Rationale and objectives: To assess the predictive value of MRI-based radiomics of periprostatic fat (PPF) and tumor lesions for predicting Gleason score (GS) upgrading from biopsy to radical prostatectomy (RP) in prostate cancer (PCa).
Methods: A total of 314 patients with pathologically confirmed prostate cancer (PCa) after radical prostatectomy (RP) were included in the study. The patients were randomly assigned to the training cohort (n = 157) and the validating cohort (n = 157) in a 1:1 ratio. All had pre-surgery MRI followed by transrectal ultrasound-guided prostate biopsy. Radiological features were extracted from T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) sequences for PPF and tumors. Univariate and multivariate logistic regression identified independent clinical risk factors, and a combined model was established by integrating radiomic features of PPF and PCa. Model performance was assessed using receiver operating characteristic (ROC) curves, calibration, and decision curve analysis.
Results: The combined model, incorporating radiomic features of PPF, PCa, and clinical data, predicted GS upgrading from biopsy to RP excellently (AUC=0.925, 95%CI0.872-0.979) in the training cohort. The Hosmer-Lemeshow test confirmed model fit (χ2 = 9.316, P = 0.316). The nomogram was validated in the validating cohort; it showed good accuracy (AUC= 0.937, 95% CI, 0.891-0.983) and was well calibrated (χ2 = 12.871, P = 0.116). Decision curve analysis indicated good clinical utility of the radiomic nomogram.
Conclusion: The combined model incorporating PPF, PCa, and clinical data showed excellent performance in predicting GS upgrading from biopsy to RP in PCa patients. This offers a novel and reliable noninvasive tool for GS upgrading risk stratification.