首页 > 最新文献

Advances in Mathematics最新文献

英文 中文
Almost splitting maps, transformation theorems and smooth fibration theorems 几乎分割映射、变换定理和光滑纤维定理
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-04 DOI: 10.1016/j.aim.2024.109914
Hongzhi Huang , Xian-Tao Huang

In this paper, we introduce a notion, called generalized Reifenberg condition, under which we prove a smooth fibration theorem for collapsed manifolds with Ricci curvature bounded below, which gives a unified proof of smooth fibration theorems in many previous works (including the ones proved by Fukaya and Yamaguchi respectively). A key tool in the proof of this fibration theorem is the transformation technique for almost splitting maps, which originates from Cheeger-Naber ([16]) and Cheeger-Jiang-Naber ([14]). More precisely, we show that a transformation theorem of Cheeger-Jiang-Naber (see Proposition 7.7 in [14]) holds for possibly collapsed manifolds. Some other applications of the transformation theorems are given in this paper.

在本文中,我们引入了一个称为广义雷芬伯格条件的概念,在此条件下,我们证明了里奇曲率下界的坍缩流形的光滑傅里叶定理,它给出了以往许多著作(包括深谷和山口分别证明的著作)中光滑傅里叶定理的统一证明。证明这个纤度定理的一个关键工具是几乎分裂映射的变换技术,它源于 Cheeger-Naber ([16])和 Cheeger-Jiang-Naber ([14])。更确切地说,我们证明了 Cheeger-Jiang-Naber 的一个变换定理(见 [14] 中的命题 7.7)对于可能坍缩的流形是成立的。本文还给出了变换定理的其他一些应用。
{"title":"Almost splitting maps, transformation theorems and smooth fibration theorems","authors":"Hongzhi Huang ,&nbsp;Xian-Tao Huang","doi":"10.1016/j.aim.2024.109914","DOIUrl":"10.1016/j.aim.2024.109914","url":null,"abstract":"<div><p>In this paper, we introduce a notion, called generalized Reifenberg condition, under which we prove a smooth fibration theorem for collapsed manifolds with Ricci curvature bounded below, which gives a unified proof of smooth fibration theorems in many previous works (including the ones proved by Fukaya and Yamaguchi respectively). A key tool in the proof of this fibration theorem is the transformation technique for almost splitting maps, which originates from Cheeger-Naber (<span><span>[16]</span></span>) and Cheeger-Jiang-Naber (<span><span>[14]</span></span>). More precisely, we show that a transformation theorem of Cheeger-Jiang-Naber (see Proposition 7.7 in <span><span>[14]</span></span>) holds for possibly collapsed manifolds. Some other applications of the transformation theorems are given in this paper.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertex algebras with big centre and a Kazhdan-Lusztig correspondence 具有大中心的顶点代数和卡兹丹-卢兹蒂希对应关系
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-03 DOI: 10.1016/j.aim.2024.109904
Boris L. Feigin , Simon D. Lentner

We study the semiclassical limit κ of the generalized quantum Langlands kernel associated to a Lie algebra g and an integer level p. This vertex algebra acquires a big centre, containing the ring of functions over the space of g-connections. We conjecture that the fibre over the zero connection is the Feigin-Tipunin vertex algebra, whose category of representations should be equivalent to the small quantum group, and that the other fibres are precisely its twisted modules, and that the entire category of representations is related to the quantum group with a big centre. In this sense we present a generalized Kazhdan-Lusztig conjecture, involving deformations by any g-connection. We prove our conjectures in small cases (g,1) and (sl2,2) by explicitly computing all vertex algebras and categories involved.

