首页 > 最新文献

ACM Transactions on Information Systems最新文献

英文 中文
An Analysis on Matching Mechanisms and Token Pruning for Late-interaction Models 晚期交互模型的匹配机制和标记剪枝分析
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-31 DOI: 10.1145/3639818
Qi Liu, Gang Guo, Jiaxin Mao, Zhicheng Dou, Ji-Rong Wen, Hao Jiang, Xinyu Zhang, Zhao Cao

With the development of pre-trained language models, the dense retrieval models have become promising alternatives to the traditional retrieval models that rely on exact match and sparse bag-of-words representations. Different from most dense retrieval models using a bi-encoder to encode each query or document into a dense vector, the recently proposed late-interaction multi-vector models (i.e., ColBERT and COIL) achieve state-of-the-art retrieval effectiveness by using all token embeddings to represent documents and queries and modeling their relevance with a sum-of-max operation. However, these fine-grained representations may cause unacceptable storage overhead for practical search systems. In this study, we systematically analyze the matching mechanism of these late-interaction models and show that the sum-of-max operation heavily relies on the co-occurrence signals and some important words in the document. Based on these findings, we then propose several simple document pruning methods to reduce the storage overhead and compare the effectiveness of different pruning methods on different late-interaction models. We also leverage query pruning methods to further reduce the retrieval latency. We conduct extensive experiments on both in-domain and out-domain datasets and show that some of the used pruning methods can significantly improve the efficiency of these late-interaction models without substantially hurting their retrieval effectiveness.

随着预训练语言模型的发展,密集检索模型已成为依赖精确匹配和稀疏词袋表示的传统检索模型的有前途的替代品。与大多数使用双编码器将每个查询或文档编码成一个稠密向量的稠密检索模型不同,最近提出的后期交互多向量模型(即 ColBERT 和 COIL)通过使用所有标记嵌入来表示文档和查询,并使用最大和运算对其相关性进行建模,从而实现了最先进的检索效果。然而,这些细粒度表示法可能会给实际搜索系统带来不可接受的存储开销。在本研究中,我们系统地分析了这些后期交互模型的匹配机制,结果表明最大和运算在很大程度上依赖于共现信号和文档中的一些重要词语。基于这些发现,我们提出了几种简单的文档剪枝方法来减少存储开销,并比较了不同剪枝方法对不同后期交互模型的效果。我们还利用查询剪枝方法来进一步减少检索延迟。我们在域内和域外数据集上进行了广泛的实验,结果表明,所使用的一些剪枝方法可以显著提高这些后期交互模型的效率,而不会对其检索效果造成实质性损害。
{"title":"An Analysis on Matching Mechanisms and Token Pruning for Late-interaction Models","authors":"Qi Liu, Gang Guo, Jiaxin Mao, Zhicheng Dou, Ji-Rong Wen, Hao Jiang, Xinyu Zhang, Zhao Cao","doi":"10.1145/3639818","DOIUrl":"https://doi.org/10.1145/3639818","url":null,"abstract":"<p>With the development of pre-trained language models, the dense retrieval models have become promising alternatives to the traditional retrieval models that rely on exact match and sparse bag-of-words representations. Different from most dense retrieval models using a bi-encoder to encode each query or document into a dense vector, the recently proposed late-interaction multi-vector models (i.e., ColBERT and COIL) achieve state-of-the-art retrieval effectiveness by using all token embeddings to represent documents and queries and modeling their relevance with a sum-of-max operation. However, these fine-grained representations may cause unacceptable storage overhead for practical search systems. In this study, we systematically analyze the matching mechanism of these late-interaction models and show that the sum-of-max operation heavily relies on the co-occurrence signals and some important words in the document. Based on these findings, we then propose several simple document pruning methods to reduce the storage overhead and compare the effectiveness of different pruning methods on different late-interaction models. We also leverage query pruning methods to further reduce the retrieval latency. We conduct extensive experiments on both in-domain and out-domain datasets and show that some of the used pruning methods can significantly improve the efficiency of these late-interaction models without substantially hurting their retrieval effectiveness.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"67 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counterfactual Explanation for Fairness in Recommendation 对建议公平性的反事实解释
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-29 DOI: 10.1145/3643670
Xiangmeng Wang, Qian Li, Dianer Yu, Qing Li, Guandong Xu

Fairness-aware recommendation alleviates discrimination issues to build trustworthy recommendation systems. Explaining the causes of unfair recommendations is critical, as it promotes fairness diagnostics, and thus secures users’ trust in recommendation models. Existing fairness explanation methods suffer high computation burdens due to the large-scale search space and the greedy nature of the explanation search process. Besides, they perform feature-level optimizations with continuous values, which are not applicable to discrete attributes such as gender and age. In this work, we adopt counterfactual explanations from causal inference and propose to generate attribute-level counterfactual explanations, adapting to discrete attributes in recommendation models. We use real-world attributes from Heterogeneous Information Networks (HINs) to empower counterfactual reasoning on discrete attributes. We propose a Counterfactual Explanation for Fairness (CFairER) that generates attribute-level counterfactual explanations from HINs for item exposure fairness. Our CFairER conducts off-policy reinforcement learning to seek high-quality counterfactual explanations, with attentive action pruning reducing the search space of candidate counterfactuals. The counterfactual explanations help to provide rational and proximate explanations for model fairness, while the attentive action pruning narrows the search space of attributes. Extensive experiments demonstrate our proposed model can generate faithful explanations while maintaining favorable recommendation performance.

