首页 > 最新文献

Advances in Mathematics最新文献

英文 中文
Homology cobordism and the geometry of hyperbolic three-manifolds
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110087
Francesco Lin
A major challenge in the study of the structure of the three-dimensional homology cobordism group is to understand the interaction between hyperbolic geometry and homology cobordism. In this paper, for a hyperbolic homology sphere Y we derive explicit bounds on the relative grading between irreducible solutions to the Seiberg-Witten equations and the reducible one in terms of the spectral and Riemannian geometry of Y. Using this, we provide explicit bounds on some numerical invariants arising in monopole Floer homology (and its Pin(2)-equivariant refinement). We apply this to study the subgroups of the homology cobordism group generated by hyperbolic homology spheres satisfying certain natural geometric constraints.
{"title":"Homology cobordism and the geometry of hyperbolic three-manifolds","authors":"Francesco Lin","doi":"10.1016/j.aim.2024.110087","DOIUrl":"10.1016/j.aim.2024.110087","url":null,"abstract":"<div><div>A major challenge in the study of the structure of the three-dimensional homology cobordism group is to understand the interaction between hyperbolic geometry and homology cobordism. In this paper, for a hyperbolic homology sphere <em>Y</em> we derive explicit bounds on the relative grading between irreducible solutions to the Seiberg-Witten equations and the reducible one in terms of the spectral and Riemannian geometry of <em>Y</em>. Using this, we provide explicit bounds on some numerical invariants arising in monopole Floer homology (and its <span><math><mrow><mi>Pin</mi></mrow><mo>(</mo><mn>2</mn><mo>)</mo></math></span>-equivariant refinement). We apply this to study the subgroups of the homology cobordism group generated by hyperbolic homology spheres satisfying certain natural geometric constraints.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110087"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic symmetrization, convex bodies, and isoperimetric inequalities
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110085
Gabriele Bianchi, Andrea Cianchi, Paolo Gronchi
This work is concerned with a Pólya-Szegö type inequality for anisotropic functionals of Sobolev functions. The relevant inequality entails a double-symmetrization involving both trial functions and functionals. A new approach uncovering geometric aspects of the inequality is proposed. It relies upon anisotropic isoperimetric inequalities, fine properties of Sobolev functions, and results from the Brunn-Minkowski theory of convex bodies. Importantly, unlike previously available proofs, the one offered in this paper does not require approximation arguments and hence allows for a characterization of extremal functions.
{"title":"Anisotropic symmetrization, convex bodies, and isoperimetric inequalities","authors":"Gabriele Bianchi,&nbsp;Andrea Cianchi,&nbsp;Paolo Gronchi","doi":"10.1016/j.aim.2024.110085","DOIUrl":"10.1016/j.aim.2024.110085","url":null,"abstract":"<div><div>This work is concerned with a Pólya-Szegö type inequality for anisotropic functionals of Sobolev functions. The relevant inequality entails a double-symmetrization involving both trial functions and functionals. A new approach uncovering geometric aspects of the inequality is proposed. It relies upon anisotropic isoperimetric inequalities, fine properties of Sobolev functions, and results from the Brunn-Minkowski theory of convex bodies. Importantly, unlike previously available proofs, the one offered in this paper does not require approximation arguments and hence allows for a characterization of extremal functions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110085"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetrahedron instantons in Donaldson-Thomas theory
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110099
Nadir Fasola , Sergej Monavari
Inspired by the work of Pomoni-Yan-Zhang in String Theory, we introduce the moduli space of tetrahedron instantons as a Quot scheme on a singular threefold and describe it as a moduli space of quiver representations. We construct a virtual fundamental class and virtual structure sheaf à la Oh-Thomas, by which we define K-theoretic invariants. We show that the partition function of such invariants reproduces the one studied by Pomoni-Yan-Zhang, and explicitly determine it, as a product of shifted partition functions of rank one Donaldson-Thomas invariants of the three-dimensional affine space. Our geometric construction answers a series of questions of Pomoni-Yan-Zhang on the geometry of the moduli space of tetrahedron instantons and the behaviour of its partition function, and provides a new application of the recent work of Oh-Thomas.
