首页 > 最新文献

Annals of Epidemiology最新文献

英文 中文
The probable role of barberries and herbal medicine in congenital anomalies and disorders in Darmian city, South Khorasan Province, Iran 伊朗南呼罗珊省达尔米安市的芭乐和草药对先天性畸形和疾病的可能作用
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.071
Mohammad Ismail Masinainejad , Narges Khanjani , Maryam Khodadadi , Ismail Najafi
{"title":"The probable role of barberries and herbal medicine in congenital anomalies and disorders in Darmian city, South Khorasan Province, Iran","authors":"Mohammad Ismail Masinainejad , Narges Khanjani , Maryam Khodadadi , Ismail Najafi","doi":"10.1016/j.annepidem.2024.07.071","DOIUrl":"10.1016/j.annepidem.2024.07.071","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 139"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining word patterns and trends in self-harm emergency department narratives 研究自我伤害急诊科叙述中的用词模式和趋势
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.062
L.E. Beagle, A.L. Cammack, G.F. Miller, N. Idaikkadar
{"title":"Examining word patterns and trends in self-harm emergency department narratives","authors":"L.E. Beagle, A.L. Cammack, G.F. Miller, N. Idaikkadar","doi":"10.1016/j.annepidem.2024.07.062","DOIUrl":"10.1016/j.annepidem.2024.07.062","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 141"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosing irritable bowel syndrome with artificial intelligence: A systematic review and Meta-analysis 用人工智能诊断肠易激综合征:系统回顾与元分析
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.005
Nishad Badree BSc, Prakash Ramdass MD, MPH
{"title":"Diagnosing irritable bowel syndrome with artificial intelligence: A systematic review and Meta-analysis","authors":"Nishad Badree BSc, Prakash Ramdass MD, MPH","doi":"10.1016/j.annepidem.2024.07.005","DOIUrl":"10.1016/j.annepidem.2024.07.005","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 96"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating telehealth for Medicaid SUD and MH Services 为医疗补助计划的药物滥用、精神失常和心理健康服务开展远程保健调查
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.089
Akshaya Srikanth Bhagavathula
{"title":"Investigating telehealth for Medicaid SUD and MH Services","authors":"Akshaya Srikanth Bhagavathula","doi":"10.1016/j.annepidem.2024.07.089","DOIUrl":"10.1016/j.annepidem.2024.07.089","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 105"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PREDICTING RISK OF EMPLOYEE INJURY IN A PEDIATRIC HOSPITAL 预测儿科医院员工受伤的风险
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.06.014
Emrah Gecili, Nancy Daraiseh, Cole Brokamp, Maurizio Macaluso

PURPOSE

Healthcare has one of the highest rates of non-fatal occupational injury as compared to other industries. Yet, evaluation of risk determinants and prediction algorithms in hospital settings remains limited.

METHODS

This study examines risk factors for employee injuries in a large pediatric hospital and evaluates prediction algorithms using hospital surveillance data, incident reports, and work unit measures such as patient density and employee workload. We employed multiple statistical models and machine learning tools, including logistic regression (LR), random forest (RF), penalized logistic regression (PLR), Naïve Bayes, neural network (NN), XGBoost (XG), and mixed-effects logistic regression (GLMER) to predict employee injury risk for specific time periods. We used cross-validation and receiver-operator characteristic (ROC) curve analyses to assess model performance.

RESULTS

GLMER, LR, and PLR were superior to other models, with higher AUC values (∼0.76), indicating good discrimination ability, though accuracy and specificity varied across models. RF showed high accuracy and specificity and comparable AUC with the top performing models. Further analyses using GLMER revealed variability in employee injury risk across months, days, and hospital units, identifying peaks on Tuesdays and Saturdays and in April and July, with lows in March and June.

CONCLUSION

Our findings highlight the significance of monitoring specific risk factors within pediatric hospital settings and pairing them with appropriate predictive algorithms to effectively predict and mitigate employee injuries. These insights indicate that continuous monitoring may help enhance employee safety. Future work should evaluate additional predictors that may be obtained from individual hospital units, which may inform targeted prevention strategies.