公平感知推荐可以缓解歧视问题,从而建立值得信赖的推荐系统。解释不公平推荐的原因至关重要,因为它能促进公平性诊断,从而确保用户对推荐模型的信任。由于大规模搜索空间和解释搜索过程的贪婪性,现有的公平性解释方法承受着很高的计算负担。此外,这些方法对连续值进行特征级优化,不适用于性别和年龄等离散属性。在这项工作中,我们采用了因果推理中的反事实解释,并建议生成属性级的反事实解释,以适应推荐模型中的离散属性。我们使用来自异构信息网络(HINs)的真实世界属性来增强离散属性的反事实推理能力。我们提出了一种公平性反事实解释(CFairER),它能从异构信息网络中生成属性级的反事实解释,以保证项目曝光的公平性。我们的 CFairER 通过非政策强化学习来寻求高质量的反事实解释,并通过细心的行动剪枝来减少候选反事实的搜索空间。反事实解释有助于为模型公平性提供合理和近似的解释,而殷勤的行动修剪则缩小了属性的搜索空间。广泛的实验证明,我们提出的模型可以生成忠实的解释,同时保持良好的推荐性能。
{"title":"Counterfactual Explanation for Fairness in Recommendation","authors":"Xiangmeng Wang, Qian Li, Dianer Yu, Qing Li, Guandong Xu","doi":"10.1145/3643670","DOIUrl":"https://doi.org/10.1145/3643670","url":null,"abstract":"<p>Fairness-aware recommendation alleviates discrimination issues to build trustworthy recommendation systems. Explaining the causes of unfair recommendations is critical, as it promotes fairness diagnostics, and thus secures users’ trust in recommendation models. Existing fairness explanation methods suffer high computation burdens due to the large-scale search space and the greedy nature of the explanation search process. Besides, they perform feature-level optimizations with continuous values, which are not applicable to discrete attributes such as gender and age. In this work, we adopt counterfactual explanations from causal inference and propose to generate attribute-level counterfactual explanations, adapting to discrete attributes in recommendation models. We use real-world attributes from Heterogeneous Information Networks (HINs) to empower counterfactual reasoning on discrete attributes. We propose a <i>Counterfactual Explanation for Fairness (CFairER)</i> that generates attribute-level counterfactual explanations from HINs for item exposure fairness. Our <i>CFairER</i> conducts off-policy reinforcement learning to seek high-quality counterfactual explanations, with attentive action pruning reducing the search space of candidate counterfactuals. The counterfactual explanations help to provide rational and proximate explanations for model fairness, while the attentive action pruning narrows the search space of attributes. Extensive experiments demonstrate our proposed model can generate faithful explanations while maintaining favorable recommendation performance.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"36 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MCN4Rec: Multi-Level Collaborative Neural Network for Next Location Recommendation MCN4Rec:用于下一个地点推荐的多层次协作神经网络
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-29 DOI: 10.1145/3643669
Shuzhe Li, Wei Chen, Bin Wang, Chao Huang, Yanwei Yu, Junyu Dong

Next location recommendation plays an important role in various location-based services, yielding great value for both users and service providers. Existing methods usually model temporal dependencies with explicit time intervals or learn representation from customized point of interest (POI) graphs with rich context information to capture the sequential patterns among POIs. However, this problem is perceptibly complex because various factors, e.g., users’ preferences, spatial locations, time contexts, activity category semantics, and temporal relations, need to be considered together, while most studies lack sufficient consideration of the collaborative signals. Toward this goal, we propose a novel Multi-Level Collaborative Neural Network for next location Recommendation (MCN4Rec). Specifically, we design a multi-level view representation learning with level-wise contrastive learning to collaboratively learn representation from local and global perspectives to capture complex heterogeneous relationships among user, POI, time, and activity categories. Then a causal encoder-decoder is applied to the learned representations of check-in sequences to recommend the next location. Extensive experiments on four real-world check-in mobility datasets demonstrate that our model significantly outperforms the existing state-of-the-art baselines for the next location recommendation. Ablation study further validates the benefits of the collaboration of the designed sub-modules. The source code is available at https://github.com/quai-mengxiang/MCN4Rec.

