Pub Date : 2024-10-21DOI: 10.1007/s10444-024-10199-4
Sudheer Mishra, E. Natarajan
In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and (L^2) norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results.
{"title":"A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem","authors":"Sudheer Mishra, E. Natarajan","doi":"10.1007/s10444-024-10199-4","DOIUrl":"10.1007/s10444-024-10199-4","url":null,"abstract":"<div><p>In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and <span>(L^2)</span> norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1007/s10444-024-10204-w
Huoyuan Duan, Roger C. E. Tan, Duowei Zhu
With local pressure-residual stabilizations as an augmentation to the classical Galerkin/least-squares (GLS) stabilized method, a new locally evaluated residual-based stabilized finite element method is proposed for a type of Stokes equations from the incompressible flows. We focus on the study of a type of nonstandard boundary conditions involving the mixed tangential velocity and pressure Dirichlet boundary conditions. Unexpectedly, in sharp contrast to the standard no-slip velocity Dirichlet boundary condition, neither the discrete LBB inf-sup stable elements nor the stabilized methods such as the classical GLS method could certainly ensure a convergent finite element solution, because the velocity solution could be very weak with its gradient not being square integrable. The main purpose of this paper is to study the error estimates of the new stabilized method for approximating the very weak velocity solution; with the local pressure-residual stabilizations, we can manage to prove the error estimates with a reasonable convergence order. Numerical results are provided to illustrate the performance and the theoretical results of the proposed method.
{"title":"A pressure-residual augmented GLS stabilized method for a type of Stokes equations with nonstandard boundary conditions","authors":"Huoyuan Duan, Roger C. E. Tan, Duowei Zhu","doi":"10.1007/s10444-024-10204-w","DOIUrl":"10.1007/s10444-024-10204-w","url":null,"abstract":"<div><p>With local pressure-residual stabilizations as an augmentation to the classical Galerkin/least-squares (GLS) stabilized method, a new locally evaluated residual-based stabilized finite element method is proposed for a type of Stokes equations from the incompressible flows. We focus on the study of a type of nonstandard boundary conditions involving the mixed tangential velocity and pressure Dirichlet boundary conditions. Unexpectedly, in sharp contrast to the standard no-slip velocity Dirichlet boundary condition, neither the discrete LBB inf-sup stable elements nor the stabilized methods such as the classical GLS method could certainly ensure a convergent finite element solution, because the velocity solution could be very weak with its gradient not being square integrable. The main purpose of this paper is to study the error estimates of the new stabilized method for approximating the very weak velocity solution; with the local pressure-residual stabilizations, we can manage to prove the error estimates with a reasonable convergence order. Numerical results are provided to illustrate the performance and the theoretical results of the proposed method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1007/s10444-024-10198-5
Tianru Wang, Yimin Wei
The perturbation of the QR decompostion is analyzed from the probalistic point of view. The perturbation error is approximated by a first-order perturbation expansion with high probability where the perturbation is assumed to be random. Different from the previous normwise perturbation bounds using the Frobenius norm, our techniques are used to develop the spectral norm, as well as the entry-wise perturbation bounds for the stochastic perturbation of the QR decomposition. The statistics tends to be tighter (in the sense of the expectation) and more realistic than the classical worst-case perturbation bounds. The novel perturbation bounds are applicable to a wide range of problems in statistics and communications. In this paper, we consider the perturbation bound of the leverage scores under the Gaussian perturbation, the probability guarantees and the error bounds of the low rank matrix recovery, and the upper bound of the errors of the tensor CUR-type decomposition. We also apply our perturbation bounds to improve the robust design of the Tomlinson-Harashima precoding in the Multiple-Input Multiple-Output (MIMO) system.