我们研究了与李代数 g 和整数级 p 相关的广义量子朗兰兹核的半经典极限 κ→∞。这个顶点代数获得了一个大中心,包含了 g 连接空间上的函数环。我们猜想,零连接上的纤维是费金-提普宁顶点代数,它的表示范畴应该等价于小量子群,而其他纤维正是它的扭转模块,整个表示范畴与具有大中心的量子群相关。在这个意义上,我们提出了一个广义的卡兹丹-卢兹蒂格猜想,涉及任意 g 连接的变形。我们通过明确计算所涉及的所有顶点代数和范畴,证明了我们在 (g,1) 和 (sl2,2) 两种小情况下的猜想。
{"title":"Vertex algebras with big centre and a Kazhdan-Lusztig correspondence","authors":"Boris L. Feigin ,&nbsp;Simon D. Lentner","doi":"10.1016/j.aim.2024.109904","DOIUrl":"10.1016/j.aim.2024.109904","url":null,"abstract":"<div><p>We study the semiclassical limit <span><math><mi>κ</mi><mo>→</mo><mo>∞</mo></math></span> of the generalized quantum Langlands kernel associated to a Lie algebra <span><math><mi>g</mi></math></span> and an integer level <em>p</em>. This vertex algebra acquires a big centre, containing the ring of functions over the space of <span><math><mi>g</mi></math></span>-connections. We conjecture that the fibre over the zero connection is the Feigin-Tipunin vertex algebra, whose category of representations should be equivalent to the small quantum group, and that the other fibres are precisely its twisted modules, and that the entire category of representations is related to the quantum group with a big centre. In this sense we present a generalized Kazhdan-Lusztig conjecture, involving deformations by any <span><math><mi>g</mi></math></span>-connection. We prove our conjectures in small cases <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mn>2</mn><mo>)</mo></math></span> by explicitly computing all vertex algebras and categories involved.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ergodic theory on coded shift spaces 编码移位空间的遍历理论
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-03 DOI: 10.1016/j.aim.2024.109913
Tamara Kucherenko , Martin Schmoll , Christian Wolf

We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga [9], Climenhaga and Thompson [10], [11], and Pavlov [25].

我们研究编码移位空间的遍历理论特性。编码移位空间被定义为来自固定可数生成集的所有双无限串联词的闭包。我们基于将编码移位划分为其连接集(生成词的连接序列)和残差集(在闭合下添加的序列),推导出了最大熵和霍尔德连续势均衡状态测量的唯一性的充分条件。在这种情况下,我们对最大熵的度量进行了简单明了的描述。我们还获得了连接集和残差集上熵的弹性结果。最后,我们证明了内在遍历编码移位空间的局部结构定理,这表明与 Climenhaga [9]、Climenhaga 和 Thompson [10]、[11] 以及 Pavlov [25] 以前的著作相比,我们的结果适用于更大类别的编码移位空间。
{"title":"Ergodic theory on coded shift spaces","authors":"Tamara Kucherenko ,&nbsp;Martin Schmoll ,&nbsp;Christian Wolf","doi":"10.1016/j.aim.2024.109913","DOIUrl":"10.1016/j.aim.2024.109913","url":null,"abstract":"<div><p>We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga <span><span>[9]</span></span>, Climenhaga and Thompson <span><span>[10]</span></span>, <span><span>[11]</span></span>, and Pavlov <span><span>[25]</span></span>.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zero-temperature chaos in bidimensional models with finite-range potentials 具有有限范围势能的二维模型中的零温混沌
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-02 DOI: 10.1016/j.aim.2024.109906
Sebastián Barbieri , Rodrigo Bissacot , Gregório Dalle Vedove , Philippe Thieullen

We construct a finite-range potential on a bidimensional full shift on a finite alphabet that exhibits a zero-temperature chaotic behavior as introduced by van Enter and Ruszel. This is the phenomenon where there exists a sequence of temperatures that converges to zero for which the whole set of equilibrium measures at these given temperatures oscillates between two sets of ground states. Brémont's work shows that the phenomenon of non-convergence does not exist for finite-range potentials in dimension one for finite alphabets; Leplaideur obtained a different proof for the same fact. Chazottes and Hochman provided the first example of non-convergence in higher dimensions d3; we extend their result for d=2 and highlight the importance of two estimates of recursive nature that are crucial for this proof: the relative complexity and the reconstruction function of an extension.

We note that a different proof of this result was found by Chazottes and Shinoda, at around the same time that this article was initially submitted and that a strong generalization has been found by Gayral, Sablik and Taati.