目的与其他行业相比,医疗行业是非致命性工伤发生率最高的行业之一。本研究探讨了一家大型儿科医院中员工受伤的风险因素,并使用医院监控数据、事故报告和工作单位指标(如患者密度和员工工作量)对预测算法进行了评估。我们采用了多种统计模型和机器学习工具,包括逻辑回归 (LR)、随机森林 (RF)、惩罚逻辑回归 (PLR)、奈夫贝叶斯、神经网络 (NN)、XGBoost (XG) 和混合效应逻辑回归 (GLMER),来预测特定时间段的员工伤害风险。结果GLMER、LR 和 PLR 优于其他模型,具有较高的 AUC 值(∼0.76),表明具有良好的区分能力,但不同模型的准确性和特异性各不相同。RF 显示出较高的准确性和特异性,其 AUC 值与表现最好的模型相当。使用 GLMER 进行的进一步分析表明,员工伤害风险在不同月份、不同天数和不同医院单位之间存在差异,周二和周六以及四月和七月为高峰,三月和六月为低谷。这些研究结果表明,持续监测有助于加强员工安全。未来的工作应评估可从个别医院单位获得的其他预测因素,从而为有针对性的预防策略提供信息。
{"title":"PREDICTING RISK OF EMPLOYEE INJURY IN A PEDIATRIC HOSPITAL","authors":"Emrah Gecili,&nbsp;Nancy Daraiseh,&nbsp;Cole Brokamp,&nbsp;Maurizio Macaluso","doi":"10.1016/j.annepidem.2024.06.014","DOIUrl":"10.1016/j.annepidem.2024.06.014","url":null,"abstract":"<div><h3><strong>PURPOSE</strong></h3><p>Healthcare has one of the highest rates of non-fatal occupational injury as compared to other industries. Yet, evaluation of risk determinants and prediction algorithms in hospital settings remains limited.</p></div><div><h3><strong>METHODS</strong></h3><p>This study examines risk factors for employee injuries in a large pediatric hospital and evaluates prediction algorithms using hospital surveillance data, incident reports, and work unit measures such as patient density and employee workload. We employed multiple statistical models and machine learning tools, including logistic regression (LR), random forest (RF), penalized logistic regression (PLR), Naïve Bayes, neural network (NN), XGBoost (XG), and mixed-effects logistic regression (GLMER) to predict employee injury risk for specific time periods. We used cross-validation and receiver-operator characteristic (ROC) curve analyses to assess model performance.</p></div><div><h3><strong>RESULTS</strong></h3><p>GLMER, LR, and PLR were superior to other models, with higher AUC values (∼0.76), indicating good discrimination ability, though accuracy and specificity varied across models. RF showed high accuracy and specificity and comparable AUC with the top performing models. Further analyses using GLMER revealed variability in employee injury risk across months, days, and hospital units, identifying peaks on Tuesdays and Saturdays and in April and July, with lows in March and June.</p></div><div><h3><strong>CONCLUSION</strong></h3><p>Our findings highlight the significance of monitoring specific risk factors within pediatric hospital settings and pairing them with appropriate predictive algorithms to effectively predict and mitigate employee injuries. These insights indicate that continuous monitoring may help enhance employee safety. Future work should evaluate additional predictors that may be obtained from individual hospital units, which may inform targeted prevention strategies.</p></div>","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 107"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of transportation on overall health in Nebraska 交通对内布拉斯加州整体健康的影响
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.056
M. Ahuja, D. Lamprecht-Carson, H. Wang, L.C. Smith, K.L. Ratnapradipa
{"title":"Role of transportation on overall health in Nebraska","authors":"M. Ahuja,&nbsp;D. Lamprecht-Carson,&nbsp;H. Wang,&nbsp;L.C. Smith,&nbsp;K.L. Ratnapradipa","doi":"10.1016/j.annepidem.2024.07.056","DOIUrl":"10.1016/j.annepidem.2024.07.056","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 114"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barriers and motivators to heart-health related research participation among women 妇女参与心脏健康相关研究的障碍和动力
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.023
Ivree Datcher MPH , Olivia Affuso PhD, FACSM , Alexandra Krallman , Bertha Hidalgo PhD, MPH, FACE
{"title":"Barriers and motivators to heart-health related research participation among women","authors":"Ivree Datcher MPH ,&nbsp;Olivia Affuso PhD, FACSM ,&nbsp;Alexandra Krallman ,&nbsp;Bertha Hidalgo PhD, MPH, FACE","doi":"10.1016/j.annepidem.2024.07.023","DOIUrl":"10.1016/j.annepidem.2024.07.023","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 121"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neighborhood disadvantage, social vulnerability, and mental health 邻里劣势、社会脆弱性和心理健康
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.073
Kristyne Mansilla Dubon MD. MPH , Ariane Lisann Rung PhD, MPH , Edward S. Peters DMD, SM, ScD
{"title":"Neighborhood disadvantage, social vulnerability, and mental health","authors":"Kristyne Mansilla Dubon MD. MPH ,&nbsp;Ariane Lisann Rung PhD, MPH ,&nbsp;Edward S. Peters DMD, SM, ScD","doi":"10.1016/j.annepidem.2024.07.073","DOIUrl":"10.1016/j.annepidem.2024.07.073","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 125"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Father involvement during pregnancy and maternal and neonatal health outcomes 孕期父亲参与与孕产妇和新生儿健康结果
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.084
Shelby Alderman, Katherine Bowers, Alonzo Folger
{"title":"Father involvement during pregnancy and maternal and neonatal health outcomes","authors":"Shelby Alderman,&nbsp;Katherine Bowers,&nbsp;Alonzo Folger","doi":"10.1016/j.annepidem.2024.07.084","DOIUrl":"10.1016/j.annepidem.2024.07.084","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 145"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PREDICTORS OF INFLAMMATION IN FIREFIGHTERS BASED ON MACHINE LEARNING MODELS 基于机器学习模型的消防员炎症预测因子
IF 3.3 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Pub Date : 2024-09-01 DOI: 10.1016/j.annepidem.2024.07.021
A.C. Testoff, A.J. Green, J. Garibaldi, T. Koru-Sengul, N. Schaefer Solle, E.N. Kobetz, A.J. Caban-Martinez
{"title":"PREDICTORS OF INFLAMMATION IN FIREFIGHTERS BASED ON MACHINE LEARNING MODELS","authors":"A.C. Testoff,&nbsp;A.J. Green,&nbsp;J. Garibaldi,&nbsp;T. Koru-Sengul,&nbsp;N. Schaefer Solle,&nbsp;E.N. Kobetz,&nbsp;A.J. Caban-Martinez","doi":"10.1016/j.annepidem.2024.07.021","DOIUrl":"10.1016/j.annepidem.2024.07.021","url":null,"abstract":"","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"97 ","pages":"Page 126"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annals of Epidemiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1