首页 > 最新文献

Biosystems最新文献

英文 中文
Deciphering the dynamic binding of spicy odorants to human olfactory receptors 解读辛辣气味与人类嗅觉受体的动态结合。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-07 DOI: 10.1016/j.biosystems.2026.105703
Jingtao Wang , Chenglei Zhang , Juncang Peng , Jian Wu , Shan Wang , Wu Fan , Qingzhao Shi , Qidong Zhang , Guobi Chai
In this study, we compiled three categories of odorants with spicy aromas: anise class, clove class, and cinnamon class. We aimed to use molecular dynamics simulation techniques to uncover potential regularities in the activation mechanisms of the same odorant across different olfactory receptors, or vice versa, the activation mechanisms of different odorants on the same olfactory receptor. Here, molecular dynamics simulation results reveal that anisaldehyde and estragole preferentially bind to TYR residues, thereby activating the corresponding olfactory receptors. Both eugenol and isoeugenol activate OR5D18 at similar binding sites, but ultimately lead to differential conformational changes in the olfactory receptor. Additionally, the binding conformations of eugenol and methyl eugenol are nearly identical, whereas cinnamaldehyde and cinnamyl alcohol, methyl cinnamaldehyde, exhibit distinct binding conformations with the olfactory receptor. These results underscore how subtle structural changes can impact the binding mechanism of odorants.
在这项研究中,我们整理了三种具有辛辣香味的气味剂:八角类、丁香类和肉桂类。我们旨在利用分子动力学模拟技术揭示同一气味在不同嗅觉受体上的激活机制的潜在规律,反之亦然,揭示不同气味在同一嗅觉受体上的激活机制。分子动力学模拟结果表明,茴香醛和雌二醇优先结合TYR残基,从而激活相应的嗅觉受体。丁香酚和异丁香酚在相似的结合位点激活OR5D18,但最终导致嗅觉受体的不同构象变化。此外,丁香酚和甲基丁香酚的结合构象几乎相同,而肉桂醛和肉桂醇、甲基肉桂醛与嗅觉受体的结合构象不同。这些结果强调了细微的结构变化如何影响气味剂的结合机制。
{"title":"Deciphering the dynamic binding of spicy odorants to human olfactory receptors","authors":"Jingtao Wang ,&nbsp;Chenglei Zhang ,&nbsp;Juncang Peng ,&nbsp;Jian Wu ,&nbsp;Shan Wang ,&nbsp;Wu Fan ,&nbsp;Qingzhao Shi ,&nbsp;Qidong Zhang ,&nbsp;Guobi Chai","doi":"10.1016/j.biosystems.2026.105703","DOIUrl":"10.1016/j.biosystems.2026.105703","url":null,"abstract":"<div><div>In this study, we compiled three categories of odorants with spicy aromas: anise class, clove class, and cinnamon class. We aimed to use molecular dynamics simulation techniques to uncover potential regularities in the activation mechanisms of the same odorant across different olfactory receptors, or vice versa, the activation mechanisms of different odorants on the same olfactory receptor. Here, molecular dynamics simulation results reveal that anisaldehyde and estragole preferentially bind to TYR residues, thereby activating the corresponding olfactory receptors. Both eugenol and isoeugenol activate OR5D18 at similar binding sites, but ultimately lead to differential conformational changes in the olfactory receptor. Additionally, the binding conformations of eugenol and methyl eugenol are nearly identical, whereas cinnamaldehyde and cinnamyl alcohol, methyl cinnamaldehyde, exhibit distinct binding conformations with the olfactory receptor. These results underscore how subtle structural changes can impact the binding mechanism of odorants.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"260 ","pages":"Article 105703"},"PeriodicalIF":1.9,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145946488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Darwin to teleonomy: A categorical final-cause calculus for evolution 从达尔文到目的论:进化论的绝对最终原因演算。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-05 DOI: 10.1016/j.biosystems.2025.105687
Andrei T. Patrascu
<div><div>We propose a <em>teleonomical calculus</em> for evolution that generalizes the classical Darwin–Fisher picture by making <em>final causes</em> – what systems keep true about themselves – into mathematical objects with universal properties. In our framework, the state space is a category <span><math><mi>C</mi></math></span> acted upon (laxly) by time <span><math><mi>T</mi></math></span>, and viability constraints live in a fibration <span><math><mrow><mi>p</mi><mo>:</mo><mi>E</mi><mspace></mspace><mo>→</mo><mspace></mspace><mi>C</mi></mrow></math></span>. An <em>endogenous</em> functor <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mi>C</mi><mspace></mspace><mo>→</mo><mspace></mspace><mi>E</mi></mrow></math></span> extracts invariants from the system (e.g. topological features via persistent homology, sheaf gluing compatibilities, symmetry/conservation laws, or behavioral attractors). The present compatible with realizing these constraints at horizon <span><math><mi>t</mi></math></span> is the right Kan extension <span><span><span><math><mrow><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><msub><mrow><mi>Tel</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><msub><mrow><mo>Ran</mo></mrow><mrow><mi>ι</mi></mrow></msub><mi>Φ</mi><mspace></mspace><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>equivalently a (possibly enriched) limit or a largest invariant subcoalgebra. Passing to concrete dynamics <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> yields an <em>endogenous bias</em> that selects among feasible futures without introducing exogenous rewards: <span><span><span><math><mrow><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>d</mi><msub><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>e</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi><mspace></mspace><mo>−</mo><mspace></mspace><mi>ɛ</mi><msub><mrow><
我们提出了一种进化的终极演算,它将经典的达尔文-费雪图景进行了推广,将最终原因——系统保持自身真实的东西——纳入具有普遍属性的数学对象。在我们的框架中,状态空间是由时间T(松散地)作用的类别C,生存力约束存在于颤动p:E→C中。内源函子Gt:C→E从系统中提取不变量(例如,通过持久同源性、束胶合相容性、对称/守恒定律或行为吸引子获得的拓扑特征)。目前与在视界t上实现这些约束相兼容的是正确的Kan扩展[公式:见文本],等价于(可能充实的)极限或最大不变子代数。传递到具体动态xt会产生内生偏差,在不引入外生奖励的情况下,在可行的未来中进行选择:[公式:见文本],其中相干赤字lt是由Gt构建的(例如PH见证距离和束错配惩罚)。经典选择表现为标量坍缩L=-适应度(复制子-突变子)。更丰富的Gt选择产生了一个机制阶梯:多目标帕累托目的论、形态发生目的论(全局分段;驻留时间~ eαΔW/D)、行为吸引子(最终共代数)、生态位构建完整论(操作顺序缺口)、多层次相干性(同伦限制;协同/方差界限)和元目的论(新代码的原则更新)。我们得出了可测量的预测,提供了一个统一的分类脊柱,并概述了从数据中推断Gt的算法。这将进化重新定义为内生不变量的选择,达尔文的适应性是一个特例。
{"title":"From Darwin to teleonomy: A categorical final-cause calculus for evolution","authors":"Andrei T. Patrascu","doi":"10.1016/j.biosystems.2025.105687","DOIUrl":"10.1016/j.biosystems.2025.105687","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We propose a &lt;em&gt;teleonomical calculus&lt;/em&gt; for evolution that generalizes the classical Darwin–Fisher picture by making &lt;em&gt;final causes&lt;/em&gt; – what systems keep true about themselves – into mathematical objects with universal properties. In our framework, the state space is a category &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; acted upon (laxly) by time &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and viability constraints live in a fibration &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. An &lt;em&gt;endogenous&lt;/em&gt; functor &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; extracts invariants from the system (e.g. topological features via persistent homology, sheaf gluing compatibilities, symmetry/conservation laws, or behavioral attractors). The present compatible with realizing these constraints at horizon &lt;span&gt;&lt;math&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the right Kan extension &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Tel&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;Ran&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ι&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;equivalently a (possibly enriched) limit or a largest invariant subcoalgebra. Passing to concrete dynamics &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; yields an &lt;em&gt;endogenous bias&lt;/em&gt; that selects among feasible futures without introducing exogenous rewards: &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"260 ","pages":"Article 105687"},"PeriodicalIF":1.9,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding life: A detailed examination of program collection 解码生命:程序收集的详细检查。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-05 DOI: 10.1016/j.biosystems.2026.105693
Jun Cao
This article introduces the theory that “life is a collection of programs”. According to this theory, life constitutes a complex system composed of genetic information, metabolic regulation, developmental differentiation, and neurocognitive programs. These components operate in an orderly manner through initiation, execution, feedback, and repair mechanisms. Philosophically, ancient Greek atomism, the Yin-Yang Five Elements theory, and Hegelian dialectics provide support for the structural and dynamic properties of this theory. Scientifically, cell theory, genetics, and synthetic biology have validated its material basis. Specifically, genetic programs regulate traits through DNA, metabolic programs maintain homeostasis through enzymes and signaling pathways, developmental programs rely on gene networks to shape biological structures, and neural programs achieve cognition through neuronal signals. While this theory breaks through the traditional perspectives on life, it also faces challenges such as the “hard problem of consciousness” and ethical controversies. Looking ahead, integrating single-cell omics and artificial intelligence modeling is essential to deepen research and construct a robust ethical framework. This theory provides an interdisciplinary paradigm for life sciences and promotes the advancement of medicine and biotechnology.