我们在有限字母表的二维全移位上构建了一个有限范围势,它表现出 van Enter 和 Ruszel 提出的零温混沌行为。这种现象是指存在一连串趋近于零的温度,在这些给定温度下,整组平衡度量在两组基态之间摆动。Brémont 的研究表明,对于有限字母的一维有限范围势,不收敛现象并不存在;Leplaideur 对同一事实进行了不同的证明。我们注意到,就在本文最初提交的同一时间,查索特斯和筱田发现了对这一结果的不同证明,盖拉尔、萨布利克和塔蒂发现了对这一结果的有力概括。
{"title":"Zero-temperature chaos in bidimensional models with finite-range potentials","authors":"Sebastián Barbieri ,&nbsp;Rodrigo Bissacot ,&nbsp;Gregório Dalle Vedove ,&nbsp;Philippe Thieullen","doi":"10.1016/j.aim.2024.109906","DOIUrl":"10.1016/j.aim.2024.109906","url":null,"abstract":"<div><p>We construct a finite-range potential on a bidimensional full shift on a finite alphabet that exhibits a zero-temperature chaotic behavior as introduced by van Enter and Ruszel. This is the phenomenon where there exists a sequence of temperatures that converges to zero for which the whole set of equilibrium measures at these given temperatures oscillates between two sets of ground states. Brémont's work shows that the phenomenon of non-convergence does not exist for finite-range potentials in dimension one for finite alphabets; Leplaideur obtained a different proof for the same fact. Chazottes and Hochman provided the first example of non-convergence in higher dimensions <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>; we extend their result for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and highlight the importance of two estimates of recursive nature that are crucial for this proof: the relative complexity and the reconstruction function of an extension.</p><p>We note that a different proof of this result was found by Chazottes and Shinoda, at around the same time that this article was initially submitted and that a strong generalization has been found by Gayral, Sablik and Taati.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actions of cusp forms on holomorphic discrete series and von Neumann algebras 全态离散级数和冯-诺依曼代数上的顶点形式作用
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-02 DOI: 10.1016/j.aim.2024.109912
Jun Yang
<div><p>A holomorphic discrete series representation <span><math><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of a connected semi-simple real Lie group <em>G</em> is associated with an irreducible representation <span><math><mo>(</mo><mi>π</mi><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of its maximal compact subgroup <em>K</em>. The underlying space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> can be realized as certain holomorphic <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>-valued functions on the bounded symmetric domain <span><math><mi>D</mi><mo>≅</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span>. By the Berezin quantization, we transfer <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> into <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions on <span><math><mi>D</mi></math></span>. For a lattice Γ of <em>G</em>, we give the formula of a faithful normal tracial state on the commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span> of the group von Neumann algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>″</mo></mrow></msup></math></span>. We find the Toeplitz operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> that are associated with essentially bounded <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions <em>f</em> on <span><math><mi>Γ</mi><mo>﹨</mo><mi>D</mi></math></span> generate the entire commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span>:<span><span><span><math><msup><mrow><mover><mrow><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>|</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Γ</mi><mo>﹨</mo><mi>D</mi><mo>,</mo><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>}</mo></mrow><mo>‾</mo></mover></mrow><mrow><mtext>w.o.</mtext></mrow></msup><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>.</mo></math></span></span></span> For any cuspidal automorphic form <em>f</em> defined on <em>G</em> (or <span><math><mi>D</mi></math></span>) for Γ, we find the associated Toeplitz
连通半简单实李群 G 的全态离散序列表示 (Lπ,Hπ) 与其最大紧凑子群 K 的不可还原表示 (π,Vπ)相关联。底层空间 Hπ 可以实现为有界对称域 D≅G/K 上的某些全态 Vπ 值函数。对于 G 的晶格 Γ,我们给出了冯-诺依曼代数群 Lπ(Γ)″ 的换元 Lπ(Γ)′ 上的忠实正三态公式。我们发现与Γ﹨D 上本质上有界的 End(Vπ)-valued 函数 f 相关联的托普利兹算子 Tf 生成了整个换元 Lπ(Γ)′:{Tf|f∈L∞(Γ﹨D,End(Vπ))}‾w.o.=Lπ(Γ)′。对于为 Γ 定义在 G(或 D)上的任何尖顶自形形式 f,我们会发现相关的托普利兹型算子 Tf 交织了 Γ 在这些平方可积分表征上的作用。因此,Tg⁎Tf 形式的复合算子属于 Lπ(Γ)′。我们证明这些算子跨越 L∞(Γ﹨D)和〈{spanf,gTg⁎Tf}⊗End(Vπ)〉‾w.o.=Lπ(Γ)′,其中 f,g 贯穿相同类型的Γ的全态尖顶形式。如果Γ 是一个无限共轭类群,我们就可以从尖顶形式得到一个 II1 因子。
{"title":"Actions of cusp forms on holomorphic discrete series and von Neumann algebras","authors":"Jun Yang","doi":"10.1016/j.aim.2024.109912","DOIUrl":"10.1016/j.aim.2024.109912","url":null,"abstract":"&lt;div&gt;&lt;p&gt;A holomorphic discrete series representation &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of a connected semi-simple real Lie group &lt;em&gt;G&lt;/em&gt; is associated with an irreducible representation &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of its maximal compact subgroup &lt;em&gt;K&lt;/em&gt;. The underlying space &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; can be realized as certain holomorphic &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-valued functions on the bounded symmetric domain &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;≅&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. By the Berezin quantization, we transfer &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; into &lt;span&gt;&lt;math&gt;&lt;mi&gt;End&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-valued functions on &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. For a lattice Γ of &lt;em&gt;G&lt;/em&gt;, we give the formula of a faithful normal tracial state on the commutant &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of the group von Neumann algebra &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;″&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. We find the Toeplitz operators &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; that are associated with essentially bounded &lt;span&gt;&lt;math&gt;&lt;mi&gt;End&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-valued functions &lt;em&gt;f&lt;/em&gt; on &lt;span&gt;&lt;math&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;mo&gt;﹨&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; generate the entire commutant &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;mo&gt;﹨&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;End&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;w.o.&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; For any cuspidal automorphic form &lt;em&gt;f&lt;/em&gt; defined on &lt;em&gt;G&lt;/em&gt; (or &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;) for Γ, we find the associated Toeplitz","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison method for the fractional Laplacian and applications 分数拉普拉卡方的比较方法及其应用
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-29 DOI: 10.1016/j.aim.2024.109901
Alireza Ataei , Alireza Tavakoli

