Andrea Elizabeth Román Ramos, C. E. Aucique‐Pérez, D. Debona, L. J. Dallagnol
Nitrogen (N) and silicon (Si) are mineral elements that have shown a reduction in the damage caused by tan spot (Pyrenophora tritici-repentis (Ptr)) in wheat. However, the effects of these elements were studied separately, and the N and Si interaction effect on wheat resistance to tan spot remains elusive. Histocytological and biochemical defense responses against Ptr in wheat leaves treated with Si (+Si) at low (LN) and high N (HN) inputs were investigated. Soil amendment with Si reduced the tan spot severity in 18% due to the increase in the leaf Si concentration (around 30%), but it was affected by the N level used. The superoxide dismutase (SOD) activity was higher in +Si plants and inoculated with Ptr, leading to early and higher H2O2 and callose accumulation in wheat leaf. Interestedly, phenylalanine ammonia-lyase (PAL) activity was induced by the Si supplying, being negatively affected by the HN rate. Meanwhile, catalase (CAT), and peroxidase (POX) activities showed differential response patterns according to the Si and N rates used. Tan spot severity was reduced by both elements, but their interaction does not evidence synergic effects in this disease’s control. Wheat plants from −Si and HN and +Si and LN treatments recorded lower tan spot severity.
氮(N)和硅(Si)是矿物质元素,它们对小麦黑斑病(Pyrenophora tritici-repentis (Ptr))造成的危害有减轻作用。然而,这些元素的作用是分开研究的,氮和硅对小麦抗黑斑病的交互作用仍然难以捉摸。本研究调查了小麦叶片在低(LN)和高(HN)氮(Si)处理下对 Ptr 的组织细胞学和生物化学防御反应。由于叶片中 Si 的浓度增加(约 30%),用 Si 改良土壤可将晒斑的严重程度降低 18%,但这受到所使用的氮水平的影响。在 +Si 植物和接种 Ptr 的植物中,超氧化物歧化酶(SOD)活性较高,从而导致小麦叶片中 H2O2 和胼胝质的早期和较高积累。有趣的是,供给 Si 会诱导苯丙氨酸氨解酶(PAL)活性,而 HN 率则会对其产生负面影响。同时,过氧化氢酶(CAT)和过氧化物酶(POX)的活性也因所使用的硅和氮的比例不同而表现出不同的反应模式。这两种元素都能降低褐斑病的严重程度,但它们之间的相互作用并不能证明在控制这种病害方面有协同效应。-Si和HN以及+Si和LN处理的小麦植株褐斑病严重程度较低。
{"title":"Nitrogen and Silicon Contribute to Wheat Defense’s to Pyrenophora tritici-repentis, but in an Independent Manner","authors":"Andrea Elizabeth Román Ramos, C. E. Aucique‐Pérez, D. Debona, L. J. Dallagnol","doi":"10.3390/plants13111426","DOIUrl":"https://doi.org/10.3390/plants13111426","url":null,"abstract":"Nitrogen (N) and silicon (Si) are mineral elements that have shown a reduction in the damage caused by tan spot (Pyrenophora tritici-repentis (Ptr)) in wheat. However, the effects of these elements were studied separately, and the N and Si interaction effect on wheat resistance to tan spot remains elusive. Histocytological and biochemical defense responses against Ptr in wheat leaves treated with Si (+Si) at low (LN) and high N (HN) inputs were investigated. Soil amendment with Si reduced the tan spot severity in 18% due to the increase in the leaf Si concentration (around 30%), but it was affected by the N level used. The superoxide dismutase (SOD) activity was higher in +Si plants and inoculated with Ptr, leading to early and higher H2O2 and callose accumulation in wheat leaf. Interestedly, phenylalanine ammonia-lyase (PAL) activity was induced by the Si supplying, being negatively affected by the HN rate. Meanwhile, catalase (CAT), and peroxidase (POX) activities showed differential response patterns according to the Si and N rates used. Tan spot severity was reduced by both elements, but their interaction does not evidence synergic effects in this disease’s control. Wheat plants from −Si and HN and +Si and LN treatments recorded lower tan spot severity.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"120 32","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141115243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Martins-Loução, Pedro José Correia, Anabela Romano
For centuries, the carob tree (Ceratonia siliqua L.) has contributed to the economy of the Mediterranean basin, mainly as food for livestock. Nowadays, the value of the carob tree extends far beyond its traditional uses, encompassing a wide range of industries and applications that take advantage of its unique properties and nutritional benefits. Despite its high industrial demand and European indications, there has been a 65% reduction in the area cultivated throughout the Mediterranean area in the 21st century. Given the threats posed by climate change, including reduced water availability and nutrient-depleted soils, there is a growing need to focus on this crop, which is well placed to cope with unpredictable weather. In this review, we use a bibliographic search