下一步位置推荐在各种基于位置的服务中发挥着重要作用,为用户和服务提供商带来巨大价值。现有方法通常通过明确的时间间隔对时间依赖性进行建模,或从具有丰富上下文信息的定制兴趣点(POI)图中学习表示法,以捕捉 POI 之间的顺序模式。然而,由于需要综合考虑用户偏好、空间位置、时间背景、活动类别语义和时间关系等各种因素,而大多数研究又缺乏对协作信号的充分考虑,因此这个问题显得非常复杂。为此,我们提出了一种新颖的用于下一个位置推荐的多层次协作神经网络(MCN4Rec)。具体来说,我们设计了一种多层次视图表示学习,通过层次对比学习从本地和全局角度协作学习表示,以捕捉用户、POI、时间和活动类别之间复杂的异构关系。然后将因果编码器-解码器应用于签到序列的学习表示,以推荐下一个地点。在四个真实世界签到移动数据集上进行的广泛实验表明,我们的模型在推荐下一个地点方面明显优于现有的最先进基线模型。消融研究进一步验证了所设计子模块的协作优势。源代码见 https://github.com/quai-mengxiang/MCN4Rec。
{"title":"MCN4Rec: Multi-Level Collaborative Neural Network for Next Location Recommendation","authors":"Shuzhe Li, Wei Chen, Bin Wang, Chao Huang, Yanwei Yu, Junyu Dong","doi":"10.1145/3643669","DOIUrl":"https://doi.org/10.1145/3643669","url":null,"abstract":"<p>Next location recommendation plays an important role in various location-based services, yielding great value for both users and service providers. Existing methods usually model temporal dependencies with explicit time intervals or learn representation from customized point of interest (POI) graphs with rich context information to capture the sequential patterns among POIs. However, this problem is perceptibly complex because various factors, <i>e</i>.<i>g</i>., users’ preferences, spatial locations, time contexts, activity category semantics, and temporal relations, need to be considered together, while most studies lack sufficient consideration of the collaborative signals. Toward this goal, we propose a novel <underline>M</underline>ulti-Level <underline>C</underline>ollaborative Neural <underline>N</underline>etwork for next location <underline>Rec</underline>ommendation (MCN4Rec). Specifically, we design a multi-level view representation learning with level-wise contrastive learning to collaboratively learn representation from local and global perspectives to capture complex heterogeneous relationships among user, POI, time, and activity categories. Then a causal encoder-decoder is applied to the learned representations of check-in sequences to recommend the next location. Extensive experiments on four real-world check-in mobility datasets demonstrate that our model significantly outperforms the existing state-of-the-art baselines for the next location recommendation. Ablation study further validates the benefits of the collaboration of the designed sub-modules. The source code is available at https://github.com/quai-mengxiang/MCN4Rec.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"7 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139580062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can Perturbations Help Reduce Investment Risks? Risk-Aware Stock Recommendation via Split Variational Adversarial Training 扰动能帮助降低投资风险吗?通过分割变异对抗训练进行风险意识股票推荐
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-25 DOI: 10.1145/3643131
Jiezhu Cheng, Kaizhu Huang, Zibin Zheng

In the stock market, a successful investment requires a good balance between profits and risks. Based on the learning to rank paradigm, stock recommendation has been widely studied in quantitative finance to recommend stocks with higher return ratios for investors. Despite the efforts to make profits, many existing recommendation approaches still have some limitations in risk control, which may lead to intolerable paper losses in practical stock investing. To effectively reduce risks, we draw inspiration from adversarial learning and propose a novel Split Variational Adversarial Training (SVAT) method for risk-aware stock recommendation. Essentially, SVAT encourages the stock model to be sensitive to adversarial perturbations of risky stock examples and enhances the model’s risk awareness by learning from perturbations. To generate representative adversarial examples as risk indicators, we devise a variational perturbation generator to model diverse risk factors. Particularly, the variational architecture enables our method to provide a rough risk quantification for investors, showing an additional advantage of interpretability. Experiments on several real-world stock market datasets demonstrate the superiority of our SVAT method. By lowering the volatility of the stock recommendation model, SVAT effectively reduces investment risks and outperforms state-of-the-art baselines by more than (30% ) in terms of risk-adjusted profits. All the experimental data and source code are available at https://drive.google.com/drive/folders/14AdM7WENEvIp5x5bV3zV_i4Aev21C9g6?usp=sharing.

在股票市场上,成功的投资需要在利润和风险之间取得良好的平衡。基于学习排名范式,股票推荐在量化金融领域得到了广泛研究,为投资者推荐收益率较高的股票。尽管努力追求利润,但现有的许多荐股方法在风险控制方面仍存在一定的局限性,在实际股票投资中可能会导致难以忍受的纸面损失。为了有效降低风险,我们从对抗学习中汲取灵感,提出了一种新颖的用于风险意识荐股的分裂变异对抗训练(SVAT)方法。从本质上讲,SVAT 鼓励股票模型对风险股票实例的对抗性扰动保持敏感,并通过从扰动中学习来增强模型的风险意识。为了生成具有代表性的对抗性示例作为风险指标,我们设计了一种变异扰动生成器来模拟各种风险因素。特别是,变分架构使我们的方法能够为投资者提供粗略的风险量化,显示了可解释性的额外优势。在几个真实股市数据集上的实验证明了我们的 SVAT 方法的优越性。通过降低股票推荐模型的波动性,SVAT 有效地降低了投资风险,在风险调整利润方面优于最先进的基线方法超过(30%)。所有实验数据和源代码均可在 https://drive.google.com/drive/folders/14AdM7WENEvIp5x5bV3zV_i4Aev21C9g6?usp=sharing 上获取。
{"title":"Can Perturbations Help Reduce Investment Risks? Risk-Aware Stock Recommendation via Split Variational Adversarial Training","authors":"Jiezhu Cheng, Kaizhu Huang, Zibin Zheng","doi":"10.1145/3643131","DOIUrl":"https://doi.org/10.1145/3643131","url":null,"abstract":"<p>In the stock market, a successful investment requires a good balance between profits and risks. Based on the <i>learning to rank</i> paradigm, stock recommendation has been widely studied in quantitative finance to recommend stocks with higher return ratios for investors. Despite the efforts to make profits, many existing recommendation approaches still have some limitations in risk control, which may lead to intolerable paper losses in practical stock investing. To effectively reduce risks, we draw inspiration from adversarial learning and propose a novel <i>Split Variational Adversarial Training</i> (SVAT) method for risk-aware stock recommendation. Essentially, SVAT encourages the stock model to be sensitive to adversarial perturbations of risky stock examples and enhances the model’s risk awareness by learning from perturbations. To generate representative adversarial examples as risk indicators, we devise a variational perturbation generator to model diverse risk factors. Particularly, the variational architecture enables our method to provide a rough risk quantification for investors, showing an additional advantage of interpretability. Experiments on several real-world stock market datasets demonstrate the superiority of our SVAT method. By lowering the volatility of the stock recommendation model, SVAT effectively reduces investment risks and outperforms state-of-the-art baselines by more than (30% ) in terms of risk-adjusted profits. All the experimental data and source code are available at https://drive.google.com/drive/folders/14AdM7WENEvIp5x5bV3zV_i4Aev21C9g6?usp=sharing.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"34 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tagging Items with Emerging Tags: A Neural Topic Model based Few-Shot Learning Approach 用新兴标签标记项目:基于神经主题模型的少量学习方法
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-23 DOI: 10.1145/3641859
Shangkun Che, Hongyan Liu, Shen Liu