本文介绍了“人生是程序的集合”的理论。根据这一理论,生命是一个由遗传信息、代谢调节、发育分化和神经认知程序组成的复杂系统。这些组件通过启动、执行、反馈和修复机制以有序的方式运行。在哲学上,古希腊原子论、阴阳五行学说和黑格尔辩证法为这一理论的结构性和动态性提供了支撑。从科学上讲,细胞理论、遗传学和合成生物学都证实了它的物质基础。具体来说,遗传程序通过DNA调节性状,代谢程序通过酶和信号通路维持体内平衡,发育程序依靠基因网络塑造生物结构,神经程序通过神经元信号实现认知。这一理论在突破传统生命观的同时,也面临着“意识难题”和伦理争议等挑战。展望未来,整合单细胞组学和人工智能建模对于深化研究和构建健全的伦理框架至关重要。这一理论为生命科学提供了一个跨学科的范式,促进了医学和生物技术的进步。
{"title":"Decoding life: A detailed examination of program collection","authors":"Jun Cao","doi":"10.1016/j.biosystems.2026.105693","DOIUrl":"10.1016/j.biosystems.2026.105693","url":null,"abstract":"<div><div>This article introduces the theory that “life is a collection of programs”. According to this theory, life constitutes a complex system composed of genetic information, metabolic regulation, developmental differentiation, and neurocognitive programs. These components operate in an orderly manner through initiation, execution, feedback, and repair mechanisms. Philosophically, ancient Greek atomism, the Yin-Yang Five Elements theory, and Hegelian dialectics provide support for the structural and dynamic properties of this theory. Scientifically, cell theory, genetics, and synthetic biology have validated its material basis. Specifically, genetic programs regulate traits through DNA, metabolic programs maintain homeostasis through enzymes and signaling pathways, developmental programs rely on gene networks to shape biological structures, and neural programs achieve cognition through neuronal signals. While this theory breaks through the traditional perspectives on life, it also faces challenges such as the “hard problem of consciousness” and ethical controversies. Looking ahead, integrating single-cell omics and artificial intelligence modeling is essential to deepen research and construct a robust ethical framework. This theory provides an interdisciplinary paradigm for life sciences and promotes the advancement of medicine and biotechnology.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"260 ","pages":"Article 105693"},"PeriodicalIF":1.9,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expert-guided multi-objective optimization: An efficient strategy for parameter estimation of biological systems with limited data 专家引导的多目标优化:有限数据下生物系统参数估计的有效策略。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-02 DOI: 10.1016/j.biosystems.2025.105686
Léa Da Costa Fernandes , David Bernard , François Pérès , Paul Monsarrat , Béatrice Cousin , Sylvain Cussat-Blanc
Calibrating biological models is challenging due to high-dimensional parameter spaces and the limited availability of reliable experimental data. In this study, we propose a hybrid calibration framework that integrates expert knowledge into a multi-objective optimization process. We have evaluated three multi-objective optimization algorithm (NSGA-III, MOEA/D and MO-TPE) with our framework to combine hard constraints derived from biological measurements with soft constraints encoding qualitative domain expertise, such as expected curve shapes or event timing. This dual-constraint strategy guides the search toward biologically plausible parameter sets while preserving flexibility and interpretability. We demonstrate the effectiveness of our method on a benchmark model of skin wound healing, comparing it to standard and unconstrained optimization strategies. Results show that the framework reduces the risk of overfitting to sparse time-course data by favoring dynamically plausible trajectories that satisfy expert-guided soft constraints, increasing the proportion of biologically plausible solutions generated from 1.8% ± 1.3 to 24.3% ± 8.6 for NSGA-III without constraint to NSGA-III with 6 constraints, respectively (p<0.0001). The framework is flexible, iterative, and generalizable, offering a principled way to leverage domain knowledge for model calibration in complex biological systems.