approach to emphasise the prioritisation of research needs for effective carob tree exploitation. We found enormous gaps in the scientific knowledge of this under-utilised crop species with fruit pulp and seeds of high industrial value. Insufficient understanding of the biology of the species, as well as inadequate agronomic practices, compromise the quantity and the quality of fruits available to the industry. In addition to industrial applications, carob can also be used in reforestation or restoration programmes, providing a valuable crop while promoting biodiversity conservation and soil restoration. The carbon sequestration potential of the trees should be taken into account as a promising alternative in fighting climate change. This bibliographic search has highlighted clusters with different knowledge gaps that require further research and investment. The carob tree has untapped potential for innovation, economic development, and environmental sustainability.
{"title":"Carob: A Mediterranean Resource for the Future","authors":"M. Martins-Loução, Pedro José Correia, Anabela Romano","doi":"10.3390/plants13091188","DOIUrl":"https://doi.org/10.3390/plants13091188","url":null,"abstract":"For centuries, the carob tree (Ceratonia siliqua L.) has contributed to the economy of the Mediterranean basin, mainly as food for livestock. Nowadays, the value of the carob tree extends far beyond its traditional uses, encompassing a wide range of industries and applications that take advantage of its unique properties and nutritional benefits. Despite its high industrial demand and European indications, there has been a 65% reduction in the area cultivated throughout the Mediterranean area in the 21st century. Given the threats posed by climate change, including reduced water availability and nutrient-depleted soils, there is a growing need to focus on this crop, which is well placed to cope with unpredictable weather. In this review, we use a bibliographic search approach to emphasise the prioritisation of research needs for effective carob tree exploitation. We found enormous gaps in the scientific knowledge of this under-utilised crop species with fruit pulp and seeds of high industrial value. Insufficient understanding of the biology of the species, as well as inadequate agronomic practices, compromise the quantity and the quality of fruits available to the industry. In addition to industrial applications, carob can also be used in reforestation or restoration programmes, providing a valuable crop while promoting biodiversity conservation and soil restoration. The carbon sequestration potential of the trees should be taken into account as a promising alternative in fighting climate change. This bibliographic search has highlighted clusters with different knowledge gaps that require further research and investment. The carob tree has untapped potential for innovation, economic development, and environmental sustainability.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"27 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iris laevigata Fisch. is an excellent ornamental plant in cold regions due to its unique ornamental ability and strong cold resistance. However, the flowering period of the population is only about 20 days, greatly limiting its potential uses in landscaping and the cutting flower industry. In addition, I. laevigata is often challenged with various abiotic stresses including high salinity and drought in its native habitats. Thus, breeding novel cultivars with delayed flowering time and higher resistance to abiotic stress is of high importance. In this study, we utilized sequencing data from the I. laevigata transcriptome to identify WRKYs and characterized IlWRKY22, a key transcription factor that modulates flowering time and abiotic stress responses. IlWRKY22 is induced by salt and drought stress. We cloned IlWRKY22 and found that it is a Group IIe WRKY localized in the nucleus. Overexpressing IlWRKY22 in Arabidopsis thaliana (L.) Heynh. and Nicotiana tabacum L. resulted in a delayed flowering time in the transgenic plants. We created transgenic N. tabacum overexpressing IlWRKY22, which showed significantly improved resistance to both salt and drought compared to the control plants. Thus, our study revealed a unique dual function of IlWRKY22, an excellent candidate gene for breeding novel Iris cultivars of desirable traits.