The tagging system has become a primary tool to organize information resources on the Internet, which benefits both users and the platforms. To build a successful tagging system, automatic tagging methods are desired. With the development of society, new tags keep emerging. The problem of tagging items with emerging tags is an open challenge for automatic tagging system, and it has not been well studied in the literature. We define this problem as a tag-centered cold-start problem in this study and propose a novel neural topic model based few-shot learning method named NTFSL to solve the problem. In our proposed method, we innovatively fuse the topic modeling task with the few-shot learning task, endowing the model with the capability to infer effective topics to solve the tag-centered cold-start problem with the property of interpretability. Meanwhile, we propose a novel neural topic model for the topic modeling task to improve the quality of inferred topics, which helps enhance the tagging performance. Furthermore, we develop a novel inference method based on the variational auto-encoding framework for model inference. We conducted extensive experiments on two real-world datasets and the results demonstrate the superior performance of our proposed model compared with state-of-the-art machine learning methods. Case studies also show the interpretability of the model.

标签系统已成为组织互联网信息资源的主要工具,这对用户和平台都有好处。要建立一个成功的标签系统,需要采用自动标签方法。随着社会的发展,新标签不断涌现。如何用新出现的标签来标记项目是自动标记系统面临的一个挑战,目前还没有相关文献对此进行深入研究。在本研究中,我们将这一问题定义为以标签为中心的冷启动问题,并提出了一种新颖的基于神经主题模型的少量学习方法 NTFSL 来解决这一问题。在我们提出的方法中,我们创新性地融合了主题建模任务和少量学习任务,赋予了模型推断有效主题的能力,从而解决了以标签为中心的冷启动问题,并具有可解释性。同时,我们为主题建模任务提出了一种新的神经主题模型,以提高推断主题的质量,从而有助于提高标记性能。此外,我们还开发了一种基于变异自动编码框架的新型推理方法,用于模型推理。我们在两个真实世界的数据集上进行了广泛的实验,结果表明,与最先进的机器学习方法相比,我们提出的模型性能更优越。案例研究也显示了模型的可解释性。
{"title":"Tagging Items with Emerging Tags: A Neural Topic Model based Few-Shot Learning Approach","authors":"Shangkun Che, Hongyan Liu, Shen Liu","doi":"10.1145/3641859","DOIUrl":"https://doi.org/10.1145/3641859","url":null,"abstract":"<p>The tagging system has become a primary tool to organize information resources on the Internet, which benefits both users and the platforms. To build a successful tagging system, automatic tagging methods are desired. With the development of society, new tags keep emerging. The problem of tagging items with emerging tags is an open challenge for automatic tagging system, and it has not been well studied in the literature. We define this problem as a tag-centered cold-start problem in this study and propose a novel neural topic model based few-shot learning method named NTFSL to solve the problem. In our proposed method, we innovatively fuse the topic modeling task with the few-shot learning task, endowing the model with the capability to infer effective topics to solve the tag-centered cold-start problem with the property of interpretability. Meanwhile, we propose a novel neural topic model for the topic modeling task to improve the quality of inferred topics, which helps enhance the tagging performance. Furthermore, we develop a novel inference method based on the variational auto-encoding framework for model inference. We conducted extensive experiments on two real-world datasets and the results demonstrate the superior performance of our proposed model compared with state-of-the-art machine learning methods. Case studies also show the interpretability of the model.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"7 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Should Fairness be a Metric or a Model? A Model-based Framework for Assessing Bias in Machine Learning Pipelines 公平性应该是衡量标准还是模型?基于模型的机器学习管道偏差评估框架
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-23 DOI: 10.1145/3641276
John P. Lalor, Ahmed Abbasi, Kezia Oketch, Yi Yang, Nicole Forsgren

