Pub Date : 2024-09-04DOI: 10.1016/j.aim.2024.109914
Hongzhi Huang , Xian-Tao Huang
In this paper, we introduce a notion, called generalized Reifenberg condition, under which we prove a smooth fibration theorem for collapsed manifolds with Ricci curvature bounded below, which gives a unified proof of smooth fibration theorems in many previous works (including the ones proved by Fukaya and Yamaguchi respectively). A key tool in the proof of this fibration theorem is the transformation technique for almost splitting maps, which originates from Cheeger-Naber ([16]) and Cheeger-Jiang-Naber ([14]). More precisely, we show that a transformation theorem of Cheeger-Jiang-Naber (see Proposition 7.7 in [14]) holds for possibly collapsed manifolds. Some other applications of the transformation theorems are given in this paper.
{"title":"Almost splitting maps, transformation theorems and smooth fibration theorems","authors":"Hongzhi Huang , Xian-Tao Huang","doi":"10.1016/j.aim.2024.109914","DOIUrl":"10.1016/j.aim.2024.109914","url":null,"abstract":"<div><p>In this paper, we introduce a notion, called generalized Reifenberg condition, under which we prove a smooth fibration theorem for collapsed manifolds with Ricci curvature bounded below, which gives a unified proof of smooth fibration theorems in many previous works (including the ones proved by Fukaya and Yamaguchi respectively). A key tool in the proof of this fibration theorem is the transformation technique for almost splitting maps, which originates from Cheeger-Naber (<span><span>[16]</span></span>) and Cheeger-Jiang-Naber (<span><span>[14]</span></span>). More precisely, we show that a transformation theorem of Cheeger-Jiang-Naber (see Proposition 7.7 in <span><span>[14]</span></span>) holds for possibly collapsed manifolds. Some other applications of the transformation theorems are given in this paper.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.aim.2024.109904
Boris L. Feigin , Simon D. Lentner
We study the semiclassical limit of the generalized quantum Langlands kernel associated to a Lie algebra and an integer level p. This vertex algebra acquires a big centre, containing the ring of functions over the space of -connections. We conjecture that the fibre over the zero connection is the Feigin-Tipunin vertex algebra, whose category of representations should be equivalent to the small quantum group, and that the other fibres are precisely its twisted modules, and that the entire category of representations is related to the quantum group with a big centre. In this sense we present a generalized Kazhdan-Lusztig conjecture, involving deformations by any -connection. We prove our conjectures in small cases and by explicitly computing all vertex algebras and categories involved.
我们研究了与李代数 g 和整数级 p 相关的广义量子朗兰兹核的半经典极限 κ→∞。这个顶点代数获得了一个大中心,包含了 g 连接空间上的函数环。我们猜想,零连接上的纤维是费金-提普宁顶点代数,它的表示范畴应该等价于小量子群,而其他纤维正是它的扭转模块,整个表示范畴与具有大中心的量子群相关。在这个意义上,我们提出了一个广义的卡兹丹-卢兹蒂格猜想,涉及任意 g 连接的变形。我们通过明确计算所涉及的所有顶点代数和范畴,证明了我们在 (g,1) 和 (sl2,2) 两种小情况下的猜想。
{"title":"Vertex algebras with big centre and a Kazhdan-Lusztig correspondence","authors":"Boris L. Feigin , Simon D. Lentner","doi":"10.1016/j.aim.2024.109904","DOIUrl":"10.1016/j.aim.2024.109904","url":null,"abstract":"<div><p>We study the semiclassical limit <span><math><mi>κ</mi><mo>→</mo><mo>∞</mo></math></span> of the generalized quantum Langlands kernel associated to a Lie algebra <span><math><mi>g</mi></math></span> and an integer level <em>p</em>. This vertex algebra acquires a big centre, containing the ring of functions over the space of <span><math><mi>g</mi></math></span>-connections. We conjecture that the fibre over the zero connection is the Feigin-Tipunin vertex algebra, whose category of representations should be equivalent to the small quantum group, and that the other fibres are precisely its twisted modules, and that the entire category of representations is related to the quantum group with a big centre. In this sense we present a generalized Kazhdan-Lusztig conjecture, involving deformations by any <span><math><mi>g</mi></math></span>-connection. We prove our conjectures in small cases <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mn>2</mn><mo>)</mo></math></span> by explicitly computing all vertex algebras and categories involved.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.aim.2024.109913
Tamara Kucherenko , Martin Schmoll , Christian Wolf
We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga [9], Climenhaga and Thompson [10], [11], and Pavlov [25].