{"title":"WRKY22 Transcription Factor from Iris laevigata Regulates Flowering Time and Resistance to Salt and Drought","authors":"Lijuan Fan, Zhaoqian Niu, Gongfa Shi, Ziyi Song, Qianqian Yang, Sheng Zhou, Ling Wang","doi":"10.3390/plants13091191","DOIUrl":"https://doi.org/10.3390/plants13091191","url":null,"abstract":"Iris laevigata Fisch. is an excellent ornamental plant in cold regions due to its unique ornamental ability and strong cold resistance. However, the flowering period of the population is only about 20 days, greatly limiting its potential uses in landscaping and the cutting flower industry. In addition, I. laevigata is often challenged with various abiotic stresses including high salinity and drought in its native habitats. Thus, breeding novel cultivars with delayed flowering time and higher resistance to abiotic stress is of high importance. In this study, we utilized sequencing data from the I. laevigata transcriptome to identify WRKYs and characterized IlWRKY22, a key transcription factor that modulates flowering time and abiotic stress responses. IlWRKY22 is induced by salt and drought stress. We cloned IlWRKY22 and found that it is a Group IIe WRKY localized in the nucleus. Overexpressing IlWRKY22 in Arabidopsis thaliana (L.) Heynh. and Nicotiana tabacum L. resulted in a delayed flowering time in the transgenic plants. We created transgenic N. tabacum overexpressing IlWRKY22, which showed significantly improved resistance to both salt and drought compared to the control plants. Thus, our study revealed a unique dual function of IlWRKY22, an excellent candidate gene for breeding novel Iris cultivars of desirable traits.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"10 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Golubkina, Viktor Kharchenko, A. Moldovan, M. Antoshkina, Olga Ushakova, Agnieszka Sękara, V. Stoleru, O. Murariu, A. Tallarita, Maura Sannino, Gianluca Caruso
The enhancement of the plant seed yield and quality represents the basis of the successful productivity of the deriving crop. The effect of single and combined foliar treatments of lettuce plants with sodium selenate and garlic bulb extract on seed yield and quality and on mature plant biochemical characteristics was investigated using four lettuce cultivars (Bouquet, Picnic, Moskovsky parnikovy and Cavalier). The seed production of plants treated with Se increased by 20–41%, compared to the untreated control plants, while the augmentation was as much as 10–23% and 17–27% under garlic extract and the joint application of Se and garlic, respectively. Garlic extract stimulated the accumulation of Se in lettuce seeds, which rose by 1.21–1.29 times compared to the Se-treated plants. The proline levels in lettuce seeds exceeded the corresponding values recorded in the control ones by 1.32–1.64 times in the case of the Se supply, 1.10–1.47 times upon garlic extract application and 1.09–1.31 times under the combined Se/garlic treatment. All the treatments given to lettuce plants increased the leaf weight by 1.10–1.30 times, compared to the untreated control. The seed Se levels positively correlated with the leaf weight (r = 0.621; p < 0.005), chlorophyll (r = 0.672, p < 0.002) and total antioxidant activity (AOA; r = 0.730, p < 0.001) of plants grown from these seeds. Positive correlations were also recorded between the seed proline content and lettuce plant leaf weight, chlorophyll and AOA (r = 0.868, 0.811 and 0.815, respectively, at p < 0.001). Lettuce yield was positively correlated with the leaf AOA, chlorophyll and ascorbic acid content (r = 0.942, 0.921 and 0.665, respectively, at p < 0.001). The results indicate high prospects of Na2SeO4 and garlic extract application to seed-addressed lettuce plants, to improve seed productivity and quality, as well as lettuce yield and quality.