{"title":"Tetrahedron instantons in Donaldson-Thomas theory","authors":"Nadir Fasola ,&nbsp;Sergej Monavari","doi":"10.1016/j.aim.2024.110099","DOIUrl":"10.1016/j.aim.2024.110099","url":null,"abstract":"<div><div>Inspired by the work of Pomoni-Yan-Zhang in String Theory, we introduce the moduli space of tetrahedron instantons as a Quot scheme on a singular threefold and describe it as a moduli space of quiver representations. We construct a virtual fundamental class and virtual structure sheaf à la Oh-Thomas, by which we define <em>K</em>-theoretic invariants. We show that the partition function of such invariants reproduces the one studied by Pomoni-Yan-Zhang, and explicitly determine it, as a product of shifted partition functions of rank one Donaldson-Thomas invariants of the three-dimensional affine space. Our geometric construction answers a series of questions of Pomoni-Yan-Zhang on the geometry of the moduli space of tetrahedron instantons and the behaviour of its partition function, and provides a new application of the recent work of Oh-Thomas.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110099"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dispersion of dilated lacunary sequences, with applications in multiplicative Diophantine approximation
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110062
Eduard Stefanescu
Let (an)nN be a lacunary sequence satisfying the Hadamard gap condition. We give upper bounds for the maximal gap of the set of dilates {anα}nN modulo 1, in terms of N. For any lacunary sequence (an)nN we prove the existence of a dilation factor α such that the maximal gap is of order at most (logN)/N, and we prove that for Lebesgue almost all α the maximal gap is of order at most (logN)2+ε/N. The metric result is generalized to other measures satisfying a certain Fourier decay assumption. Both upper bounds are optimal up to a factor of logarithmic order, and the latter result improves a recent result of Chow and Technau. Finally, we show that our result implies an improved upper bound in the inhomogeneous version of Littlewood's problem in multiplicative Diophantine approximation.
{"title":"The dispersion of dilated lacunary sequences, with applications in multiplicative Diophantine approximation","authors":"Eduard Stefanescu","doi":"10.1016/j.aim.2024.110062","DOIUrl":"10.1016/j.aim.2024.110062","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> be a lacunary sequence satisfying the Hadamard gap condition. We give upper bounds for the maximal gap of the set of dilates <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>α</mi><mo>}</mo></mrow><mrow><mi>n</mi><mo>≤</mo><mi>N</mi></mrow></msub></math></span> modulo 1, in terms of <em>N</em>. For any lacunary sequence <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> we prove the existence of a dilation factor <em>α</em> such that the maximal gap is of order at most <span><math><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>N</mi><mo>)</mo><mo>/</mo><mi>N</mi></math></span>, and we prove that for Lebesgue almost all <em>α</em> the maximal gap is of order at most <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>N</mi><mo>)</mo></mrow><mrow><mn>2</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>/</mo><mi>N</mi></math></span>. The metric result is generalized to other measures satisfying a certain Fourier decay assumption. Both upper bounds are optimal up to a factor of logarithmic order, and the latter result improves a recent result of Chow and Technau. Finally, we show that our result implies an improved upper bound in the inhomogeneous version of Littlewood's problem in multiplicative Diophantine approximation.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110062"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Answers to questions of Grünbaum and Loewner
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110081
Sergii Myroshnychenko , Kateryna Tatarko , Vladyslav Yaskin
We construct a convex body K in Rn, n5, with the property that there is exactly one hyperplane H passing through c(K), the centroid of K, such that the centroid of KH coincides with c(K). This provides answers to questions of Grünbaum and Loewner for n5. The proof is based on the existence of non-intersection bodies in these dimensions.