{"title":"Ergodic theory on coded shift spaces","authors":"Tamara Kucherenko , Martin Schmoll , Christian Wolf","doi":"10.1016/j.aim.2024.109913","DOIUrl":"10.1016/j.aim.2024.109913","url":null,"abstract":"<div><p>We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga <span><span>[9]</span></span>, Climenhaga and Thompson <span><span>[10]</span></span>, <span><span>[11]</span></span>, and Pavlov <span><span>[25]</span></span>.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1016/j.aim.2024.109906
Sebastián Barbieri , Rodrigo Bissacot , Gregório Dalle Vedove , Philippe Thieullen
We construct a finite-range potential on a bidimensional full shift on a finite alphabet that exhibits a zero-temperature chaotic behavior as introduced by van Enter and Ruszel. This is the phenomenon where there exists a sequence of temperatures that converges to zero for which the whole set of equilibrium measures at these given temperatures oscillates between two sets of ground states. Brémont's work shows that the phenomenon of non-convergence does not exist for finite-range potentials in dimension one for finite alphabets; Leplaideur obtained a different proof for the same fact. Chazottes and Hochman provided the first example of non-convergence in higher dimensions ; we extend their result for and highlight the importance of two estimates of recursive nature that are crucial for this proof: the relative complexity and the reconstruction function of an extension.
We note that a different proof of this result was found by Chazottes and Shinoda, at around the same time that this article was initially submitted and that a strong generalization has been found by Gayral, Sablik and Taati.
我们在有限字母表的二维全移位上构建了一个有限范围势,它表现出 van Enter 和 Ruszel 提出的零温混沌行为。这种现象是指存在一连串趋近于零的温度,在这些给定温度下,整组平衡度量在两组基态之间摆动。Brémont 的研究表明,对于有限字母的一维有限范围势,不收敛现象并不存在;Leplaideur 对同一事实进行了不同的证明。我们注意到,就在本文最初提交的同一时间,查索特斯和筱田发现了对这一结果的不同证明,盖拉尔、萨布利克和塔蒂发现了对这一结果的有力概括。
{"title":"Zero-temperature chaos in bidimensional models with finite-range potentials","authors":"Sebastián Barbieri , Rodrigo Bissacot , Gregório Dalle Vedove , Philippe Thieullen","doi":"10.1016/j.aim.2024.109906","DOIUrl":"10.1016/j.aim.2024.109906","url":null,"abstract":"<div><p>We construct a finite-range potential on a bidimensional full shift on a finite alphabet that exhibits a zero-temperature chaotic behavior as introduced by van Enter and Ruszel. This is the phenomenon where there exists a sequence of temperatures that converges to zero for which the whole set of equilibrium measures at these given temperatures oscillates between two sets of ground states. Brémont's work shows that the phenomenon of non-convergence does not exist for finite-range potentials in dimension one for finite alphabets; Leplaideur obtained a different proof for the same fact. Chazottes and Hochman provided the first example of non-convergence in higher dimensions <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>; we extend their result for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and highlight the importance of two estimates of recursive nature that are crucial for this proof: the relative complexity and the reconstruction function of an extension.</p><p>We note that a different proof of this result was found by Chazottes and Shinoda, at around the same time that this article was initially submitted and that a strong generalization has been found by Gayral, Sablik and Taati.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1016/j.aim.2024.109912
Jun Yang
<div><p>A holomorphic discrete series representation <span><math><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of a connected semi-simple real Lie group <em>G</em> is associated with an irreducible representation <span><math><mo>(</mo><mi>π</mi><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of its maximal compact subgroup <em>K</em>. The underlying space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> can be realized as certain holomorphic <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>-valued functions on the bounded symmetric domain <span><math><mi>D</mi><mo>≅</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span>. By the Berezin quantization, we transfer <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> into <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions on <span><math><mi>D</mi></math></span>. For a lattice Γ of <em>G</em>, we give the formula of a faithful normal tracial state on the commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span> of the group von Neumann algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>″</mo></mrow></msup></math></span>. We find the Toeplitz operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> that are associated with essentially bounded <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions <em>f</em> on <span><math><mi>Γ</mi><mo>﹨</mo><mi>D</mi></math></span> generate the entire commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span>:<span><span><span><math><msup><mrow><mover><mrow><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>|</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Γ</mi><mo>﹨</mo><mi>D</mi><mo>,</mo><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>}</mo></mrow><mo>‾</mo></mover></mrow><mrow><mtext>w.o.</mtext></mrow></msup><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>.</mo></math></span></span></span> For any cuspidal automorphic form <em>f</em> defined on <em>G</em> (or <span><math><mi>D</mi></math></span>) for Γ, we find the associated Toeplitz