提高植物种子的产量和质量是作物成功增产的基础。研究人员利用四个莴苣栽培品种(Bouquet、Picnic、Moskovsky parnikovy 和 Cavalier),研究了用硒酸钠和大蒜鳞茎提取物对莴苣植株进行单一和联合叶面处理对种子产量和质量以及成熟植株生化特性的影响。与未施用 Se 的对照植物相比,施用 Se 的植物的种子产量提高了 20-41%,而大蒜提取物以及 Se 和大蒜的联合施用则分别提高了 10-23% 和 17-27%。大蒜提取物刺激了莴苣种子中 Se 的积累,与 Se 处理过的植株相比,莴苣种子中的 Se 增加了 1.21-1.29 倍。在施用 Se 的情况下,莴苣种子中的脯氨酸含量是对照组的 1.32-1.64 倍;在施用大蒜提取物的情况下,莴苣种子中的脯氨酸含量是对照组的 1.10-1.47 倍;在同时施用 Se 和大蒜的情况下,莴苣种子中的脯氨酸含量是对照组的 1.09-1.31 倍。与未处理的对照组相比,所有处理都能使莴苣植株的叶片重量增加 1.10-1.30 倍。种子的 Se 含量与由这些种子培育的植物的叶片重量(r = 0.621;p < 0.005)、叶绿素(r = 0.672,p < 0.002)和总抗氧化活性(AOA;r = 0.730,p < 0.001)呈正相关。种子脯氨酸含量与莴苣植株叶重、叶绿素和 AOA 之间也呈正相关(r = 0.868、0.811 和 0.815,p < 0.001)。生菜产量与叶片 AOA、叶绿素和抗坏血酸含量呈正相关(r = 0.942、0.921 和 0.665,p < 0.001)。这些结果表明,在种子处理的莴苣植株上施用 Na2SeO4 和大蒜提取物可提高种子的产量和质量,以及莴苣的产量和质量。
{"title":"Effect of Selenium and Garlic Extract Treatments of Seed-Addressed Lettuce Plants on Biofortification Level, Seed Productivity and Mature Plant Yield and Quality","authors":"N. Golubkina, Viktor Kharchenko, A. Moldovan, M. Antoshkina, Olga Ushakova, Agnieszka Sękara, V. Stoleru, O. Murariu, A. Tallarita, Maura Sannino, Gianluca Caruso","doi":"10.3390/plants13091190","DOIUrl":"https://doi.org/10.3390/plants13091190","url":null,"abstract":"The enhancement of the plant seed yield and quality represents the basis of the successful productivity of the deriving crop. The effect of single and combined foliar treatments of lettuce plants with sodium selenate and garlic bulb extract on seed yield and quality and on mature plant biochemical characteristics was investigated using four lettuce cultivars (Bouquet, Picnic, Moskovsky parnikovy and Cavalier). The seed production of plants treated with Se increased by 20–41%, compared to the untreated control plants, while the augmentation was as much as 10–23% and 17–27% under garlic extract and the joint application of Se and garlic, respectively. Garlic extract stimulated the accumulation of Se in lettuce seeds, which rose by 1.21–1.29 times compared to the Se-treated plants. The proline levels in lettuce seeds exceeded the corresponding values recorded in the control ones by 1.32–1.64 times in the case of the Se supply, 1.10–1.47 times upon garlic extract application and 1.09–1.31 times under the combined Se/garlic treatment. All the treatments given to lettuce plants increased the leaf weight by 1.10–1.30 times, compared to the untreated control. The seed Se levels positively correlated with the leaf weight (r = 0.621; p < 0.005), chlorophyll (r = 0.672, p < 0.002) and total antioxidant activity (AOA; r = 0.730, p < 0.001) of plants grown from these seeds. Positive correlations were also recorded between the seed proline content and lettuce plant leaf weight, chlorophyll and AOA (r = 0.868, 0.811 and 0.815, respectively, at p < 0.001). Lettuce yield was positively correlated with the leaf AOA, chlorophyll and ascorbic acid content (r = 0.942, 0.921 and 0.665, respectively, at p < 0.001). The results indicate high prospects of Na2SeO4 and garlic extract application to seed-addressed lettuce plants, to improve seed productivity and quality, as well as lettuce yield and quality.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"30 31","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell expansion in a discrete region called the elongation zone drives root elongation. Analyzing time lapse images can quantify the expansion in kinematic terms as if it were fluid flow. We used horizontal microscopes to collect images from which custom software extracted the length of the elongation zone, the peak relative elemental growth rate (REGR) within it, the axial position of the REGR peak, and the root elongation rate. Automation enabled these kinematic traits to be measured in 1575 Arabidopsis seedlings representing 162 recombinant inbred lines (RILs) derived from a cross of Cvi and Ler ecotypes. We mapped ten quantitative trait loci (QTL), affecting the four kinematic traits. Three QTL affected two or more traits in these vertically oriented seedlings. We compared this genetic architecture with that previously determined for gravitropism using the same RIL population. The major QTL peaks for the kinematic traits did not overlap with the gravitropism QTL. Furthermore, no single kinematic trait correlated with quantitative descriptors of the gravitropism response curve across this population. In addition to mapping QTL for growth zone traits, this study showed that the size and shape of the elongation zone may vary widely without affecting the differential growth induced by gravity.
