately lead to death. This hypothesis is consistent with the concept of “terminal addition”, by which nature is biased towards adding innovations at the end of development. From the perspective of evolution as an optimisation algorithm, ageing is advantageous as it allows to test innovations during a phase when their impact on fitness is present but less pronounced. Our inference suggests that ageing has a key biological role, as it contributes to the system’s evolvability by exerting a regularisation effect on the fitness landscape of evolution.
{"title":"How evolution makes us age: Introducing the evolvable soma theory of ageing","authors":"Alessandro Fontana, Marios Kyriazis","doi":"10.1016/j.biosystems.2024.105271","DOIUrl":"10.1016/j.biosystems.2024.105271","url":null,"abstract":"<div><p>At any moment in time, evolution is faced with a formidable challenge: refining the already highly optimised design of biological species, a feat accomplished through all preceding generations. In such a scenario, the impact of random changes (the method employed by evolution) is much more likely to be harmful than advantageous, potentially lowering the reproductive fitness of the affected individuals. Our hypothesis is that ageing is, at least in part, caused by the cumulative effect of all the experiments carried out by evolution to improve a species’ design. These experiments are almost always unsuccessful, as expected given their pseudorandom nature, cause harm to the body and ultimately lead to death. This hypothesis is consistent with the concept of “terminal addition”, by which nature is biased towards adding innovations at the end of development. From the perspective of evolution as an optimisation algorithm, ageing is advantageous as it allows to test innovations during a phase when their impact on fitness is present but less pronounced. Our inference suggests that ageing has a key biological role, as it contributes to the system’s evolvability by exerting a regularisation effect on the fitness landscape of evolution.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"243 ","pages":"Article 105271"},"PeriodicalIF":2.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.biosystems.2024.105272
Bradly Alicea , Suroush Bastani , Natalie K. Gordon , Susan Crawford-Young , Richard Gordon
As development varies greatly across the tree of life, it may seem difficult to suggest a model that proposes a single mechanism for understanding collective cell behaviors and the coordination of tissue formation. Here we propose a mechanism called differentiation waves, which unify many disparate results involving developmental systems from across the tree of life. We demonstrate how a relatively simple model of differentiation proceeds not from function-related molecular mechanisms, but from so-called differentiation waves. A phenotypic model of differentiation waves is introduced, and its relation to molecular mechanisms is proposed. These waves contribute to a differentiation tree, which is an alternate way of viewing cell lineage and local action of the molecular factors. We construct a model of differentiation wave-related molecular mechanisms (genome, epigenome, and proteome) based on bioinformatic data from the nematode Caenorhabditis elegans. To validate this approach across different modes of development, we evaluate protein expression across different types of development by comparing Caenorhabditis elegans with several model organisms: fruit flies (Drosophila melanogaster), yeast (Saccharomyces cerevisiae), and mouse (Mus musculus). Inspired by gene regulatory networks, two Models of Interactive Contributions (fully-connected MICs and ordered MICs) are used to suggest potential genomic contributions to differentiation wave-related proteins. This, in turn, provides a framework for understanding differentiation and development.