由于高维参数空间和可靠实验数据的有限可用性,校准生物模型具有挑战性。在本研究中,我们提出了一种将专家知识集成到多目标优化过程中的混合校准框架。我们利用我们的框架评估了三种多目标优化算法(NSGA-III、MOEA/D和MO-TPE),将来自生物测量的硬约束与编码定性领域专业知识(如预期曲线形状或事件时间)的软约束结合起来。这种双重约束策略指导寻找生物学上合理的参数集,同时保持灵活性和可解释性。我们在皮肤伤口愈合的基准模型上证明了我们的方法的有效性,并将其与标准和无约束优化策略进行了比较。结果表明,该框架通过倾向于满足专家指导的软约束的动态可信轨迹,降低了对稀疏时间过程数据的过拟合风险,将无约束的NSGA-III的生物可信解的比例分别从1.8%±1.3提高到24.3%±8.6
{"title":"Expert-guided multi-objective optimization: An efficient strategy for parameter estimation of biological systems with limited data","authors":"Léa Da Costa Fernandes ,&nbsp;David Bernard ,&nbsp;François Pérès ,&nbsp;Paul Monsarrat ,&nbsp;Béatrice Cousin ,&nbsp;Sylvain Cussat-Blanc","doi":"10.1016/j.biosystems.2025.105686","DOIUrl":"10.1016/j.biosystems.2025.105686","url":null,"abstract":"<div><div>Calibrating biological models is challenging due to high-dimensional parameter spaces and the limited availability of reliable experimental data. In this study, we propose a hybrid calibration framework that integrates expert knowledge into a multi-objective optimization process. We have evaluated three multi-objective optimization algorithm (NSGA-III, MOEA/D and MO-TPE) with our framework to combine hard constraints derived from biological measurements with soft constraints encoding qualitative domain expertise, such as expected curve shapes or event timing. This dual-constraint strategy guides the search toward biologically plausible parameter sets while preserving flexibility and interpretability. We demonstrate the effectiveness of our method on a benchmark model of skin wound healing, comparing it to standard and unconstrained optimization strategies. Results show that the framework reduces the risk of overfitting to sparse time-course data by favoring dynamically plausible trajectories that satisfy expert-guided soft constraints, increasing the proportion of biologically plausible solutions generated from 1.8% <span><math><mo>±</mo></math></span> 1.3 to 24.3% <span><math><mo>±</mo></math></span> 8.6 for NSGA-III without constraint to NSGA-III with 6 constraints, respectively (<span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>0001</mn></mrow></math></span>). The framework is flexible, iterative, and generalizable, offering a principled way to leverage domain knowledge for model calibration in complex biological systems.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"260 ","pages":"Article 105686"},"PeriodicalIF":1.9,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145901519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects along the epithelial-mesenchymal biointerface in direct cell self-organisation: Multiscale theoretical analysis 细胞自组织中上皮-间充质生物界面的影响:多尺度理论分析。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.biosystems.2025.105690
Ivana Pajic-Lijakovic , Milan Milivojevic , Peter V.E. McClintock
Epithelial cancer ranks among the most deadly types of cancer globally. Focusing on the disease's early stages could lead to significant enhancements in the survival rates of cancer patients. The initial phase of the disease is associated with the dissemination of cancer cells into the adjacent healthy epithelium. Therefore, a more profound understanding of cell dynamics at the biointerface between epithelial and cancer (mesenchymal) cells is essential for managing the disease promptly. The dynamics of cells at this epithelial-cancer biointerface arises through interplay between a variety of biological and physical mechanisms. Although considerable research has been dedicated to examining the spread of cancer cells across the epithelium, the physical mechanisms that govern the dynamics at the biointerface remain poorly understood. The main goal of this multi-scale theoretical consideration is to emphasize the influence of physical factors, such as the viscoelasticity of the subpopulations and the dilational viscoelasticity of the biointerface, on the efficiency with which cancer spreads through the epithelium. We do so by consideration of the mechanical coupling between the epithelial and cancer mesenchymal-like subpopulations. In this review, we consider this complex phenomenon from a multiscale mechanical perspective that has not been explicitly addressed in earlier studies, using model systems such as the segregation of co-cultured epithelial–mesenchymal spheroids. The mechanical-coupling between the subpopulations arising from the system's viscoelasticity is discussed from the cellular to supracellular levels in order to recognize the main physical factors responsible for the spreading of cancer.