We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian.

我们研究了分数拉普拉斯方程解的边界行为。作为第一个结果,我们证明了分数 Lane-Emden 方程的第一个特征值在具有维纳规则边界的有界开集中的孤立性。然后,证明了分数拉普拉斯方程的广义 Hopf Lemma 和全局边界 Harnack 不等式。
{"title":"A comparison method for the fractional Laplacian and applications","authors":"Alireza Ataei ,&nbsp;Alireza Tavakoli","doi":"10.1016/j.aim.2024.109901","DOIUrl":"10.1016/j.aim.2024.109901","url":null,"abstract":"<div><p>We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000187082400416X/pdfft?md5=bff3ab0b576373357ae665081f0d45e1&pid=1-s2.0-S000187082400416X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geodesic planes in a geometrically finite end and the halo of a measured lamination 几何有限端中的大地平面和测量层叠的光环
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-28 DOI: 10.1016/j.aim.2024.109902
Tina Torkaman , Yongquan Zhang

Recent works [22], [23], [3], [33] have shed light on the topological behavior of geodesic planes in the convex core of a geometrically finite hyperbolic 3-manifold M of infinite volume. In this paper, we focus on the remaining case of geodesic planes outside the convex core of M, giving a complete classification of their closures in M.

In particular, we show that the behavior is different depending on whether exotic roofs exist or not. Here an exotic roof is a geodesic plane contained in an end E of M, which limits on the convex core boundary ∂E, but cannot be separated from the core by a support plane of ∂E.

A necessary condition for the existence of exotic roofs is the existence of exotic rays for the bending lamination. Here an exotic ray is a geodesic ray that has a finite intersection number with a measured lamination L but is not asymptotic to any leaf nor eventually disjoint from L. We establish that exotic rays exist if and only if L is not a multicurve. The proof is constructive, and the ideas involved are important in the construction of exotic roofs.