Fairness measurement is crucial for assessing algorithmic bias in various types of machine learning (ML) models, including ones used for search relevance, recommendation, personalization, talent analytics, and natural language processing. However, the fairness measurement paradigm is currently dominated by fairness metrics that examine disparities in allocation and/or prediction error as univariate key performance indicators (KPIs) for a protected attribute or group. Although important and effective in assessing ML bias in certain contexts such as recidivism, existing metrics don’t work well in many real-world applications of ML characterized by imperfect models applied to an array of instances encompassing a multivariate mixture of protected attributes, that are part of a broader process pipeline. Consequently, the upstream representational harm quantified by existing metrics based on how the model represents protected groups doesn’t necessarily relate to allocational harm in the application of such models in downstream policy/decision contexts. We propose FAIR-Frame, a model-based framework for parsimoniously modeling fairness across multiple protected attributes in regard to the representational and allocational harm associated with the upstream design/development and downstream usage of ML models. We evaluate the efficacy of our proposed framework on two testbeds pertaining to text classification using pretrained language models. The upstream testbeds encompass over fifty thousand documents associated with twenty-eight thousand users, seven protected attributes and five different classification tasks. The downstream testbeds span three policy outcomes and over 5.41 million total observations. Results in comparison with several existing metrics show that the upstream representational harm measures produced by FAIR-Frame and other metrics are significantly different from one another, and that FAIR-Frame’s representational fairness measures have the highest percentage alignment and lowest error with allocational harm observed in downstream applications. Our findings have important implications for various ML contexts, including information retrieval, user modeling, digital platforms, and text classification, where responsible and trustworthy AI are becoming an imperative.

公平性测量对于评估各类机器学习(ML)模型(包括用于搜索相关性、推荐、个性化、人才分析和自然语言处理的模型)中的算法偏差至关重要。然而,公平性测量范式目前主要由公平性指标主导,这些指标将分配和/或预测误差的差异作为受保护属性或群体的单变量关键性能指标(KPI)进行检查。尽管在某些情况下(如累犯)评估 ML 偏差非常重要且有效,但现有指标在 ML 的许多实际应用中效果并不理想,这些应用的特点是将不完善的模型应用于一系列实例,其中包括受保护属性的多变量混合物,而这些实例是更广泛流程管道的一部分。因此,基于模型如何代表受保护群体的现有指标所量化的上游代表危害并不一定与在下游政策/决策环境中应用此类模型时的分配危害相关。我们提出了 FAIR-Frame(公平框架),这是一个基于模型的框架,用于对多重受保护属性的公平性进行简化建模,以反映与 ML 模型的上游设计/开发和下游使用相关的代表性和分配性损害。我们在使用预训练语言模型进行文本分类的两个测试平台上评估了我们提出的框架的有效性。上游测试平台包含五万多份文档,涉及两万八千名用户、七个受保护属性和五个不同的分类任务。下游测试平台涵盖三种政策结果和超过 541 万个观察结果。与几种现有度量方法的比较结果表明,FAIR-Frame 和其他度量方法产生的上游代表性危害度量彼此差异显著,FAIR-Frame 的代表性公平度量与下游应用中观察到的分配性危害具有最高的一致性百分比和最低的误差。我们的发现对信息检索、用户建模、数字平台和文本分类等各种人工智能领域具有重要意义,在这些领域,负责任和可信赖的人工智能正成为当务之急。
{"title":"Should Fairness be a Metric or a Model? A Model-based Framework for Assessing Bias in Machine Learning Pipelines","authors":"John P. Lalor, Ahmed Abbasi, Kezia Oketch, Yi Yang, Nicole Forsgren","doi":"10.1145/3641276","DOIUrl":"https://doi.org/10.1145/3641276","url":null,"abstract":"<p>Fairness measurement is crucial for assessing algorithmic bias in various types of machine learning (ML) models, including ones used for search relevance, recommendation, personalization, talent analytics, and natural language processing. However, the fairness measurement paradigm is currently dominated by fairness metrics that examine disparities in allocation and/or prediction error as univariate key performance indicators (KPIs) for a protected attribute or group. Although important and effective in assessing ML bias in certain contexts such as recidivism, existing metrics don’t work well in many real-world applications of ML characterized by imperfect models applied to an array of instances encompassing a multivariate mixture of protected attributes, that are part of a broader process pipeline. Consequently, the upstream representational harm quantified by existing metrics based on how the model represents protected groups doesn’t necessarily relate to allocational harm in the application of such models in downstream policy/decision contexts. We propose FAIR-Frame, a model-based framework for parsimoniously modeling fairness across multiple protected attributes in regard to the representational and allocational harm associated with the upstream design/development and downstream usage of ML models. We evaluate the efficacy of our proposed framework on two testbeds pertaining to text classification using pretrained language models. The upstream testbeds encompass over fifty thousand documents associated with twenty-eight thousand users, seven protected attributes and five different classification tasks. The downstream testbeds span three policy outcomes and over 5.41 million total observations. Results in comparison with several existing metrics show that the upstream representational harm measures produced by FAIR-Frame and other metrics are significantly different from one another, and that FAIR-Frame’s representational fairness measures have the highest percentage alignment and lowest error with allocational harm observed in downstream applications. Our findings have important implications for various ML contexts, including information retrieval, user modeling, digital platforms, and text classification, where responsible and trustworthy AI are becoming an imperative.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"20 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MultiCBR: Multi-view Contrastive Learning for Bundle Recommendation MultiCBR:用于捆绑推荐的多视角对比学习
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-23 DOI: 10.1145/3640810
Yunshan Ma, Yingzhi He, Xiang Wang, Yinwei Wei, Xiaoyu Du, Yuyangzi Fu, Tat-Seng Chua

Bundle recommendation seeks to recommend a bundle of related items to users to improve both user experience and the profits of platform. Existing bundle recommendation models have progressed from capturing only user-bundle interactions to the modeling of multiple relations among users, bundles and items. CrossCBR, in particular, incorporates cross-view contrastive learning into a two-view preference learning framework, significantly improving SOTA performance. It does, however, have two limitations: 1) the two-view formulation does not fully exploit all the heterogeneous relations among users, bundles and items; and 2) the ”early contrast and late fusion” framework is less effective in capturing user preference and difficult to generalize to multiple views.