{"title":"QTL for the Kinematic Traits That Define the Arabidopsis Root Elongation Zone and Their Relationship to Gravitropism","authors":"Ashley R. Henry, Nathan D. Miller, E. Spalding","doi":"10.3390/plants13091189","DOIUrl":"https://doi.org/10.3390/plants13091189","url":null,"abstract":"Cell expansion in a discrete region called the elongation zone drives root elongation. Analyzing time lapse images can quantify the expansion in kinematic terms as if it were fluid flow. We used horizontal microscopes to collect images from which custom software extracted the length of the elongation zone, the peak relative elemental growth rate (REGR) within it, the axial position of the REGR peak, and the root elongation rate. Automation enabled these kinematic traits to be measured in 1575 Arabidopsis seedlings representing 162 recombinant inbred lines (RILs) derived from a cross of Cvi and Ler ecotypes. We mapped ten quantitative trait loci (QTL), affecting the four kinematic traits. Three QTL affected two or more traits in these vertically oriented seedlings. We compared this genetic architecture with that previously determined for gravitropism using the same RIL population. The major QTL peaks for the kinematic traits did not overlap with the gravitropism QTL. Furthermore, no single kinematic trait correlated with quantitative descriptors of the gravitropism response curve across this population. In addition to mapping QTL for growth zone traits, this study showed that the size and shape of the elongation zone may vary widely without affecting the differential growth induced by gravity.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"14 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.
{"title":"Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes","authors":"Marina Axentii, G. Codină","doi":"10.3390/plants13091195","DOIUrl":"https://doi.org/10.3390/plants13091195","url":null,"abstract":"Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"18 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Sushko, K. Ivashchenko, A. Komarova, A. Yudina, Victoria Makhantseva, Ekaterina Elsukova, S. Blagodatsky
Climate and land use changes are causing trees line to shift up into mountain meadows. The effect of this vegetation change on the partitioning of soil carbon (C) between the labile particulate organic matter (POM–C) and stable mineral-associated organic matter (MAOM–C) pools is poorly understood. Therefore, we assessed these C pools in a 10 cm topsoil layer along forest–meadow ecotones with different land uses (reserve and pasture) in the Northwest Caucasus of Russia using the size fractionation technique (POM 0.053–2.00 mm, MAOM < 0.053 mm). Potential drivers included the amount of C input from aboveground grass biomass (AGB) and forest litter (litter quantity) and their C/N ratios, aromatic compound content (litter quality), and soil texture. For both land uses, the POM–C pool showed no clear patterns of change along forest–meadow ecotones, while the MAOM–C pool increased steadily from meadow to forest. Regardless of land use, the POM–C/MAOM–C ratio decreased threefold from meadow to forest in line with decreasing grass AGB (R2 = 0.75 and 0.29 for reserve and pasture) and increasing clay content (R2 = 0.63 and 0.36 for reserve and pasture). In pastures, an additional negative relationship was found with respect to plant litter aromaticity (R2 = 0.48). Therefore, shifting the mountain tree line in temperate climates could have a positive effect on conserving soil C stocks by increasing the proportion of stable C pools.