由于整个生命树的发育过程千差万别,因此似乎很难提出一个模型,用单一的机制来理解细胞的集体行为和组织形成的协调。在这里,我们提出了一种称为 "分化波"(differentiation waves)的机制,它统一了生命树中涉及发育系统的许多不同结果。我们展示了一个相对简单的分化模型是如何不是从与功能相关的分子机制出发,而是从所谓的分化波出发的。我们介绍了分化波的表型模型,并提出了它与分子机制的关系。这些波促成了分化树,这是观察细胞系和分子因子局部作用的另一种方式。我们根据线虫秀丽隐杆线虫的生物信息数据,构建了一个与分化波相关的分子机制(基因组、表观基因组和蛋白质组)模型。为了在不同的发育模式中验证这种方法,我们将秀丽隐杆线虫与果蝇(Drosophila melanogaster)、酵母(Saccharomyces cerevisiae)和小鼠(Mus musculus)等几种模式生物进行比较,评估不同发育类型中的蛋白质表达。受基因调控网络的启发,两个交互贡献模型(完全连接的 MIC 和有序的 MIC)被用来建议分化波相关蛋白的潜在基因组贡献。这反过来又为理解分化和发育提供了一个框架。
{"title":"The Molecular Basis of Differentiation Wave Activity in Embryogenesis","authors":"Bradly Alicea , Suroush Bastani , Natalie K. Gordon , Susan Crawford-Young , Richard Gordon","doi":"10.1016/j.biosystems.2024.105272","DOIUrl":"10.1016/j.biosystems.2024.105272","url":null,"abstract":"<div><p>As development varies greatly across the tree of life, it may seem difficult to suggest a model that proposes a single mechanism for understanding collective cell behaviors and the coordination of tissue formation. Here we propose a mechanism called differentiation waves, which unify many disparate results involving developmental systems from across the tree of life. We demonstrate how a relatively simple model of differentiation proceeds not from function-related molecular mechanisms, but from so-called differentiation waves. A phenotypic model of differentiation waves is introduced, and its relation to molecular mechanisms is proposed. These waves contribute to a differentiation tree, which is an alternate way of viewing cell lineage and local action of the molecular factors. We construct a model of differentiation wave-related molecular mechanisms (genome, epigenome, and proteome) based on bioinformatic data from the nematode <em>Caenorhabditis elegans</em>. To validate this approach across different modes of development, we evaluate protein expression across different types of development by comparing <em>Caenorhabditis elegans</em> with several model organisms: fruit flies (<em>Drosophila melanogaster</em>), yeast (<em>Saccharomyces cerevisiae</em>), and mouse (<em>Mus musculus</em>). Inspired by gene regulatory networks, two Models of Interactive Contributions (fully-connected MICs and ordered MICs) are used to suggest potential genomic contributions to differentiation wave-related proteins. This, in turn, provides a framework for understanding differentiation and development.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"243 ","pages":"Article 105272"},"PeriodicalIF":2.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TSPO protein is known to be involved in various cellular functions and dysregulations of TSPO expression has been found to be associated with pathologies of different human diseases, including cardiovascular disease, cancer, neuroinflammatory, neurodegenerative, neoplastic disorders. However, there are limited studies in the literature on the effects of sequence variations in the TSPO gene on the function of the protein and their relationship with human diseases. Evaluating the pathogenicity of genetic variants is crucial in terms of prioritizing the functional importance and clinical use. Therefore, various in-silico prediction tools have been developed that combine different algorithms to predict the effects of sequence variations on protein functions or gene regulation. In this study, the -adic distance approach in modeling the genetic code, proposed and developed by Dragovich and Dragovich, was discussed in order to obtain an alternative to the existing in-silico prediction tools. Dragovichs’ approach is expressed as follows: A 5-adic space of codons is constructed and 5-adic and 2-adic distances between codons are taken into account. As a result, two codons with the smallest value of 5-adic and 2-adic distances are obtained, encoded for the same amino acid and stop signal. This model describes well the degeneration of the genetic code. This study combined the data obtained from in-silico prediction tools and used a bioinformatics approach to determine the functional relevance of coding SNPs in the TSPO. Overall, we evaluate the potential utility of Dragovichs’ approach by comparing it with other existing prediction tools for variant classification and prioritization.