We also show that the existence of geodesic rays satisfying a stronger condition than being exotic, phrased only in terms of the hyperbolic surface ∂E and the bending lamination, is sufficient for the existence of exotic roofs. As a result, we show that geometrically finite ends with exotic roofs exist in every genus. Moreover, in genus 1, when the end is homotopic to a punctured torus, a generic one (in the sense of Baire category) contains uncountably many exotic roofs.

最近的研究 [22]、[23]、[3]、[33] 揭示了无限体积几何有限双曲三芒星 M 凸核中大地平面的拓扑行为。在本文中,我们将重点研究 M 的凸核之外的其余测地平面,给出它们在 M 中的闭包的完整分类。这里,奇异屋顶是包含在 M 的端 E 中的大地平面,它限制在凸核边界 ∂E上,但不能通过 ∂E 的支撑平面与凸核分离。这里的奇异射线是指与测量层理 L 有有限交点数,但不渐近于任何叶片也不最终与 L 不相交的大地射线。我们还证明,满足比奇异射线更强条件的大地射线的存在,即满足双曲面 ∂E 和弯曲层理的条件,足以证明奇异屋顶的存在。因此,我们证明了具有奇异屋顶的几何有限端在每一属中都存在。此外,在第 1 属中,当末端与穿刺环同构时,一般的末端(在贝雷范畴的意义上)包含不可计数的奇异屋顶。
{"title":"Geodesic planes in a geometrically finite end and the halo of a measured lamination","authors":"Tina Torkaman ,&nbsp;Yongquan Zhang","doi":"10.1016/j.aim.2024.109902","DOIUrl":"10.1016/j.aim.2024.109902","url":null,"abstract":"<div><p>Recent works <span><span>[22]</span></span>, <span><span>[23]</span></span>, <span><span>[3]</span></span>, <span><span>[33]</span></span> have shed light on the topological behavior of geodesic planes in the convex core of a geometrically finite hyperbolic 3-manifold <em>M</em> of infinite volume. In this paper, we focus on the remaining case of geodesic planes outside the convex core of <em>M</em>, giving a complete classification of their closures in <em>M</em>.</p><p>In particular, we show that the behavior is different depending on whether exotic roofs exist or not. Here an <em>exotic roof</em> is a geodesic plane contained in an end <em>E</em> of <em>M</em>, which limits on the convex core boundary ∂<em>E</em>, but cannot be separated from the core by a support plane of ∂<em>E</em>.</p><p>A necessary condition for the existence of exotic roofs is the existence of exotic rays for the bending lamination. Here an <em>exotic ray</em> is a geodesic ray that has a finite intersection number with a measured lamination <span><math><mi>L</mi></math></span> but is not asymptotic to any leaf nor eventually disjoint from <span><math><mi>L</mi></math></span>. We establish that exotic rays exist if and only if <span><math><mi>L</mi></math></span> is not a multicurve. The proof is constructive, and the ideas involved are important in the construction of exotic roofs.</p><p>We also show that the existence of geodesic rays satisfying a stronger condition than being exotic, phrased only in terms of the hyperbolic surface ∂<em>E</em> and the bending lamination, is sufficient for the existence of exotic roofs. As a result, we show that geometrically finite ends with exotic roofs exist in every genus. Moreover, in genus 1, when the end is homotopic to a punctured torus, a generic one (in the sense of Baire category) contains uncountably many exotic roofs.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lie algebras arising from two-periodic projective complex and derived categories 双周期射影复数和派生类产生的李代数
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-28 DOI: 10.1016/j.aim.2024.109903
Jiepeng Fang , Yixin Lan , Jie Xiao
<div><p>Let <em>A</em> be a finite-dimensional <span><math><mi>C</mi></math></span>-algebra of finite global dimension and <span><math><mi>A</mi></math></span> be the category of finitely generated right <em>A</em>-modules. By using of the category of two-periodic projective complexes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct the motivic Bridgeland's Hall algebra for <span><math><mi>A</mi></math></span>, where structure constants are given by Poincaré polynomials in <em>t</em>, then construct a <span><math><mi>C</mi></math></span>-Lie subalgebra <span><math><mi>g</mi><mo>=</mo><mi>n</mi><mo>⊕</mo><mi>h</mi></math></span> at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi></math></span> is constructed by stack functions about indecomposable radical complexes, and <span><math><mi>h</mi></math></span> is by contractible complexes. For the stable category <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct its moduli spaces and a <span><math><mi>C</mi></math></span>-Lie algebra <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊕</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, where <span><math><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is constructed by support-indecomposable constructible functions, and <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is by the Grothendieck group of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>. We prove that the natural functor <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> together with the natural isomorphism between Grothendieck groups of <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> induces a Lie algebra isomorphism <span><math><mi>g</mi><mo>≅</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. This makes clear that the structure constants at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> provided by Bridgeland in <span><span>[5]</span></span> in terms of exact structure of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> precisely equal to that given in <span><span>[30]</span></span> in terms of triangulated category structure o
设 A 是有限全维的有限维 C 代数,A 是有限生成的右 A 模块范畴。通过使用双周期射影复数范畴 C2(P),我们为 A 构造了动机布里奇兰霍尔代数,其中结构常数由 t 中的普恩卡雷多项式给出,然后在 t=-1 处构造了一个 C-Lie 子代数 g=n⊕h,其中 n 由关于不可分解基复数的栈函数构造,h 由可收缩复数构造。对于 C2(P) 的稳定范畴 K2(P),我们构造了它的模空间和一个 C-Lie 代数 g˜=n˜⊕h˜,其中 n˜ 是由支持-不可分解可构造函数构造的,而 h˜ 是由 K2(P) 的格罗thendieck 群构造的。我们证明,自然函子 C2(P)→K2(P)与 A 的格罗内狄克群和 K2(P) 之间的自然同构诱导了一个李代数同构 g≅g˜。这使得布里奇兰在[5]中以 C2(P)的精确结构给出的 t=-1 时的结构常数与[30]中以 K2(P)的三角范畴结构给出的结构常数相等。
{"title":"Lie algebras arising from two-periodic projective complex and derived categories","authors":"Jiepeng Fang ,&nbsp;Yixin Lan ,&nbsp;Jie Xiao","doi":"10.1016/j.aim.2024.109903","DOIUrl":"10.1016/j.aim.2024.109903","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Let &lt;em&gt;A&lt;/em&gt; be a finite-dimensional &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-algebra of finite global dimension and &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be the category of finitely generated right &lt;em&gt;A&lt;/em&gt;-modules. By using of the category of two-periodic projective complexes &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, we construct the motivic Bridgeland's Hall algebra for &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, where structure constants are given by Poincaré polynomials in &lt;em&gt;t&lt;/em&gt;, then construct a &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-Lie subalgebra &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;⊕&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; at &lt;span&gt;&lt;math&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is constructed by stack functions about indecomposable radical complexes, and &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is by contractible complexes. For the stable category &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, we construct its moduli spaces and a &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-Lie algebra &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;⊕&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; is constructed by support-indecomposable constructible functions, and &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; is by the Grothendieck group of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. We prove that the natural functor &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; together with the natural isomorphism between Grothendieck groups of &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; induces a Lie algebra isomorphism &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;≅&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;. This makes clear that the structure constants at &lt;span&gt;&lt;math&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; provided by Bridgeland in &lt;span&gt;&lt;span&gt;[5]&lt;/span&gt;&lt;/span&gt; in terms of exact structure of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; precisely equal to that given in &lt;span&gt;&lt;span&gt;[30]&lt;/span&gt;&lt;/span&gt; in terms of triangulated category structure o","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp decay characterization for the compressible Navier-Stokes equations 可压缩纳维-斯托克斯方程的锐减特征
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-28 DOI: 10.1016/j.aim.2024.109905
Lorenzo Brandolese , Ling-Yun Shou , Jiang Xu , Ping Zhang