In this paper, we present MultiCBR, a novel Multi-view Contrastive learning framework for Bundle Recommendation. First, we devise a multi-view representation learning framework capable of capturing all the user-bundle, user-item and bundle-item relations, especially better utilizing the bundle-item affiliations to enhance sparse bundles’ representations. Second, we innovatively adopt an ”early fusion and late contrast” design that first fuses the multi-view representations before performing self-supervised contrastive learning. In comparison to existing approaches, our framework reverses the order of fusion and contrast, introducing the following advantages: 1) our framework is capable of modeling both cross-view and ego-view preferences, allowing us to achieve enhanced user preference modeling; and 2) instead of requiring quadratic number of cross-view contrastive losses, we only require two self-supervised contrastive losses, resulting in minimal extra costs. Experimental results on three public datasets indicate that our method outperforms SOTA methods. The code and dataset can be found in the github repo https://github.com/HappyPointer/MultiCBR.

捆绑推荐旨在向用户推荐捆绑的相关项目,以改善用户体验和平台收益。现有的捆绑推荐模型已经从仅捕捉用户与捆绑商品之间的交互关系发展到对用户、捆绑商品和商品之间的多种关系进行建模。其中,CrossCBR 将跨视图对比学习纳入双视图偏好学习框架,显著提高了 SOTA 性能。不过,它也有两个局限性:1)双视图表述无法充分利用用户、捆绑和物品之间的所有异质关系;2)"早期对比和后期融合 "框架在捕捉用户偏好方面效果较差,而且难以推广到多视图。在本文中,我们提出了用于捆绑推荐的新型多视图对比学习框架 MultiCBR。首先,我们设计了一个多视图表征学习框架,能够捕捉用户-捆绑、用户-物品和捆绑-物品之间的所有关系,尤其是能更好地利用捆绑-物品之间的隶属关系来增强稀疏的捆绑表征。其次,我们创新性地采用了 "早期融合和后期对比 "设计,即首先融合多视图表征,然后再进行自监督对比学习。与现有方法相比,我们的框架颠倒了融合和对比的顺序,从而带来了以下优势:1)我们的框架能够对跨视角和自我视角偏好进行建模,从而实现增强的用户偏好建模;2)我们不需要四元数的跨视角对比损失,而只需要两个自监督对比损失,从而将额外成本降到最低。在三个公开数据集上的实验结果表明,我们的方法优于 SOTA 方法。代码和数据集可在 github repo https://github.com/HappyPointer/MultiCBR 上找到。
{"title":"MultiCBR: Multi-view Contrastive Learning for Bundle Recommendation","authors":"Yunshan Ma, Yingzhi He, Xiang Wang, Yinwei Wei, Xiaoyu Du, Yuyangzi Fu, Tat-Seng Chua","doi":"10.1145/3640810","DOIUrl":"https://doi.org/10.1145/3640810","url":null,"abstract":"<p>Bundle recommendation seeks to recommend a bundle of related items to users to improve both user experience and the profits of platform. Existing bundle recommendation models have progressed from capturing only user-bundle interactions to the modeling of multiple relations among users, bundles and items. CrossCBR, in particular, incorporates cross-view contrastive learning into a two-view preference learning framework, significantly improving SOTA performance. It does, however, have two limitations: 1) the two-view formulation does not fully exploit all the heterogeneous relations among users, bundles and items; and 2) the ”early contrast and late fusion” framework is less effective in capturing user preference and difficult to generalize to multiple views. </p><p>In this paper, we present MultiCBR, a novel <b>Multi</b>-view <b>C</b>ontrastive learning framework for <b>B</b>undle <b>R</b>ecommendation. First, we devise a multi-view representation learning framework capable of capturing all the user-bundle, user-item and bundle-item relations, especially better utilizing the bundle-item affiliations to enhance sparse bundles’ representations. Second, we innovatively adopt an ”early fusion and late contrast” design that first fuses the multi-view representations before performing self-supervised contrastive learning. In comparison to existing approaches, our framework reverses the order of fusion and contrast, introducing the following advantages: 1) our framework is capable of modeling both cross-view and ego-view preferences, allowing us to achieve enhanced user preference modeling; and 2) instead of requiring quadratic number of cross-view contrastive losses, we only require two self-supervised contrastive losses, resulting in minimal extra costs. Experimental results on three public datasets indicate that our method outperforms SOTA methods. The code and dataset can be found in the github repo https://github.com/HappyPointer/MultiCBR.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"228 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MCRPL: A Pretrain, Prompt & Fine-tune Paradigm for Non-overlapping Many-to-one Cross-domain Recommendation MCRPL:非重叠多对一跨域推荐的预训练、提示和微调范式
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-22 DOI: 10.1145/3641860
Hao Liu, Lei Guo, Lei Zhu, Yongqiang Jiang, Min Gao, Hongzhi Yin