{"title":"Answers to questions of Grünbaum and Loewner","authors":"Sergii Myroshnychenko ,&nbsp;Kateryna Tatarko ,&nbsp;Vladyslav Yaskin","doi":"10.1016/j.aim.2024.110081","DOIUrl":"10.1016/j.aim.2024.110081","url":null,"abstract":"<div><div>We construct a convex body <em>K</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>, with the property that there is exactly one hyperplane <em>H</em> passing through <span><math><mi>c</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the centroid of <em>K</em>, such that the centroid of <span><math><mi>K</mi><mo>∩</mo><mi>H</mi></math></span> coincides with <span><math><mi>c</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. This provides answers to questions of Grünbaum and Loewner for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. The proof is based on the existence of non-intersection bodies in these dimensions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110081"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subcritical epidemics on random graphs
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110102
Oanh Nguyen , Allan Sly
We study the contact process on random graphs with low infection rate λ. For random d-regular graphs, it is known that the survival time is O(logn) below the critical λc. By contrast, on the Erdős-Rényi random graphs G(n,d/n), rare high-degree vertices result in much longer survival times. We show that the survival time is governed by high-density local configurations. In particular, we show that there is a long string of high-degree vertices on which the infection lasts for time nλ2+o(1). To establish a matching upper bound, we introduce a modified version of the contact process which ignores infections that do not lead to further infections and allows for a sharper recursive analysis on branching process trees, the local-weak limit of the graph. Our methods, moreover, generalize to random graphs with given degree distributions that have exponential moments.
{"title":"Subcritical epidemics on random graphs","authors":"Oanh Nguyen ,&nbsp;Allan Sly","doi":"10.1016/j.aim.2024.110102","DOIUrl":"10.1016/j.aim.2024.110102","url":null,"abstract":"<div><div>We study the contact process on random graphs with low infection rate <em>λ</em>. For random <em>d</em>-regular graphs, it is known that the survival time is <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> below the critical <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. By contrast, on the Erdős-Rényi random graphs <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>/</mo><mi>n</mi><mo>)</mo></math></span>, rare high-degree vertices result in much longer survival times. We show that the survival time is governed by high-density local configurations. In particular, we show that there is a long string of high-degree vertices on which the infection lasts for time <span><math><msup><mrow><mi>n</mi></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></msup></math></span>. To establish a matching upper bound, we introduce a modified version of the contact process which ignores infections that do not lead to further infections and allows for a sharper recursive analysis on branching process trees, the local-weak limit of the graph. Our methods, moreover, generalize to random graphs with given degree distributions that have exponential moments.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110102"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maps, simple groups, and arc-transitive graphs
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110086
Martin W. Liebeck , Cheryl E. Praeger
We determine all factorisations X=AB, where X is a finite almost simple group and A,B are core-free subgroups such that AB is cyclic or dihedral. As a main application, we classify the graphs Γ admitting an almost simple arc-transitive group X of automorphisms, such that Γ has a 2-cell embedding as a map on a closed surface admitting a core-free arc-transitive subgroup G of X. We prove that apart from the case where X and G have socles An and An1 respectively, the only such graphs are the complete graphs Kn with n a prime power, the Johnson graphs J(n,2) with n1 a prime power, and 14 further graphs. In the exceptional case, we construct infinitely many graph embeddings.
{"title":"Maps, simple groups, and arc-transitive graphs","authors":"Martin W. Liebeck ,&nbsp;Cheryl E. Praeger","doi":"10.1016/j.aim.2024.110086","DOIUrl":"10.1016/j.aim.2024.110086","url":null,"abstract":"<div><div>We determine all factorisations <span><math><mi>X</mi><mo>=</mo><mi>A</mi><mi>B</mi></math></span>, where <em>X</em> is a finite almost simple group and <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> are core-free subgroups such that <span><math><mi>A</mi><mo>∩</mo><mi>B</mi></math></span> is cyclic or dihedral. As a main application, we classify the graphs Γ admitting an almost simple arc-transitive group <em>X</em> of automorphisms, such that Γ has a 2-cell embedding as a map on a closed surface admitting a core-free arc-transitive subgroup <em>G</em> of <em>X</em>. We prove that apart from the case where <em>X</em> and <em>G</em> have socles <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> respectively, the only such graphs are the complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <em>n</em> a prime power, the Johnson graphs <span><math><mi>J</mi><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> with <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> a prime power, and 14 further graphs. In the exceptional case, we construct infinitely many graph embeddings.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110086"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making the motivic group structure on the endomorphisms of the projective line explicit
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110080
Viktor Balch Barth , William Hornslien , Gereon Quick , Glen Matthew Wilson
We construct a group structure on the set of pointed naive homotopy classes of scheme morphisms from the Jouanolou device to the projective line. The group operation is defined via matrix multiplication on generating sections of line bundles and only requires basic algebraic geometry. In particular, it is completely independent of the construction of the motivic homotopy category. We show that a particular scheme morphism, which exhibits the Jouanolou device as an affine torsor bundle over the projective line, induces a monoid morphism from Cazanave's monoid to this group. Moreover, we show that this monoid morphism is a group completion to a subgroup of the group of scheme morphisms from the Jouanolou device to the projective line. This subgroup is generated by a set of morphisms that are very simple to describe.