上皮癌是全球最致命的癌症之一。关注疾病的早期阶段可能会显著提高癌症患者的存活率。疾病的初始阶段与癌细胞扩散到邻近的健康上皮有关。因此,更深入地了解上皮细胞和癌(间充质)细胞之间的生物界面上的细胞动力学对于及时控制疾病至关重要。细胞在这种上皮-癌症生物界面上的动力学是通过多种生物和物理机制之间的相互作用而产生的。尽管已经有相当多的研究致力于检查癌细胞在上皮上的扩散,但控制生物界面动力学的物理机制仍然知之甚少。这种多尺度理论考虑的主要目标是强调物理因素的影响,如亚群的粘弹性和生物界面的扩张粘弹性,对癌症通过上皮扩散的效率的影响。我们这样做是考虑到上皮细胞和癌症间充质样亚群之间的机械耦合。在这篇综述中,我们从多尺度力学的角度考虑这一复杂的现象,这在早期的研究中没有得到明确的解决,使用模型系统,如共培养上皮-间充质球体的分离。从细胞到超细胞水平讨论了由系统粘弹性引起的亚种群之间的机械耦合,以认识导致癌症扩散的主要物理因素。
{"title":"Effects along the epithelial-mesenchymal biointerface in direct cell self-organisation: Multiscale theoretical analysis","authors":"Ivana Pajic-Lijakovic ,&nbsp;Milan Milivojevic ,&nbsp;Peter V.E. McClintock","doi":"10.1016/j.biosystems.2025.105690","DOIUrl":"10.1016/j.biosystems.2025.105690","url":null,"abstract":"<div><div>Epithelial cancer ranks among the most deadly types of cancer globally. Focusing on the disease's early stages could lead to significant enhancements in the survival rates of cancer patients. The initial phase of the disease is associated with the dissemination of cancer cells into the adjacent healthy epithelium. Therefore, a more profound understanding of cell dynamics at the biointerface between epithelial and cancer (mesenchymal) cells is essential for managing the disease promptly. The dynamics of cells at this epithelial-cancer biointerface arises through interplay between a variety of biological and physical mechanisms. Although considerable research has been dedicated to examining the spread of cancer cells across the epithelium, the physical mechanisms that govern the dynamics at the biointerface remain poorly understood. The main goal of this multi-scale theoretical consideration is to emphasize the influence of physical factors, such as the viscoelasticity of the subpopulations and the dilational viscoelasticity of the biointerface, on the efficiency with which cancer spreads through the epithelium. We do so by consideration of the mechanical coupling between the epithelial and cancer mesenchymal-like subpopulations. In this review, we consider this complex phenomenon from a multiscale mechanical perspective that has not been explicitly addressed in earlier studies, using model systems such as the segregation of co-cultured epithelial–mesenchymal spheroids. The mechanical-coupling between the subpopulations arising from the system's viscoelasticity is discussed from the cellular to supracellular levels in order to recognize the main physical factors responsible for the spreading of cancer.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"259 ","pages":"Article 105690"},"PeriodicalIF":1.9,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overview of the fifth special issue in Code Biology 《密码生物学》第五期特刊综述。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.biosystems.2025.105643
Marcello Barbieri
{"title":"Overview of the fifth special issue in Code Biology","authors":"Marcello Barbieri","doi":"10.1016/j.biosystems.2025.105643","DOIUrl":"10.1016/j.biosystems.2025.105643","url":null,"abstract":"","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"259 ","pages":"Article 105643"},"PeriodicalIF":1.9,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145460132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthropogenesis and the origin of human consciousness 人类起源和人类意识的起源。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.biosystems.2025.105668
Pedro C. Marijuán, Abir U. Igamberdiev, Terrence W. Deacon, Giuseppe Iurato
The special issue of BioSystems, “Anthropogenesis and the origin of human consciousness”, provides an overview of the state of the art in the fields of anthropogenesis, evolution of consciousness, and social dynamics. The contributions in this special issue present the contemporary approaches to the origins of modern man and early human evolution, the development of human consciousness and its physical basis, the origin of language and art, the formation of early civilizations, the development of information systems, and even forecasting the future progress of global civilization.