从前瞻性的角度分析了 QR 分解的扰动。扰动误差近似于高概率的一阶扰动扩展,其中假设扰动是随机的。与之前使用弗罗贝尼斯规范的规范扰动边界不同,我们的技术用于开发频谱规范,以及 QR 分解随机扰动的条目扰动边界。与经典的最坏情况扰动边界相比,统计结果趋于更严格(在期望的意义上)和更现实。新的扰动边界适用于统计和通信领域的各种问题。在本文中,我们考虑了高斯扰动下杠杆分数的扰动边界、低秩矩阵恢复的概率保证和误差边界,以及张量 CUR 型分解的误差上限。我们还利用扰动边界改进了多输入多输出(MIMO)系统中汤姆林森-原岛(Tomlinson-Harashima)预编码的鲁棒性设计。
{"title":"A stochastic perturbation analysis of the QR decomposition and its applications","authors":"Tianru Wang, Yimin Wei","doi":"10.1007/s10444-024-10198-5","DOIUrl":"10.1007/s10444-024-10198-5","url":null,"abstract":"<div><p>The perturbation of the QR decompostion is analyzed from the probalistic point of view. The perturbation error is approximated by a first-order perturbation expansion with high probability where the perturbation is assumed to be random. Different from the previous normwise perturbation bounds using the Frobenius norm, our techniques are used to develop the spectral norm, as well as the entry-wise perturbation bounds for the stochastic perturbation of the QR decomposition. The statistics tends to be tighter (in the sense of the expectation) and more realistic than the classical worst-case perturbation bounds. The novel perturbation bounds are applicable to a wide range of problems in statistics and communications. In this paper, we consider the perturbation bound of the leverage scores under the Gaussian perturbation, the probability guarantees and the error bounds of the low rank matrix recovery, and the upper bound of the errors of the tensor CUR-type decomposition. We also apply our perturbation bounds to improve the robust design of the Tomlinson-Harashima precoding in the Multiple-Input Multiple-Output (MIMO) system.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1007/s10444-024-10197-6
P. Robert Kotiuga, Valtteri Lahtinen
We look at computational physics from an electrical engineering perspective and suggest that several concepts of mathematics, not so well-established in computational physics literature, present themselves as opportunities in the field. We discuss elliptic complexes and highlight the category theoretical background and its role as a unifying language between algebraic topology, differential geometry, and modelling software design. In particular, the ubiquitous concept of naturality is central. Natural differential operators have functorial analogues on the cochains of triangulated manifolds. In order to establish this correspondence, we derive formulas involving simplices and barycentric coordinates, defining discrete vector fields and a discrete Lie derivative as a result of a discrete analogue of Cartan’s magic formula. This theorem is the main mathematical result of the paper.
{"title":"An electrical engineering perspective on naturality in computational physics","authors":"P. Robert Kotiuga, Valtteri Lahtinen","doi":"10.1007/s10444-024-10197-6","DOIUrl":"10.1007/s10444-024-10197-6","url":null,"abstract":"<div><p>We look at computational physics from an electrical engineering perspective and suggest that several concepts of mathematics, not so well-established in computational physics literature, present themselves as opportunities in the field. We discuss elliptic complexes and highlight the category theoretical background and its role as a unifying language between algebraic topology, differential geometry, and modelling software design. In particular, the ubiquitous concept of naturality is central. Natural differential operators have functorial analogues on the cochains of triangulated manifolds. In order to establish this correspondence, we derive formulas involving simplices and barycentric coordinates, defining discrete vector fields and a discrete Lie derivative as a result of a discrete analogue of Cartan’s magic formula. This theorem is the main mathematical result of the paper.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s10444-024-10196-7
Kenneth Allen, Ming-Jun Lai, Zhaiming Shen
We study the classic matrix cross approximation based on the maximal volume submatrices. Our main results consist of an improvement of the classic estimate for matrix cross approximation and a greedy approach for finding the maximal volume submatrices. More precisely, we present a new proof of the classic estimate of the inequality with an improved constant. Also, we present a family of greedy maximal volume algorithms to improve the computational efficiency of matrix cross approximation. The proposed algorithms are shown to have theoretical guarantees of convergence. Finally, we present two applications: image compression and the least squares approximation of continuous functions. Our numerical results at the end of the paper demonstrate the effective performance of our approach.