{"title":"Making the motivic group structure on the endomorphisms of the projective line explicit","authors":"Viktor Balch Barth ,&nbsp;William Hornslien ,&nbsp;Gereon Quick ,&nbsp;Glen Matthew Wilson","doi":"10.1016/j.aim.2024.110080","DOIUrl":"10.1016/j.aim.2024.110080","url":null,"abstract":"<div><div>We construct a group structure on the set of pointed naive homotopy classes of scheme morphisms from the Jouanolou device to the projective line. The group operation is defined via matrix multiplication on generating sections of line bundles and only requires basic algebraic geometry. In particular, it is completely independent of the construction of the motivic homotopy category. We show that a particular scheme morphism, which exhibits the Jouanolou device as an affine torsor bundle over the projective line, induces a monoid morphism from Cazanave's monoid to this group. Moreover, we show that this monoid morphism is a group completion to a subgroup of the group of scheme morphisms from the Jouanolou device to the projective line. This subgroup is generated by a set of morphisms that are very simple to describe.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110080"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplication operators on the Bergman space of bounded domains
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110045
Hansong Huang , Dechao Zheng
In this paper we study multiplication operators on Bergman spaces of high dimensional bounded domains and those von Neumann algebras induced by them via the geometry of domains and function theory of their symbols. In particular, using local inverses and La2-removability, we show that for a holomorphic proper map Φ=(ϕ1,ϕ2,,ϕd) on a bounded domain Ω in Cd, the dimension of the von Neumann algebra V(Φ,Ω) consisting of bounded operators on the Bergman space La2(Ω), which commute with both Mϕj and its adjoint Mϕj for each j, equals the number of components of the complex manifold SΦ={(z,w)Ω2:Φ(z)=Φ(w),zΦ1(Φ(Z))}, where Z is the zero variety of the Jacobian JΦ of Φ. This extends the main result in [14] in high dimensional complex domains. Moreover we show that the von Neumann algebra V(Φ,Ω) may not be abelian in general although Douglas, Putinar and Wang [15] showed that V(Φ,D) for the unit disk D is abelian.