本期《生物系统》特刊“人类形成与人类意识的起源”概述了人类形成、意识进化和社会动态等领域的最新进展。本期特刊的贡献展示了现代人的起源和早期人类进化的当代方法,人类意识的发展及其物理基础,语言和艺术的起源,早期文明的形成,信息系统的发展,甚至预测全球文明的未来进步。
{"title":"Anthropogenesis and the origin of human consciousness","authors":"Pedro C. Marijuán,&nbsp;Abir U. Igamberdiev,&nbsp;Terrence W. Deacon,&nbsp;Giuseppe Iurato","doi":"10.1016/j.biosystems.2025.105668","DOIUrl":"10.1016/j.biosystems.2025.105668","url":null,"abstract":"<div><div>The special issue of BioSystems, “Anthropogenesis and the origin of human consciousness”, provides an overview of the state of the art in the fields of anthropogenesis, evolution of consciousness, and social dynamics. The contributions in this special issue present the contemporary approaches to the origins of modern man and early human evolution, the development of human consciousness and its physical basis, the origin of language and art, the formation of early civilizations, the development of information systems, and even forecasting the future progress of global civilization.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"259 ","pages":"Article 105668"},"PeriodicalIF":1.9,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145726626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformation of the inherent energy in food to ATP and transformations of our knowledge about the mechanism 食物中固有能量转化为三磷酸腺苷以及我们对这一机制的认识的转变。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.biosystems.2025.105681
Ole H. Petersen CBE FRS
{"title":"Transformation of the inherent energy in food to ATP and transformations of our knowledge about the mechanism","authors":"Ole H. Petersen CBE FRS","doi":"10.1016/j.biosystems.2025.105681","DOIUrl":"10.1016/j.biosystems.2025.105681","url":null,"abstract":"","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"259 ","pages":"Article 105681"},"PeriodicalIF":1.9,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145745530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a unified theory of ATP synthesis/hydrolysis: Integrating physics, chemistry, and biology 迈向ATP合成/水解的统一理论:整合物理、化学和生物学。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.biosystems.2025.105680
Victor Wray, Carey Witkov, Bjarne Andresen
{"title":"Toward a unified theory of ATP synthesis/hydrolysis: Integrating physics, chemistry, and biology","authors":"Victor Wray,&nbsp;Carey Witkov,&nbsp;Bjarne Andresen","doi":"10.1016/j.biosystems.2025.105680","DOIUrl":"10.1016/j.biosystems.2025.105680","url":null,"abstract":"","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"259 ","pages":"Article 105680"},"PeriodicalIF":1.9,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145764535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid DNN model using novel integrated interface features for predicting protein-protein complexes binding affinity 利用新型集成界面特征预测蛋白质复合物结合亲和力的混合DNN模型。
IF 1.9 4区 生物学 Q2 BIOLOGY Pub Date : 2025-12-30 DOI: 10.1016/j.biosystems.2025.105688
Lichao Zhang , Zhengyan Bian , Xue Wang , Liang Kong
Accurately predicting binding affinity of protein-protein complexes is significant for gaining deeper insights into complex biological mechanisms. Given that binding between proteins primarily occurs at the interface region, previous studies have demonstrated that the number of inter-residue contacts (ICs) and the buried surface area (BSA) are critical interface features. However, existing models generally used these two types of interface features separately, ignoring integrating them effectively to achieve high prediction accuracy. In this study, utilizing kernel density estimation-based mutual information and the Hadamard product, we proposed an effective approach that integrates BSA and ICs to construct the novel integrated interface features that embody dual structural information, and further derived our feature set. Subsequently, the proposed feature set was input Deep Neural Network (DNN), and a hybrid DNN model was further developed following our hybrid modeling strategy. To enhance its prediction performance, a combined activation function was customized for the output layers. Ultimately, using four-fold cross-validation, our hybrid DNN model achieved a Pearson correlation coefficient (R) of 0.88 and a root mean square error (RMSE) of 1.301 kcal/mol, and we verified its good generalization capability, achieving R = 0.82 and RMSE = 1.21 kcal/mol on the external test set derived from the SKEMPI 2.0 database. Compared with existing approaches, our method consistently exhibited superior predictive performance, validating the effectiveness of the proposed method for protein-protein binding affinity prediction. Moreover, the integration strategy for binding affinity representation and the hybrid modeling method may be helpful for related research.