{"title":"Actions of cusp forms on holomorphic discrete series and von Neumann algebras","authors":"Jun Yang","doi":"10.1016/j.aim.2024.109912","DOIUrl":"10.1016/j.aim.2024.109912","url":null,"abstract":"<div><p>A holomorphic discrete series representation <span><math><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of a connected semi-simple real Lie group <em>G</em> is associated with an irreducible representation <span><math><mo>(</mo><mi>π</mi><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of its maximal compact subgroup <em>K</em>. The underlying space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> can be realized as certain holomorphic <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>-valued functions on the bounded symmetric domain <span><math><mi>D</mi><mo>≅</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span>. By the Berezin quantization, we transfer <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> into <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions on <span><math><mi>D</mi></math></span>. For a lattice Γ of <em>G</em>, we give the formula of a faithful normal tracial state on the commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span> of the group von Neumann algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>″</mo></mrow></msup></math></span>. We find the Toeplitz operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> that are associated with essentially bounded <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions <em>f</em> on <span><math><mi>Γ</mi><mo>﹨</mo><mi>D</mi></math></span> generate the entire commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span>:<span><span><span><math><msup><mrow><mover><mrow><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>|</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Γ</mi><mo>﹨</mo><mi>D</mi><mo>,</mo><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>}</mo></mrow><mo>‾</mo></mover></mrow><mrow><mtext>w.o.</mtext></mrow></msup><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>.</mo></math></span></span></span> For any cuspidal automorphic form <em>f</em> defined on <em>G</em> (or <span><math><mi>D</mi></math></span>) for Γ, we find the associated Toeplitz","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1016/j.aim.2024.109901
Alireza Ataei , Alireza Tavakoli
We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian.
{"title":"A comparison method for the fractional Laplacian and applications","authors":"Alireza Ataei , Alireza Tavakoli","doi":"10.1016/j.aim.2024.109901","DOIUrl":"10.1016/j.aim.2024.109901","url":null,"abstract":"<div><p>We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000187082400416X/pdfft?md5=bff3ab0b576373357ae665081f0d45e1&pid=1-s2.0-S000187082400416X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.aim.2024.109902
Tina Torkaman , Yongquan Zhang
Recent works [22], [23], [3], [33] have shed light on the topological behavior of geodesic planes in the convex core of a geometrically finite hyperbolic 3-manifold M of infinite volume. In this paper, we focus on the remaining case of geodesic planes outside the convex core of M, giving a complete classification of their closures in M.
In particular, we show that the behavior is different depending on whether exotic roofs exist or not. Here an exotic roof is a geodesic plane contained in an end E of M, which limits on the convex core boundary ∂E, but cannot be separated from the core by a support plane of ∂E.
A necessary condition for the existence of exotic roofs is the existence of exotic rays for the bending lamination. Here an exotic ray is a geodesic ray that has a finite intersection number with a measured lamination but is not asymptotic to any leaf nor eventually disjoint from . We establish that exotic rays exist if and only if is not a multicurve. The proof is constructive, and the ideas involved are important in the construction of exotic roofs.
We also show that the existence of geodesic rays satisfying a stronger condition than being exotic, phrased only in terms of the hyperbolic surface ∂E and the bending lamination, is sufficient for the existence of exotic roofs. As a result, we show that geometrically finite ends with exotic roofs exist in every genus. Moreover, in genus 1, when the end is homotopic to a punctured torus, a generic one (in the sense of Baire category) contains uncountably many exotic roofs.