{"title":"Shifting Mountain Tree Line Increases Soil Organic Carbon Stability Regardless of Land Use","authors":"S. Sushko, K. Ivashchenko, A. Komarova, A. Yudina, Victoria Makhantseva, Ekaterina Elsukova, S. Blagodatsky","doi":"10.3390/plants13091193","DOIUrl":"https://doi.org/10.3390/plants13091193","url":null,"abstract":"Climate and land use changes are causing trees line to shift up into mountain meadows. The effect of this vegetation change on the partitioning of soil carbon (C) between the labile particulate organic matter (POM–C) and stable mineral-associated organic matter (MAOM–C) pools is poorly understood. Therefore, we assessed these C pools in a 10 cm topsoil layer along forest–meadow ecotones with different land uses (reserve and pasture) in the Northwest Caucasus of Russia using the size fractionation technique (POM 0.053–2.00 mm, MAOM < 0.053 mm). Potential drivers included the amount of C input from aboveground grass biomass (AGB) and forest litter (litter quantity) and their C/N ratios, aromatic compound content (litter quality), and soil texture. For both land uses, the POM–C pool showed no clear patterns of change along forest–meadow ecotones, while the MAOM–C pool increased steadily from meadow to forest. Regardless of land use, the POM–C/MAOM–C ratio decreased threefold from meadow to forest in line with decreasing grass AGB (R2 = 0.75 and 0.29 for reserve and pasture) and increasing clay content (R2 = 0.63 and 0.36 for reserve and pasture). In pastures, an additional negative relationship was found with respect to plant litter aromaticity (R2 = 0.48). Therefore, shifting the mountain tree line in temperate climates could have a positive effect on conserving soil C stocks by increasing the proportion of stable C pools.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"6 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140654517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Henrique Bernardino Nascimento, L. R. B. D. Andrade, Saulo Alves Santos de Oliveira, Eder Jorge de Oliveira
Despite fungal diseases affecting the aerial parts of cassava (Manihot esculenta Crantz) and causing significant yield losses, there is a lack of comprehensive studies assessing resistance in the species’ germplasm. This study aimed to evaluate the phenotypic diversity for resistance to anthracnose disease (CAD), blight leaf spot (BliLS), brown leaf spot (BLS), and white leaf spot (WLS) in cassava germplasm and to identify genotypes suitable for breeding purposes. A total of 837 genotypes were evaluated under field conditions across two production cycles (2021 and 2022). Artificial inoculations were carried out in the field, and data on yield and disease severity were collected using a standardized rating scale. The top 25 cassava genotypes were selected based on a selection index for disease resistance and agronomic traits. High environmental variability resulted in low heritabilities (h2) for CAD, WLS, and BLS (h2 = 0.42, 0.34, 0.29, respectively) and moderate heritability for BliLS (h2 = 0.51). While the range of data for disease resistance was narrow, it was considerably wider for yield traits. Cluster analysis revealed that increased yield traits and disease severity were associated with higher scores of the first and second discriminant functions, respectively. Thus, most clusters comprised genotypes with hybrid characteristics for both traits. Overall, there was a strong correlation among aerial diseases, particularly between BLS and BliLS (r = 0.96), while the correlation between CAD and other diseases ranged from r = 0.53 to 0.58. Yield traits showed no significant correlations with disease resistance. Although the mean selection differential for disease resistance was modest (between −2.31% and −3.61%), selection based on yield traits showed promising results, particularly for fresh root yield (82%), dry root yield (39%), shoot yield (49%), and plant vigor (26%). This study contributes to enhancing genetic gains for resistance to major aerial part diseases and improving yield traits in cassava breeding programs.