Cross-domain Recommendation (CR) is the task that tends to improve the recommendations in the sparse target domain by leveraging the information from other rich domains. Existing methods of cross-domain recommendation mainly focus on overlapping scenarios by assuming users are totally or partially overlapped, which are taken as bridges to connect different domains. However, this assumption does not always hold since it is illegal to leak users’ identity information to other domains. Conducting Non-overlapping MCR (NMCR) is challenging since 1) The absence of overlapping information prevents us from directly aligning different domains, and this situation may get worse in the MCR scenario. 2) The distribution between source and target domains makes it difficult for us to learn common information across domains. To overcome the above challenges, we focus on NMCR, and devise MCRPL as our solution. To address Challenge 1, we first learn shared domain-agnostic and domain-dependent prompts, and pre-train them in the pre-training stage. To address Challenge 2, we further update the domain-dependent prompts with other parameters kept fixed to transfer the domain knowledge to the target domain. We conduct experiments on five real-world domains, and the results show the advance of our MCRPL method compared with several recent SOTA baselines. Moreover, Our source codes have been publicly released1.

跨域推荐(Cross-domain Recommendation,CR)是一项通过利用其他丰富域的信息来改进稀疏目标域推荐的任务。现有的跨域推荐方法主要关注重叠场景,假设用户完全或部分重叠,将其作为连接不同域的桥梁。然而,这一假设并不总是成立的,因为向其他域泄露用户身份信息是非法的。进行非重叠 MCR(NMCR)具有挑战性,因为 1)由于没有重叠信息,我们无法直接对不同域进行对齐,而这种情况在 MCR 场景中可能会变得更糟。2) 源域和目标域之间的分布使我们难以学习跨域的共同信息。为了克服上述挑战,我们将重点放在 NMCR 上,并设计了 MCRPL 作为我们的解决方案。针对挑战 1,我们首先学习与领域无关的和与领域相关的共享提示信息,并在预训练阶段对它们进行预训练。为了应对挑战 2,我们进一步更新了与领域相关的提示语,同时保持其他参数不变,以便将领域知识转移到目标领域。我们在五个真实世界的领域中进行了实验,结果表明,与最近的几种 SOTA 基线相比,我们的 MCRPL 方法是先进的。此外,我们的源代码已经公开发布1。
{"title":"MCRPL: A Pretrain, Prompt & Fine-tune Paradigm for Non-overlapping Many-to-one Cross-domain Recommendation","authors":"Hao Liu, Lei Guo, Lei Zhu, Yongqiang Jiang, Min Gao, Hongzhi Yin","doi":"10.1145/3641860","DOIUrl":"https://doi.org/10.1145/3641860","url":null,"abstract":"<p>Cross-domain Recommendation (CR) is the task that tends to improve the recommendations in the sparse target domain by leveraging the information from other rich domains. Existing methods of cross-domain recommendation mainly focus on overlapping scenarios by assuming users are totally or partially overlapped, which are taken as bridges to connect different domains. However, this assumption does not always hold since it is illegal to leak users’ identity information to other domains. Conducting Non-overlapping MCR (NMCR) is challenging since 1) The absence of overlapping information prevents us from directly aligning different domains, and this situation may get worse in the MCR scenario. 2) The distribution between source and target domains makes it difficult for us to learn common information across domains. To overcome the above challenges, we focus on NMCR, and devise MCRPL as our solution. To address Challenge 1, we first learn shared domain-agnostic and domain-dependent prompts, and pre-train them in the pre-training stage. To address Challenge 2, we further update the domain-dependent prompts with other parameters kept fixed to transfer the domain knowledge to the target domain. We conduct experiments on five real-world domains, and the results show the advance of our MCRPL method compared with several recent SOTA baselines. Moreover, Our source codes have been publicly released<sup>1</sup>.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"7 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Representations of Information Needs from Digital Activity Context 从数字活动语境预测信息需求表征
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-15 DOI: 10.1145/3639819
Tung Vuong, Tuukka Ruotsalo

Information retrieval systems often consider search-session and immediately preceding web-browsing history as the context for predicting users’ present information needs. However, such context is only available when a user’s information needs originate from web context or when users have issued preceding queries in the search session. Here, we study the effect of more extensive context information recorded from users’ everyday digital activities by monitoring all information interacted with and communicated using personal computers. Twenty individuals were recruited for 14 days of 24/7 continuous monitoring of their digital activities, including screen contents, clicks, and operating system logs on Web and non-Web applications. Using this data, a transformer architecture is applied to model the digital activity context and predict representations of personalized information needs. Subsequently, the representations of information needs are used for query prediction, query auto-completion, selected search result prediction, and Web search re-ranking. The predictions of the models are evaluated against the ground truth data obtained from the activity recordings. The results reveal that the models accurately predict representations of information needs improving over the conventional search session and web-browsing contexts. The results indicate that the present practice for utilizing users’ contextual information is limited and can be significantly extended to achieve improved search interaction support and performance.