最近的研究 [22]、[23]、[3]、[33] 揭示了无限体积几何有限双曲三芒星 M 凸核中大地平面的拓扑行为。在本文中,我们将重点研究 M 的凸核之外的其余测地平面,给出它们在 M 中的闭包的完整分类。这里,奇异屋顶是包含在 M 的端 E 中的大地平面,它限制在凸核边界 ∂E上,但不能通过 ∂E 的支撑平面与凸核分离。这里的奇异射线是指与测量层理 L 有有限交点数,但不渐近于任何叶片也不最终与 L 不相交的大地射线。我们还证明,满足比奇异射线更强条件的大地射线的存在,即满足双曲面 ∂E 和弯曲层理的条件,足以证明奇异屋顶的存在。因此,我们证明了具有奇异屋顶的几何有限端在每一属中都存在。此外,在第 1 属中,当末端与穿刺环同构时,一般的末端(在贝雷范畴的意义上)包含不可计数的奇异屋顶。
{"title":"Geodesic planes in a geometrically finite end and the halo of a measured lamination","authors":"Tina Torkaman , Yongquan Zhang","doi":"10.1016/j.aim.2024.109902","DOIUrl":"10.1016/j.aim.2024.109902","url":null,"abstract":"<div><p>Recent works <span><span>[22]</span></span>, <span><span>[23]</span></span>, <span><span>[3]</span></span>, <span><span>[33]</span></span> have shed light on the topological behavior of geodesic planes in the convex core of a geometrically finite hyperbolic 3-manifold <em>M</em> of infinite volume. In this paper, we focus on the remaining case of geodesic planes outside the convex core of <em>M</em>, giving a complete classification of their closures in <em>M</em>.</p><p>In particular, we show that the behavior is different depending on whether exotic roofs exist or not. Here an <em>exotic roof</em> is a geodesic plane contained in an end <em>E</em> of <em>M</em>, which limits on the convex core boundary ∂<em>E</em>, but cannot be separated from the core by a support plane of ∂<em>E</em>.</p><p>A necessary condition for the existence of exotic roofs is the existence of exotic rays for the bending lamination. Here an <em>exotic ray</em> is a geodesic ray that has a finite intersection number with a measured lamination <span><math><mi>L</mi></math></span> but is not asymptotic to any leaf nor eventually disjoint from <span><math><mi>L</mi></math></span>. We establish that exotic rays exist if and only if <span><math><mi>L</mi></math></span> is not a multicurve. The proof is constructive, and the ideas involved are important in the construction of exotic roofs.</p><p>We also show that the existence of geodesic rays satisfying a stronger condition than being exotic, phrased only in terms of the hyperbolic surface ∂<em>E</em> and the bending lamination, is sufficient for the existence of exotic roofs. As a result, we show that geometrically finite ends with exotic roofs exist in every genus. Moreover, in genus 1, when the end is homotopic to a punctured torus, a generic one (in the sense of Baire category) contains uncountably many exotic roofs.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.aim.2024.109903
Jiepeng Fang , Yixin Lan , Jie Xiao
<div><p>Let <em>A</em> be a finite-dimensional <span><math><mi>C</mi></math></span>-algebra of finite global dimension and <span><math><mi>A</mi></math></span> be the category of finitely generated right <em>A</em>-modules. By using of the category of two-periodic projective complexes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct the motivic Bridgeland's Hall algebra for <span><math><mi>A</mi></math></span>, where structure constants are given by Poincaré polynomials in <em>t</em>, then construct a <span><math><mi>C</mi></math></span>-Lie subalgebra <span><math><mi>g</mi><mo>=</mo><mi>n</mi><mo>⊕</mo><mi>h</mi></math></span> at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi></math></span> is constructed by stack functions about indecomposable radical complexes, and <span><math><mi>h</mi></math></span> is by contractible complexes. For the stable category <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct its moduli spaces and a <span><math><mi>C</mi></math></span>-Lie algebra <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊕</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, where <span><math><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is constructed by support-indecomposable constructible functions, and <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is by the Grothendieck group of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>. We prove that the natural functor <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> together with the natural isomorphism between Grothendieck groups of <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> induces a Lie algebra isomorphism <span><math><mi>g</mi><mo>≅</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. This makes clear that the structure constants at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> provided by Bridgeland in <span><span>[5]</span></span> in terms of exact structure of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> precisely equal to that given in <span><span>[30]</span></span> in terms of triangulated category structure o
设 A 是有限全维的有限维 C 代数,A 是有限生成的右 A 模块范畴。通过使用双周期射影复数范畴 C2(P),我们为 A 构造了动机布里奇兰霍尔代数,其中结构常数由 t 中的普恩卡雷多项式给出,然后在 t=-1 处构造了一个 C-Lie 子代数 g=n⊕h,其中 n 由关于不可分解基复数的栈函数构造,h 由可收缩复数构造。对于 C2(P) 的稳定范畴 K2(P),我们构造了它的模空间和一个 C-Lie 代数 g˜=n˜⊕h˜,其中 n˜ 是由支持-不可分解可构造函数构造的,而 h˜ 是由 K2(P) 的格罗thendieck 群构造的。我们证明,自然函子 C2(P)→K2(P)与 A 的格罗内狄克群和 K2(P) 之间的自然同构诱导了一个李代数同构 g≅g˜。这使得布里奇兰在[5]中以 C2(P)的精确结构给出的 t=-1 时的结构常数与[30]中以 K2(P)的三角范畴结构给出的结构常数相等。