The low-frequency L1 assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical Lp framework. Precisely, it is proved that the Besov space B˙2,σ1-boundedness condition (with d22dpσ1<d21) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of initial perturbation belongs to a nontrivial subset of B˙2,σ1. To the best of our knowledge, our work is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous fluids.

自川岛(Kawashima)、松村(Matsumura)、西田(Nishida)、庞塞(Ponce)、勋伯克(Schonbek)和维格纳(Wiegner)等人的经典研究以来,低频 L1 假设已被广泛应用于可压缩纳维-斯托克斯方程和不可压缩纳维-斯托克斯方程解的大时间渐近学。在本文中,我们为临界 Lp 框架中的可压缩 Navier-Stokes 方程建立了一个尖锐的衰变特征。确切地说,我们证明了初始扰动低频部分的 Besov 空间 B˙2,∞σ1-有界条件(d2-2dp≤σ1<d2-1)对于实现时间衰减估计的上限不仅是充分的,而且是必要的。此外,我们还证明,当且仅当初始扰动的低频部分属于 B˙2,∞σ1的非琐子集时,时间衰减估计的上界和下界才成立。据我们所知,我们的工作是第一个解决可压缩粘性流体大时间渐近反问题的工作。
{"title":"Sharp decay characterization for the compressible Navier-Stokes equations","authors":"Lorenzo Brandolese ,&nbsp;Ling-Yun Shou ,&nbsp;Jiang Xu ,&nbsp;Ping Zhang","doi":"10.1016/j.aim.2024.109905","DOIUrl":"10.1016/j.aim.2024.109905","url":null,"abstract":"<div><p>The low-frequency <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework. Precisely, it is proved that the Besov space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>-boundedness condition (with <span><math><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mn>1</mn></math></span>) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of initial perturbation belongs to a nontrivial subset of <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>. To the best of our knowledge, our work is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous fluids.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of free boundary disks with constant mean curvature in R3 R3 中存在平均曲率恒定的自由边界盘
IF 1.5 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-28 DOI: 10.1016/j.aim.2024.109899
Da Rong Cheng

Given a surface Σ in R3 diffeomorphic to S2, Struwe [38] proved that for almost every H below the mean curvature of the smallest sphere enclosing Σ, there exists a branched immersed disk which has constant mean curvature H and boundary meeting Σ orthogonally. We reproduce this result using a different approach and improve it under additional convexity assumptions on Σ. Specifically, when Σ itself is convex and has mean curvature bounded below by H0, we obtain existence for all H(0,H0). Instead of the heat flow in [38], we use a Sacks-Uhlenbeck type perturbation. As in previous joint work with Zhou [7], a key ingredient for extending existence across the measure zero set of H's is a Morse index upper bound.

给定 R3 中与 S2 差同构的曲面 Σ,Struwe [38] 证明,对于几乎每一个低于包围 Σ 的最小球面平均曲率的 H,都存在一个具有恒定平均曲率 H 且边界与 Σ 正交的分支沉浸圆盘。我们用不同的方法重现了这一结果,并在 Σ 的额外凸性假设下对其进行了改进。具体地说,当 Σ 本身是凸的,且平均曲率在 H0 下方有界时,我们得到了所有 H∈(0,H0)的存在性。我们使用萨克斯-乌伦贝克(Sacks-Uhlenbeck)型扰动来代替 [38] 中的热流。正如之前与 Zhou [7] 的合作研究一样,将存在性扩展到 H 的度量零集合的一个关键要素是莫尔斯指数上界。
{"title":"Existence of free boundary disks with constant mean curvature in R3","authors":"Da Rong Cheng","doi":"10.1016/j.aim.2024.109899","DOIUrl":"10.1016/j.aim.2024.109899","url":null,"abstract":"<div><p>Given a surface Σ in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> diffeomorphic to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, Struwe <span><span>[38]</span></span> proved that for almost every <em>H</em> below the mean curvature of the smallest sphere enclosing Σ, there exists a branched immersed disk which has constant mean curvature <em>H</em> and boundary meeting Σ orthogonally. We reproduce this result using a different approach and improve it under additional convexity assumptions on Σ. Specifically, when Σ itself is convex and has mean curvature bounded below by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we obtain existence for all <span><math><mi>H</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. Instead of the heat flow in <span><span>[38]</span></span>, we use a Sacks-Uhlenbeck type perturbation. As in previous joint work with Zhou <span><span>[7]</span></span>, a key ingredient for extending existence across the measure zero set of <em>H</em>'s is a Morse index upper bound.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1