{"title":"Maximal volume matrix cross approximation for image compression and least squares solution","authors":"Kenneth Allen, Ming-Jun Lai, Zhaiming Shen","doi":"10.1007/s10444-024-10196-7","DOIUrl":"10.1007/s10444-024-10196-7","url":null,"abstract":"<div><p>We study the classic matrix cross approximation based on the maximal volume submatrices. Our main results consist of an improvement of the classic estimate for matrix cross approximation and a greedy approach for finding the maximal volume submatrices. More precisely, we present a new proof of the classic estimate of the inequality with an improved constant. Also, we present a family of greedy maximal volume algorithms to improve the computational efficiency of matrix cross approximation. The proposed algorithms are shown to have theoretical guarantees of convergence. Finally, we present two applications: image compression and the least squares approximation of continuous functions. Our numerical results at the end of the paper demonstrate the effective performance of our approach.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1007/s10444-024-10187-8
Helmut Harbrecht, Lukas Herrmann, Kristin Kirchner, Christoph Schwab
The distribution of centered Gaussian random fields (GRFs) indexed by compacta such as smooth, bounded Euclidean domains or smooth, compact and orientable manifolds is determined by their covariance operators. We consider centered GRFs given as variational solutions to coloring operator equations driven by spatial white noise, with an elliptic self-adjoint pseudodifferential coloring operator from the Hörmander class. This includes the Matérn class of GRFs as a special case. Using biorthogonal multiresolution analyses on the manifold, we prove that the precision and covariance operators, respectively, may be identified with bi-infinite matrices and finite sections may be diagonally preconditioned rendering the condition number independent of the dimension p of this section. We prove that a tapering strategy by thresholding applied on finite sections of the bi-infinite precision and covariance matrices results in optimally numerically sparse approximations. That is, asymptotically only linearly many nonzero matrix entries are sufficient to approximate the original section of the bi-infinite covariance or precision matrix using this tapering strategy to arbitrary precision. The locations of these nonzero matrix entries can be determined a priori. The tapered covariance or precision matrices may also be optimally diagonally preconditioned. Analysis of the relative size of the entries of the tapered covariance matrices motivates novel, multilevel Monte Carlo (MLMC) oracles for covariance estimation, in sample complexity that scales log-linearly with respect to the number p of parameters. In addition, we propose and analyze novel compressive algorithms for simulating and kriging of GRFs. The complexity (work and memory vs. accuracy) of these three algorithms scales near-optimally in terms of the number of parameters p of the sample-wise approximation of the GRF in Sobolev scales.
以光滑、有界欧几里得域或光滑、紧凑、可定向流形等紧凑性为索引的居中高斯随机场(GRFs)的分布由其协方差算子决定。我们考虑的居中 GRF 是由空间白噪声驱动的着色算子方程的变分解,其椭圆自关节伪微分着色算子来自赫曼德类。这包括作为特例的马特恩类 GRFs。利用流形上的双对角多分辨率分析,我们证明精度算子和协方差算子可分别与双无限矩阵识别,有限截面可进行对角预处理,从而使条件数与该截面的维数 p 无关。我们证明,在双无限精度矩阵和协方差矩阵的有限截面上采用阈值化的渐变策略,可以得到数值稀疏的最佳近似结果。也就是说,从渐近的角度看,只有线性数量的非零矩阵项才足以利用这种渐减策略将双无限协方差矩阵或精度矩阵的原始部分逼近到任意精度。这些非零矩阵项的位置可以预先确定。锥形协方差或精度矩阵也可以进行最佳对角预处理。对锥形协方差矩阵条目的相对大小进行分析,可激发用于协方差估计的新型多级蒙特卡罗(MLMC)算法,其样本复杂度与参数数 p 成对数线性关系。此外,我们还提出并分析了新颖的压缩算法,用于模拟和克里格GRF。这三种算法的复杂度(功耗和内存与精度)与 Sobolev 尺度下 GRF 抽样近似的参数数 p 的比例接近最优。
{"title":"Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction","authors":"Helmut Harbrecht, Lukas Herrmann, Kristin Kirchner, Christoph Schwab","doi":"10.1007/s10444-024-10187-8","DOIUrl":"10.1007/s10444-024-10187-8","url":null,"abstract":"<div><p>The distribution of centered Gaussian random fields (GRFs) indexed by compacta such as smooth, bounded Euclidean domains or smooth, compact and orientable manifolds is determined by their covariance operators. We consider centered GRFs given as variational solutions to coloring operator equations driven by spatial white noise, with an elliptic self-adjoint pseudodifferential coloring operator from the Hörmander class. This includes the Matérn class of GRFs as a special case. Using biorthogonal multiresolution analyses on the manifold, we prove that the precision and covariance operators, respectively, may be identified with bi-infinite matrices and finite sections may be diagonally preconditioned rendering the condition number independent of the dimension <i>p</i> of this section. We prove that a tapering strategy by thresholding applied on finite sections of the bi-infinite precision and covariance matrices results in optimally numerically sparse approximations. That is, asymptotically