{"title":"Lie algebras arising from two-periodic projective complex and derived categories","authors":"Jiepeng Fang , Yixin Lan , Jie Xiao","doi":"10.1016/j.aim.2024.109903","DOIUrl":"10.1016/j.aim.2024.109903","url":null,"abstract":"<div><p>Let <em>A</em> be a finite-dimensional <span><math><mi>C</mi></math></span>-algebra of finite global dimension and <span><math><mi>A</mi></math></span> be the category of finitely generated right <em>A</em>-modules. By using of the category of two-periodic projective complexes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct the motivic Bridgeland's Hall algebra for <span><math><mi>A</mi></math></span>, where structure constants are given by Poincaré polynomials in <em>t</em>, then construct a <span><math><mi>C</mi></math></span>-Lie subalgebra <span><math><mi>g</mi><mo>=</mo><mi>n</mi><mo>⊕</mo><mi>h</mi></math></span> at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi></math></span> is constructed by stack functions about indecomposable radical complexes, and <span><math><mi>h</mi></math></span> is by contractible complexes. For the stable category <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct its moduli spaces and a <span><math><mi>C</mi></math></span>-Lie algebra <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊕</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, where <span><math><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is constructed by support-indecomposable constructible functions, and <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is by the Grothendieck group of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>. We prove that the natural functor <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> together with the natural isomorphism between Grothendieck groups of <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> induces a Lie algebra isomorphism <span><math><mi>g</mi><mo>≅</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. This makes clear that the structure constants at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> provided by Bridgeland in <span><span>[5]</span></span> in terms of exact structure of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> precisely equal to that given in <span><span>[30]</span></span> in terms of triangulated category structure o","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The low-frequency assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical framework. Precisely, it is proved that the Besov space -boundedness condition (with ) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of initial perturbation belongs to a nontrivial subset of . To the best of our knowledge, our work is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous fluids.
{"title":"Sharp decay characterization for the compressible Navier-Stokes equations","authors":"Lorenzo Brandolese , Ling-Yun Shou , Jiang Xu , Ping Zhang","doi":"10.1016/j.aim.2024.109905","DOIUrl":"10.1016/j.aim.2024.109905","url":null,"abstract":"<div><p>The low-frequency <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework. Precisely, it is proved that the Besov space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>-boundedness condition (with <span><math><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mn>1</mn></math></span>) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of initial perturbation belongs to a nontrivial subset of <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>. To the best of our knowledge, our work is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous fluids.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.aim.2024.109899
Da Rong Cheng
Given a surface Σ in diffeomorphic to , Struwe [38] proved that for almost every H below the mean curvature of the smallest sphere enclosing Σ, there exists a branched immersed disk which has constant mean curvature H and boundary meeting Σ orthogonally. We reproduce this result using a different approach and improve it under additional convexity assumptions on Σ. Specifically, when Σ itself is convex and has mean curvature bounded below by , we obtain existence for all . Instead of the heat flow in [38], we use a Sacks-Uhlenbeck type perturbation. As in previous joint work with Zhou [7], a key ingredient for extending existence across the measure zero set of H's is a Morse index upper bound.
{"title":"Existence of free boundary disks with constant mean curvature in R3","authors":"Da Rong Cheng","doi":"10.1016/j.aim.2024.109899","DOIUrl":"10.1016/j.aim.2024.109899","url":null,"abstract":"<div><p>Given a surface Σ in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> diffeomorphic to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, Struwe <span><span>[38]</span></span> proved that for almost every <em>H</em> below the mean curvature of the smallest sphere enclosing Σ, there exists a branched immersed disk which has constant mean curvature <em>H</em> and boundary meeting Σ orthogonally. We reproduce this result using a different approach and improve it under additional convexity assumptions on Σ. Specifically, when Σ itself is convex and has mean curvature bounded below by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we obtain existence for all <span><math><mi>H</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. Instead of the heat flow in <span><span>[38]</span></span>, we use a Sacks-Uhlenbeck type perturbation. As in previous joint work with Zhou <span><span>[7]</span></span>, a key ingredient for extending existence across the measure zero set of <em>H</em>'s is a Morse index upper bound.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}