SuiteSparse:GraphBLAS is a full parallel implementation of the GraphBLAS standard, which defines a set of sparse matrix operations on an extended algebra of semirings using an almost unlimited variety of operators and types. When applied to sparse adjacency matrices, these algebraic operations are equivalent to computations on graphs. A description of the parallel implementation of SuiteSparse:GraphBLAS is given, including its novel parallel algorithms for sparse matrix multiply, addition, element-wise multiply, submatrix extraction and assignment, and the GraphBLAS mask/accumulator operation. Its performance is illustrated by solving the graph problems in the GAP Benchmark and by comparing it with other sparse matrix libraries.
This work proposes a new moment-SOS hierarchy, called CS-TSSOS, for solving large-scale sparse polynomial optimization problems. Its novelty is to exploit simultaneously correlative sparsity and term sparsity by combining advantages of two existing frameworks for sparse polynomial optimization. The former is due to Waki et al. [40] while the latter was initially proposed by Wang et al. [42] and later exploited in the TSSOS hierarchy [46, 47]. In doing so we obtain CS-TSSOS—a two-level hierarchy of semidefinite programming relaxations with (i) the crucial property to involve blocks of SDP matrices and (ii) the guarantee of convergence to the global optimum under certain conditions. We demonstrate its efficiency and scalability on several large-scale instances of the celebrated Max-Cut problem and the important industrial optimal power flow problem, involving up to six thousand variables and tens of thousands of constraints.
We present parallel algorithms and data structures for three fundamental operations in Numerical Linear Algebra: (i) Gaussian and CountSketch random projections and their combination, (ii) computation of the Gram matrix, and (iii) computation of the squared row norms of the product of two matrices, with a special focus on “tall-and-skinny” matrices, which arise in many applications. We provide a detailed analysis of the ubiquitous CountSketch transform and its combination with Gaussian random projections, accounting for memory requirements, computational complexity and workload balancing. We also demonstrate how these results can be applied to column subset selection, least squares regression and leverage scores computation. These tools have been implemented in
We prove that every semidefinite moment relaxation of a polynomial optimization problem (POP) with a ball constraint can be reformulated as a semidefinite program involving a matrix with constant trace property (CTP). As a result, such moment relaxations can be solved efficiently by first-order methods that exploit CTP, e.g., the conditional gradient-based augmented Lagrangian method. We also extend this CTP-exploiting framework to large-scale POPs with different sparsity structures. The efficiency and scalability of our framework are illustrated on some moment relaxations for various randomly generated POPs, especially second-order moment relaxations for quadratically constrained quadratic programs.
We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system—the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.