only linearly many nonzero matrix entries are sufficient to approximate the original section of the bi-infinite covariance or precision matrix using this tapering strategy to arbitrary precision. The locations of these nonzero matrix entries can be determined a priori. The tapered covariance or precision matrices may also be optimally diagonally preconditioned. Analysis of the relative size of the entries of the tapered covariance matrices motivates novel, multilevel Monte Carlo (MLMC) oracles for covariance estimation, in sample complexity that scales log-linearly with respect to the number <i>p</i> of parameters. In addition, we propose and analyze novel compressive algorithms for simulating and kriging of GRFs. The complexity (work and memory vs. accuracy) of these three algorithms scales near-optimally in terms of the number of parameters <i>p</i> of the sample-wise approximation of the GRF in Sobolev scales.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10187-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s10444-024-10195-8
Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Robin Herkert, Jörg Fehr, Bernard Haasdonk
Projection-based model order reduction of dynamical systems usually introduces an error between the high-fidelity model and its counterpart of lower dimension. This unknown error can be bounded by residual-based methods, which are typically known to be highly pessimistic in the sense of largely overestimating the true error. This work applies two improved error bounding techniques, namely (a) a hierarchical error bound and (b) an error bound based on an auxiliary linear problem, to the case of port-Hamiltonian systems. The approaches rely on a secondary approximation of (a) the dynamical system and (b) the error system. In this paper, these methods are adapted to port-Hamiltonian systems. The mathematical relationship between the two methods is discussed both theoretically and numerically. The effectiveness of the described methods is demonstrated using a challenging three-dimensional port-Hamiltonian model of a classical guitar with fluid–structure interaction.
{"title":"Improved a posteriori error bounds for reduced port-Hamiltonian systems","authors":"Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Robin Herkert, Jörg Fehr, Bernard Haasdonk","doi":"10.1007/s10444-024-10195-8","DOIUrl":"10.1007/s10444-024-10195-8","url":null,"abstract":"<div><p>Projection-based model order reduction of dynamical systems usually introduces an error between the high-fidelity model and its counterpart of lower dimension. This unknown error can be bounded by residual-based methods, which are typically known to be highly pessimistic in the sense of largely overestimating the true error. This work applies two improved error bounding techniques, namely (a) <i>a hierarchical error bound</i> and (b) <i>an error bound based on an auxiliary linear problem</i>, to the case of port-Hamiltonian systems. The approaches rely on a secondary approximation of (a) the dynamical system and (b) the error system. In this paper, these methods are adapted to port-Hamiltonian systems. The mathematical relationship between the two methods is discussed both theoretically and numerically. The effectiveness of the described methods is demonstrated using a challenging three-dimensional port-Hamiltonian model of a classical guitar with fluid–structure interaction.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10195-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s10444-024-10192-x
Bin Han
Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study (n_s)-step interpolatory (textsf{M})-subdivision schemes and their interpolating (textsf{M})-refinable functions with (n_sin mathbb {N}cup {infty }) and a dilation factor (textsf{M}in mathbb {N}backslash {1}). We completely characterize (mathscr {C}^m)-convergence and smoothness of (n_s)-step interpolatory subdivision schemes and their interpolating (textsf{M})-refinable functions in terms of their masks. Inspired by (n_s)-step interpolatory stationary subdivision schemes, we further introduce the notion of r-mask quasi-stationary subdivision schemes, and then we characterize their (mathscr {C}^m)-convergence and smoothness properties using only their masks. Moreover, combining (n_s)-step interpolatory subdivision schemes with r-mask quasi-stationary subdivision schemes, we can obtain (r n_s)-step interpolatory subdivision schemes. Examples and construction procedures of convergent (n_s)-step interpolatory (textsf{M})-subdivision schemes are provided to illustrate our results with dilation factors (textsf{M}=2,3,4). In addition, for the dyadic dilation (textsf{M}=2) and (r=2,3), using r masks with only two-ring stencils, we provide examples of (mathscr {C}^r)-convergent r-step interpolatory r-mask quasi-stationary dyadic subdivision schemes.
