Student engagement while learning a new, unfamiliar vocabulary is challenging in health science courses. A group role-play activity was created to teach students medical terminology and learn why its correct usage is important. This activity brought engagement and relevance to a topic traditionally taught through lecture and rote memorization and led to the development of an undergraduate and a stand-alone introductory course to teach students medical terminology. The undergraduate course was designed to be a fully online medical terminology course for health science students and a face-to-face course for first-year dental students founded in active learning and group work. The course's centerpiece learning activity focused on using published case studies with role-play. In this group activity, students are challenged to interpret a published patient case study as one of the members of a healthcare team. This course models the group work inherent in modern health care to practice building community and practicing professional skills. This approach gives students the capacity to work asynchronously in a team-based approach using our learning management system's wiki tool and requires students to take responsibility for their learning and group dynamics. Students practice identification, writing, analyzing, and speaking medical terms while rotating through the roles. Students in both classes self-reported a 92% to 99% strong or somewhat agreement using a five-point Likert scale that the course pedagogy was valued and helpful in their learning of medical terminology. Overall, this method has proven to be an engaging way for students to learn medical terminology.NEW & NOTEWORTHY Role-play can engage students and encourage learning in identification, pronouncing, writing, and understanding medical terminology in multiple course formats.
An interdisciplinary team-teaching session was introduced to high school students who participated in the Oakland University William Beaumont Future Physician Summer Enrichment Program. The rising prevalence of adolescent obesity necessitates innovative educational strategies that effectively engage high school students in understanding the complex physiologic mechanisms and nutrition concepts underlying its development. This submission presents a session that is designed to integrate the physiological concepts and nutrition that are associated with the development of obesity. Foundational information about the different food ingredients and physiology of the gastrointestinal organ system followed by concepts associated with the development of obesity and its complications were introduced. The session was delivered using combined educational approaches such as a dialogical-narrative approach and hands-on application activities by two discipline experts, physiology and nutrition. This innovative approach was well received, as evidenced by high satisfaction rates among participants. While direct measures of critical thinking and practical skills development were not captured, the positive feedback suggests that students appreciated the engaging, hands-on application of theoretical concepts. The sessions fostered an awareness of personal health responsibilities, with students actively participating and connecting learned material with practical scenarios. We believe that using combined educational approaches in interdisciplinary team-teaching sessions promotes inclusiveness and interactive engagement and enhances long-life learning.NEW & NOTEWORTHY An interdisciplinary team-teaching session was introduced to high school students who participated in the Oakland University William Beaumont Future Physician Summer Enrichment Program. The session aimed to integrate physiological concepts and nutrition that are associated with the development of obesity. The session was delivered using combined educational approaches including a dialogical-narrative approach and hands-on application activity that are guided by combined learning theories such as dialogism, narrative, theories of engagement, and multimedia active learning.
Laboratory practicals in life science subjects are traditionally assessed by written reports that reflect disciplinary norms for documenting experimental activities. However, the exclusive application of this assessment has the potential to engage only a narrow range of competencies. In this study, we explored how multiple modes of laboratory assessment might affect student perceptions of learned skills in a life science module. We hypothesized that while a mixture of assessments may not impact student summative performance, it might positively influence student perceptions of different skills that varied assessments allowed them to practice. This was informed by universal design for learning and teaching for understanding frameworks. In our study, in a third-year Bioscience program, written reports were complemented with group presentations and online quizzes via Moodle. Anonymous surveys evaluated whether this expanded portfolio of assessments promoted awareness of, and engagement with, a broader range of practical competencies. Aspects that influenced student preferences in assessment mode included time limitations, time investment, ability to practice new skills, links with lecture material, and experience of assessment anxiety. In particular, presentations were highlighted as promoting collaboration and communication and the quiz as an effective means of diversifying assessment schedules. A key takeaway from students was that while reports were important, an overreliance on them was detrimental. This study suggests that undergraduate life science students can benefit significantly from a holistic assessment strategy that complements reports with performance-based approaches that incorporate broader competencies and allow for greater student engagement and expression in undergraduate modules.NEW & NOTEWORTHY This study suggests that undergraduate life science students can benefit significantly from a holistic assessment strategy that complements reports with performance-based approaches that incorporate broader competencies and allow for greater student engagement and expression in undergraduate modules.
The movement of air into and out of the lungs is facilitated by changes in pressure within the thoracic cavity relative to atmospheric pressure, as well as the resistance encountered by airways. In this process, the movement of air into and out of the lungs is driven by pressure gradients established by changes in lung volume and intra-alveolar pressure. However, pressure never sucks! The concept that pressure never sucks, pressure only pushes encapsulates a fundamental principle in the behavior of gases. This concept challenges common misconceptions about pressure, shedding light on the dynamic forces that govern the movement of gases. In this Illumination, we explore the essence of this concept and its applications in pulmonary ventilation. Pressure is one of the most important concepts in physics and physiology. Atmospheric pressure at sea level is equal to 1 atmosphere or around 101,325 Pascal [Pa (1 Pa = 1 N/m2)]. This huge pressure is pushing down on everything all the time. However, this pressure is difficult to understand because we do not often observe the power of this incredible force. We used five readily available, simple, and inexpensive demonstrations to introduce the physics and power of pressure. This extraordinarily complex physics concept was approached in a straightforward and inexpensive manner while still providing an understanding of the fundamental concepts. These simple demonstrations introduced basic concepts and addressed common misconceptions about pressure.NEW & NOTEWORTHY The concept that pressure never sucks, pressure only pushes challenges common misconceptions about pressure, shedding light on the dynamic forces that govern the movement of gases. In this Illumination, we will explore the essence of this concept and its applications in pulmonary ventilation. Specifically, we used five readily available, simple, inexpensive demonstrations to introduce the physics and power of pressure.