{"title":"Multiplication operators on the Bergman space of bounded domains","authors":"Hansong Huang ,&nbsp;Dechao Zheng","doi":"10.1016/j.aim.2024.110045","DOIUrl":"10.1016/j.aim.2024.110045","url":null,"abstract":"<div><div>In this paper we study multiplication operators on Bergman spaces of high dimensional bounded domains and those von Neumann algebras induced by them via the geometry of domains and function theory of their symbols. In particular, using local inverses and <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>-removability, we show that for a holomorphic proper map <span><math><mi>Φ</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span> on a bounded domain Ω in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, the dimension of the von Neumann algebra <span><math><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>Φ</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> consisting of bounded operators on the Bergman space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, which commute with both <span><math><msub><mrow><mi>M</mi></mrow><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></math></span> and its adjoint <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> for each <em>j</em>, equals the number of components of the complex manifold <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>Φ</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>z</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>Φ</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mi>Φ</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>z</mi><mo>∉</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>Φ</mi><mo>(</mo><mi>Z</mi><mo>)</mo><mo>)</mo><mo>}</mo></math></span>, where <em>Z</em> is the zero variety of the Jacobian <em>J</em>Φ of Φ. This extends the main result in <span><span>[14]</span></span> in high dimensional complex domains. Moreover we show that the von Neumann algebra <span><math><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>Φ</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> may not be abelian in general although Douglas, Putinar and Wang <span><span>[15]</span></span> showed that <span><math><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>Φ</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> for the unit disk <span><math><mi>D</mi></math></span> is abelian.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110045"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbifolds and minimal modular extensions
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2025.110103
Chongying Dong , Siu-Hung Ng , Li Ren
<div><div>Let <em>V</em> be a simple vertex operator algebra and <em>G</em> a finite automorphism group of <em>V</em> such that <span><math><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is regular, and the conformal weight of any irreducible <em>g</em>-twisted <em>V</em>-module <em>N</em> for <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span> is nonnegative and is zero if and only if <span><math><mi>N</mi><mo>=</mo><mi>V</mi></math></span>. It is established that if <em>V</em> is holomorphic, then the <span><math><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span>-module category <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup></mrow></msub></math></span> is a minimal modular extension of <span><math><mi>E</mi><mo>=</mo><mrow><mi>Rep</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and is equivalent to the Drinfeld center <span><math><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>Vec</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>)</mo></math></span> as modular tensor categories for some <span><math><mi>α</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span> with a canonical embedding of <span><math><mi>E</mi></math></span>. Moreover, the collection <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> of equivalence classes of the minimal modular extensions <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup></mrow></msub></math></span> of <span><math><mi>E</mi></math></span> for holomorphic vertex operator algebras <em>V</em> with a <em>G</em>-action forms a group, which is isomorphic to a subgroup of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span>. Furthermore, any pointed modular category <span><math><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>Vec</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>)</mo></math></span> is equivalent to <span><math><msub><mrow><mi>C</mi></mrow><mrow><msubsup><mrow><mi>V</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>G</mi></mrow></msubsup></mrow></msub></math></span> for some positive definite even unimodular lattice <em>L</em>. In general, for any rational vertex operator algebra <em>U</em> with a <em>G</em>-action, <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>U</mi></mrow><mrow><mi>G</mi></mrow></msup></mrow></msub></math></span> is a minimal modular extension of the braided fusion subcategory <span><math><mi>F</mi></math></span> generated by the <span><math><msup><mrow><mi>U</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span>-submodules of <em>U</em>-modules. F
{"title":"Orbifolds and minimal modular extensions","authors":"Chongying Dong ,&nbsp;Siu-Hung Ng ,&nbsp;Li Ren","doi":"10.1016/j.aim.2025.110103","DOIUrl":"10.1016/j.aim.2025.110103","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;em&gt;V&lt;/em&gt; be a simple vertex operator algebra and &lt;em&gt;G&lt;/em&gt; a finite automorphism group of &lt;em&gt;V&lt;/em&gt; such that &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is regular, and the conformal weight of any irreducible &lt;em&gt;g&lt;/em&gt;-twisted &lt;em&gt;V&lt;/em&gt;-module &lt;em&gt;N&lt;/em&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is nonnegative and is zero if and only if &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. It is established that if &lt;em&gt;V&lt;/em&gt; is holomorphic, then the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-module category &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is a minimal modular extension of &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;Rep&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and is equivalent to the Drinfeld center &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Vec&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; as modular tensor categories for some &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with a canonical embedding of &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, the collection &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of equivalence classes of the minimal modular extensions &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; for holomorphic vertex operator algebras &lt;em&gt;V&lt;/em&gt; with a &lt;em&gt;G&lt;/em&gt;-action forms a group, which is isomorphic to a subgroup of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Furthermore, any pointed modular category &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Vec&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is equivalent to &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; for some positive definite even unimodular lattice &lt;em&gt;L&lt;/em&gt;. In general, for any rational vertex operator algebra &lt;em&gt;U&lt;/em&gt; with a &lt;em&gt;G&lt;/em&gt;-action, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is a minimal modular extension of the braided fusion subcategory &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; generated by the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-submodules of &lt;em&gt;U&lt;/em&gt;-modules. F","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110103"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1