{"title":"Interpolating refinable functions and (n_s)-step interpolatory subdivision schemes","authors":"Bin Han","doi":"10.1007/s10444-024-10192-x","DOIUrl":"10.1007/s10444-024-10192-x","url":null,"abstract":"<div><p>Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study <span>(n_s)</span>-step interpolatory <span>(textsf{M})</span>-subdivision schemes and their interpolating <span>(textsf{M})</span>-refinable functions with <span>(n_sin mathbb {N}cup {infty })</span> and a dilation factor <span>(textsf{M}in mathbb {N}backslash {1})</span>. We completely characterize <span>(mathscr {C}^m)</span>-convergence and smoothness of <span>(n_s)</span>-step interpolatory subdivision schemes and their interpolating <span>(textsf{M})</span>-refinable functions in terms of their masks. Inspired by <span>(n_s)</span>-step interpolatory stationary subdivision schemes, we further introduce the notion of <i>r</i>-mask quasi-stationary subdivision schemes, and then we characterize their <span>(mathscr {C}^m)</span>-convergence and smoothness properties using only their masks. Moreover, combining <span>(n_s)</span>-step interpolatory subdivision schemes with <i>r</i>-mask quasi-stationary subdivision schemes, we can obtain <span>(r n_s)</span>-step interpolatory subdivision schemes. Examples and construction procedures of convergent <span>(n_s)</span>-step interpolatory <span>(textsf{M})</span>-subdivision schemes are provided to illustrate our results with dilation factors <span>(textsf{M}=2,3,4)</span>. In addition, for the dyadic dilation <span>(textsf{M}=2)</span> and <span>(r=2,3)</span>, using <i>r</i> masks with only two-ring stencils, we provide examples of <span>(mathscr {C}^r)</span>-convergent <i>r</i>-step interpolatory <i>r</i>-mask quasi-stationary dyadic subdivision schemes.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s10444-024-10194-9
Mengyu Wang, Honghua Cui, Hanyu Li
Tensor wheel (TW) decomposition combines the popular tensor ring and fully connected tensor network decompositions and has achieved excellent performance in tensor completion problem. A standard method to compute this decomposition is the alternating least squares (ALS). However, it usually suffers from slow convergence and numerical instability. In this work, the fast and robust SVD-based algorithms are investigated. Based on a result on TW-ranks, we first propose a deterministic algorithm that can estimate the TW decomposition of the target tensor under a controllable accuracy. Then, the randomized versions of this algorithm are presented, which can be divided into two categories and allow various types of sketching. Numerical results on synthetic and real data show that our algorithms have much better performance than the ALS-based method and are also quite robust. In addition, with one SVD-based algorithm, we also numerically explore the variability of TW decomposition with respect to TW-ranks and the comparisons between TW decomposition and other famous formats in terms of the performance on approximation and compression.