准确预测蛋白质复合物的结合亲和力对于深入了解复杂的生物机制具有重要意义。鉴于蛋白质之间的结合主要发生在界面区域,先前的研究表明,残基间接触(ICs)的数量和埋藏表面积(BSA)是关键的界面特征。然而,现有的模型一般将这两类界面特征分别使用,忽略了将两者有效地整合以达到较高的预测精度。在本研究中,我们利用核密度估计的互信息和Hadamard积,提出了一种有效的方法,将BSA和ic集成在一起,构建新的包含双结构信息的集成接口特征,并进一步推导出我们的特征集。随后,将提出的特征集输入深度神经网络(DNN),并根据我们的混合建模策略进一步开发混合DNN模型。为了提高其预测性能,为输出层定制了组合激活函数。最终,通过四重交叉验证,混合DNN模型的Pearson相关系数(R)为0.88,均方根误差(RMSE)为1.301 kcal/mol,并验证了其良好的泛化能力,在SKEMPI 2.0数据库的外部测试集上实现了R = 0.82, RMSE = 1.21 kcal/mol。与现有方法相比,我们的方法始终表现出优越的预测性能,验证了所提出的方法用于蛋白质-蛋白质结合亲和力预测的有效性。此外,结合亲和表示的集成策略和混合建模方法可能有助于相关研究。
{"title":"A hybrid DNN model using novel integrated interface features for predicting protein-protein complexes binding affinity","authors":"Lichao Zhang ,&nbsp;Zhengyan Bian ,&nbsp;Xue Wang ,&nbsp;Liang Kong","doi":"10.1016/j.biosystems.2025.105688","DOIUrl":"10.1016/j.biosystems.2025.105688","url":null,"abstract":"<div><div>Accurately predicting binding affinity of protein-protein complexes is significant for gaining deeper insights into complex biological mechanisms. Given that binding between proteins primarily occurs at the interface region, previous studies have demonstrated that the number of inter-residue contacts (ICs) and the buried surface area (BSA) are critical interface features. However, existing models generally used these two types of interface features separately, ignoring integrating them effectively to achieve high prediction accuracy. In this study, utilizing kernel density estimation-based mutual information and the Hadamard product, we proposed an effective approach that integrates BSA and ICs to construct the novel integrated interface features that embody dual structural information, and further derived our feature set. Subsequently, the proposed feature set was input Deep Neural Network (DNN), and a hybrid DNN model was further developed following our hybrid modeling strategy. To enhance its prediction performance, a combined activation function was customized for the output layers. Ultimately, using four-fold cross-validation, our hybrid DNN model achieved a Pearson correlation coefficient (R) of 0.88 and a root mean square error (RMSE) of 1.301 kcal/mol, and we verified its good generalization capability, achieving R = 0.82 and RMSE = 1.21 kcal/mol on the external test set derived from the SKEMPI 2.0 database. Compared with existing approaches, our method consistently exhibited superior predictive performance, validating the effectiveness of the proposed method for protein-protein binding affinity prediction. Moreover, the integration strategy for binding affinity representation and the hybrid modeling method may be helpful for related research.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"260 ","pages":"Article 105688"},"PeriodicalIF":1.9,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145890426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biosystems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1