信息检索系统通常将搜索会话和紧接着的网络浏览历史作为预测用户当前信息需求的背景。然而,只有当用户的信息需求源于网络上下文或用户在搜索会话中发布了之前的查询时,这种上下文才可用。在这里,我们通过监测所有使用个人电脑进行交互和交流的信息,研究从用户日常数字活动中记录的更广泛的情境信息的效果。我们招募了 20 个人,对他们的数字活动进行了为期 14 天的全天候连续监控,包括网络和非网络应用程序的屏幕内容、点击和操作系统日志。利用这些数据,一个转换器架构被应用于建立数字活动上下文模型和预测个性化信息需求表征。随后,信息需求表征被用于查询预测、查询自动完成、选定搜索结果预测和网络搜索重新排序。根据从活动记录中获得的地面实况数据,对模型的预测结果进行了评估。结果表明,与传统的搜索会话和网络浏览环境相比,这些模型能准确预测信息需求的表征。结果表明,目前利用用户上下文信息的做法是有限的,可以大大扩展,以实现更好的搜索交互支持和性能。
{"title":"Predicting Representations of Information Needs from Digital Activity Context","authors":"Tung Vuong, Tuukka Ruotsalo","doi":"10.1145/3639819","DOIUrl":"https://doi.org/10.1145/3639819","url":null,"abstract":"<p>Information retrieval systems often consider search-session and immediately preceding web-browsing history as the context for predicting users’ present information needs. However, such context is only available when a user’s information needs originate from web context or when users have issued preceding queries in the search session. Here, we study the effect of more extensive context information recorded from users’ everyday digital activities by monitoring all information interacted with and communicated using personal computers. Twenty individuals were recruited for 14 days of 24/7 continuous monitoring of their digital activities, including screen contents, clicks, and operating system logs on Web and non-Web applications. Using this data, a transformer architecture is applied to model the digital activity context and predict representations of personalized information needs. Subsequently, the representations of information needs are used for query prediction, query auto-completion, selected search result prediction, and Web search re-ranking. The predictions of the models are evaluated against the ground truth data obtained from the activity recordings. The results reveal that the models accurately predict representations of information needs improving over the conventional search session and web-browsing contexts. The results indicate that the present practice for utilizing users’ contextual information is limited and can be significantly extended to achieve improved search interaction support and performance.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"1 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139476820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intent-oriented Dynamic Interest Modeling for Personalized Web Search 面向意图的个性化网络搜索动态兴趣建模
IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-01-08 DOI: 10.1145/3639817
Yutong Bai, Yujia Zhou, Zhicheng Dou, Ji-Rong Wen

Given a user, a personalized search model relies on her historical behaviors, such as issued queries and their clicked documents, to generate an interest profile and personalize search results accordingly. In interest profiling, most existing personalized search approaches use “static” document representations as the inputs, which do not change with the current search. However, a document is usually long and contains multiple pieces of information, a static fix-length document vector is usually insufficient to represent the important information related to the original query or the current query, and makes the profile noisy and ambiguous. To tackle this problem, we propose building dynamic and intent-oriented document representations which highlight important parts of a document rather than simply encode the entire text. Specifically, we divide each document into multiple passages, and then separately use the original query and the current query to interact with the passages. Thereafter we generate two “dynamic” document representations containing the key information around the historical and the current user intent, respectively. We then profile interest by capturing the interactions between these document representations, the historical queries, and the current query. Experimental results on a real-world search log dataset demonstrate that our model significantly outperforms state-of-the-art personalization methods.

给定用户后,个性化搜索模型会根据其历史行为(如已发布的查询及其点击的文档)生成兴趣档案,并据此个性化搜索结果。在兴趣分析中,大多数现有的个性化搜索方法都使用 "静态 "文档表示法作为输入,这些表示法不会随当前搜索而改变。然而,文档通常较长,且包含多种信息,固定长度的静态文档向量通常不足以表示与原始查询或当前查询相关的重要信息,从而使兴趣剖析变得嘈杂和模糊。为了解决这个问题,我们建议建立动态的、以意图为导向的文档表示法,突出文档的重要部分,而不是简单地对整个文本进行编码。具体来说,我们将每篇文档分为多个段落,然后分别使用原始查询和当前查询与段落进行交互。之后,我们生成两个 "动态 "文档表征,分别包含与历史和当前用户意图相关的关键信息。然后,我们通过捕捉这些文档表征、历史查询和当前查询之间的交互,对兴趣进行剖析。在真实世界搜索日志数据集上的实验结果表明,我们的模型明显优于最先进的个性化方法。
{"title":"Intent-oriented Dynamic Interest Modeling for Personalized Web Search","authors":"Yutong Bai, Yujia Zhou, Zhicheng Dou, Ji-Rong Wen","doi":"10.1145/3639817","DOIUrl":"https://doi.org/10.1145/3639817","url":null,"abstract":"<p>Given a user, a personalized search model relies on her historical behaviors, such as issued queries and their clicked documents, to generate an interest profile and personalize search results accordingly. In interest profiling, most existing personalized search approaches use “static” document representations as the inputs, which do not change with the current search. However, a document is usually long and contains multiple pieces of information, a static fix-length document vector is usually insufficient to represent the important information related to the original query or the current query, and makes the profile noisy and ambiguous. To tackle this problem, we propose building dynamic and intent-oriented document representations which highlight important parts of a document rather than simply encode the entire text. Specifically, we divide each document into multiple passages, and then separately use the original query and the current query to interact with the passages. Thereafter we generate two “dynamic” document representations containing the key information around the historical and the current user intent, respectively. We then profile interest by capturing the interactions between these document representations, the historical queries, and the current query. Experimental results on a real-world search log dataset demonstrate that our model significantly outperforms state-of-the-art personalization methods.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"126 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACM Transactions on Information Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1