{"title":"SVD-based algorithms for tensor wheel decomposition","authors":"Mengyu Wang, Honghua Cui, Hanyu Li","doi":"10.1007/s10444-024-10194-9","DOIUrl":"10.1007/s10444-024-10194-9","url":null,"abstract":"<div><p>Tensor wheel (TW) decomposition combines the popular tensor ring and fully connected tensor network decompositions and has achieved excellent performance in tensor completion problem. A standard method to compute this decomposition is the alternating least squares (ALS). However, it usually suffers from slow convergence and numerical instability. In this work, the fast and robust SVD-based algorithms are investigated. Based on a result on TW-ranks, we first propose a deterministic algorithm that can estimate the TW decomposition of the target tensor under a controllable accuracy. Then, the randomized versions of this algorithm are presented, which can be divided into two categories and allow various types of sketching. Numerical results on synthetic and real data show that our algorithms have much better performance than the ALS-based method and are also quite robust. In addition, with one SVD-based algorithm, we also numerically explore the variability of TW decomposition with respect to TW-ranks and the comparisons between TW decomposition and other famous formats in terms of the performance on approximation and compression.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1007/s10444-024-10190-z
Desong Kong, Jie Shen, Li-Lian Wang, Shuhuang Xiang
In this paper, we show that the eigenvalues and eigenvectors of the spectral discretisation matrices resulting from the Legendre dual-Petrov-Galerkin (LDPG) method for the mth-order initial value problem (IVP): (u^{(m)}(t)=sigma u(t),, tin (-1,1)) with constant (sigma not =0) and usual initial conditions at t(=-1,) are associated with the generalised Bessel polynomials (GBPs). In particular, we derive analytical formulae for the eigenvalues and eigenvectors in the cases m(=1,2). As a by-product, we are able to answer some open questions related to the collocation method at Legendre points (extensively studied in the 1980s) for the first-order IVP, by reformulating it into a Petrov-Galerkin formulation. Our results have direct bearing on the CFL conditions of time-stepping schemes with spectral or spectral-element discretisation in space. Moreover, we present two stable algorithms for computing zeros of the GBPs and develop a general space-time method for evolutionary PDEs. We provide ample numerical results to demonstrate the high accuracy and robustness of the space-time methods for some interesting examples of linear and nonlinear wave problems.
在本文中,我们证明了用 Legendre dual-Petrov-Galerkin (LDPG) 方法求 mth 阶初值问题(IVP)的谱离散化矩阵的特征值和特征向量:(u^{(m)}(t)=sigma u(t),, tin (-1,1)) with constant (sigma not =0) and usual initial conditions at t(=-1,) are associated with the generalised Bessel polynomials (GBPs).特别是,我们推导出了 m(=1,2) 情况下的特征值和特征向量的解析公式。作为副产品,我们能够回答一些与一阶 IVP 的 Legendre 点配位法(20 世纪 80 年代进行了广泛研究)有关的未决问题,并将其重新表述为 Petrov-Galerkin 公式。我们的研究结果对空间谱或谱元离散化时间步进方案的 CFL 条件有直接影响。此外,我们还提出了两种计算 GBP 的零点的稳定算法,并开发了一种用于演化 PDE 的通用时空方法。我们提供了大量的数值结果,证明了时空方法在一些有趣的线性和非线性波问题实例中的高精度和鲁棒性。
{"title":"Eigenvalue analysis and applications of the Legendre dual-Petrov-Galerkin methods for initial value problems","authors":"Desong Kong, Jie Shen, Li-Lian Wang, Shuhuang Xiang","doi":"10.1007/s10444-024-10190-z","DOIUrl":"10.1007/s10444-024-10190-z","url":null,"abstract":"<div><p>In this paper, we show that the eigenvalues and eigenvectors of the spectral discretisation matrices resulting from the Legendre dual-Petrov-Galerkin (LDPG) method for the <i>m</i>th-order initial value problem (IVP): <span>(u^{(m)}(t)=sigma u(t),, tin (-1,1))</span> with constant <span>(sigma not =0)</span> and usual initial conditions at <i>t</i><span>(=-1,)</span> are associated with the generalised Bessel polynomials (GBPs). In particular, we derive analytical formulae for the eigenvalues and eigenvectors in the cases <i>m</i><span>(=1,2)</span>. As a by-product, we are able to answer some open questions related to the collocation method at Legendre points (extensively studied in the 1980s) for the first-order IVP, by reformulating it into a Petrov-Galerkin formulation. Our results have direct bearing on the CFL conditions of time-stepping schemes with spectral or spectral-element discretisation in space. Moreover, we present two stable algorithms for computing zeros of the GBPs and develop a general space-time method for evolutionary PDEs. We provide ample numerical results to demonstrate the high accuracy and robustness of the space-time methods for some interesting examples of linear and nonlinear wave problems.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}