{"title":"A p− adic approach to the TSPO gene","authors":"Elif Esenoğlu Bilgin , Dilek Pirim , Gökhan Soydan","doi":"10.1016/j.biosystems.2024.105273","DOIUrl":"10.1016/j.biosystems.2024.105273","url":null,"abstract":"<div><p>TSPO protein is known to be involved in various cellular functions and dysregulations of TSPO expression has been found to be associated with pathologies of different human diseases, including cardiovascular disease, cancer, neuroinflammatory, neurodegenerative, neoplastic disorders. However, there are limited studies in the literature on the effects of sequence variations in the <em>TSPO</em> gene on the function of the protein and their relationship with human diseases. Evaluating the pathogenicity of genetic variants is crucial in terms of prioritizing the functional importance and clinical use. Therefore, various <em>in-silico</em> prediction tools have been developed that combine different algorithms to predict the effects of sequence variations on protein functions or gene regulation. In this study, the <span><math><mi>p</mi></math></span>-adic distance approach in modeling the genetic code, proposed and developed by Dragovich and Dragovich, was discussed in order to obtain an alternative to the existing <em>in-silico</em> prediction tools. Dragovichs’ approach is expressed as follows: A 5-adic space of codons is constructed and 5-adic and 2-adic distances between codons are taken into account. As a result, two codons with the smallest value of 5-adic and 2-adic distances are obtained, encoded for the same amino acid and stop signal. This model describes well the degeneration of the genetic code. This study combined the data obtained from <em>in-silico</em> prediction tools and used a bioinformatics approach to determine the functional relevance of coding SNPs in the TSPO. Overall, we evaluate the potential utility of Dragovichs’ approach by comparing it with other existing prediction tools for variant classification and prioritization.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"243 ","pages":"Article 105273"},"PeriodicalIF":2.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For a reinforcement learning agent to finish trial-and-error in a realistic time duration, it is necessary to limit the scope of exploration during the learning process. However, limiting the exploration scope means limitation in optimality: the agent could fall into a suboptimal solution. This is the nature of local, bottom-up way of learning. An alternative way is to set a goal to be achieved, which is a more global, top-down way. The risk-sensitive satisficing (RS) value function incorporate, as a method of the latter way, the satisficing principle into reinforcement learning and enables agents to quickly converge to exploiting the optimal solution without falling into a suboptimal one, when an appropriate goal (aspiration level) is given. However, how best to determine the aspiration level is still an open problem. This study proposes social satisficing, a framework for multi-agent reinforcement learning which determines the aspiration level through information sharing among multiple agents. In order to verify the effectiveness of this novel method, we conducted simulations in a learning environment with many suboptimal goals (SuboptimaWorld). The results show that the proposed method, which converts the aspiration level at the episodic level into local (state-wise) aspiration levels, possesses a higher learning efficiency than any of the compared methods, and that the novel method has the ability to autonomously adjust exploration scope, while keeping the shared information minimal. This study provides a glimpse into an aspect of human and biological sociality which has been mentioned little in the context of artificial intelligence and machine learning.
{"title":"Social satisficing: Multi-agent reinforcement learning with satisficing agents","authors":"Daisuke Uragami , Noriaki Sonota , Tatsuji Takahashi","doi":"10.1016/j.biosystems.2024.105276","DOIUrl":"10.1016/j.biosystems.2024.105276","url":null,"abstract":"<div><p>For a reinforcement learning agent to finish trial-and-error in a realistic time duration, it is necessary to limit the scope of exploration during the learning process. However, limiting the exploration scope means limitation in optimality: the agent could fall into a suboptimal solution. This is the nature of local, bottom-up way of learning. An alternative way is to set a goal to be achieved, which is a more global, top-down way. The risk-sensitive satisficing (RS) value function incorporate, as a method of the latter way, the satisficing principle into reinforcement learning and enables agents to quickly converge to exploiting the optimal solution without falling into a suboptimal one, when an appropriate goal (aspiration level) is given. However, how best to determine the aspiration level is still an open problem. This study proposes social satisficing, a framework for multi-agent reinforcement learning which determines the aspiration level through information sharing among multiple agents. In order to verify the effectiveness of this novel method, we conducted simulations in a learning environment with many suboptimal goals (SuboptimaWorld). The results show that the proposed method, which converts the aspiration level at the episodic level into local (state-wise) aspiration levels, possesses a higher learning efficiency than any of the compared methods, and that the novel method has the ability to autonomously adjust exploration scope, while keeping the shared information minimal. This study provides a glimpse into an aspect of human and biological sociality which has been mentioned little in the context of artificial intelligence and machine learning.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"243 ","pages":"Article 105276"},"PeriodicalIF":2.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303264724001618/pdfft?md5=1013f746e0723d63b95dde32bc8a58b3&pid=1-s2.0-S0303264724001618-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}