{"title":"Phenotypic Variability in Resistance to Anthracnose, White, Brown, and Blight Leaf Spot in Cassava Germplasm","authors":"José Henrique Bernardino Nascimento, L. R. B. D. Andrade, Saulo Alves Santos de Oliveira, Eder Jorge de Oliveira","doi":"10.3390/plants13091187","DOIUrl":"https://doi.org/10.3390/plants13091187","url":null,"abstract":"Despite fungal diseases affecting the aerial parts of cassava (Manihot esculenta Crantz) and causing significant yield losses, there is a lack of comprehensive studies assessing resistance in the species’ germplasm. This study aimed to evaluate the phenotypic diversity for resistance to anthracnose disease (CAD), blight leaf spot (BliLS), brown leaf spot (BLS), and white leaf spot (WLS) in cassava germplasm and to identify genotypes suitable for breeding purposes. A total of 837 genotypes were evaluated under field conditions across two production cycles (2021 and 2022). Artificial inoculations were carried out in the field, and data on yield and disease severity were collected using a standardized rating scale. The top 25 cassava genotypes were selected based on a selection index for disease resistance and agronomic traits. High environmental variability resulted in low heritabilities (h2) for CAD, WLS, and BLS (h2 = 0.42, 0.34, 0.29, respectively) and moderate heritability for BliLS (h2 = 0.51). While the range of data for disease resistance was narrow, it was considerably wider for yield traits. Cluster analysis revealed that increased yield traits and disease severity were associated with higher scores of the first and second discriminant functions, respectively. Thus, most clusters comprised genotypes with hybrid characteristics for both traits. Overall, there was a strong correlation among aerial diseases, particularly between BLS and BliLS (r = 0.96), while the correlation between CAD and other diseases ranged from r = 0.53 to 0.58. Yield traits showed no significant correlations with disease resistance. Although the mean selection differential for disease resistance was modest (between −2.31% and −3.61%), selection based on yield traits showed promising results, particularly for fresh root yield (82%), dry root yield (39%), shoot yield (49%), and plant vigor (26%). This study contributes to enhancing genetic gains for resistance to major aerial part diseases and improving yield traits in cassava breeding programs.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"11 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil properties can affect plant population dynamics and the coexistence of native and invasive plants, thus potentially affecting community structure and invasion trends. However, the different impacts of soil physicochemical properties on species diversity and structure in native and invaded plant communities remain unclear. In this study, we established a total of 30 Alternanthera philoxeroides-invaded plots and 30 control plots in an area at the geographical boundary between North and South China. We compared the differences in species composition between the invaded and native plant communities, and we then used the methods of regression analysis, redundancy analysis (RDA), and canonical correspondence analysis (CCA) to examine the impacts of soil physicochemical properties on four α-diversity indices and the species distribution of these two types of communities. We found that A. philoxeroides invasion increased the difference between the importance values of dominant plant species, and the invasion coverage had a negative relationship with the soil-available potassium (R2 = 0.135; p = 0.046) and Patrick richness index (R2 = 0.322; p < 0.001). In the native communities, the species diversity was determined with soil chemical properties, the Patrick richness index, the Simpson dominance index, and the Shannon–Wiener diversity index, which all decreased with the increase in soil pH value, available potassium, organic matter, and ammonium nitrogen. However, in the invaded communities, the species diversity was determined by soil physical properties; the Pielou evenness index increased with increasing non-capillary porosity but decreased with increasing capillary porosity. The determinants of species distribution in the native communities were soil porosity and nitrate nitrogen, while the determinants in the invaded communities were soil bulk density and available potassium. In addition, compared with the native communities, the clustering degree of species distribution in the invaded communities intensified. Our study indicates that species diversity and distribution have significant heterogeneous responses to soil physicochemical properties between A. philoxeroides-invaded and native plant communities. Thus, we need to intensify the monitoring of soil properties in invaded habitats and conduct biotic replacement strategies based on the heterogeneous responses of native and invaded communities to effectively prevent the biotic homogenization that is caused by plant invasions under environmental changes.
土壤特性会影响植物种群动态以及本地植物和入侵植物的共存,从而可能影响群落结构和入侵趋势。然而,土壤理化性质对本地和入侵植物群落物种多样性和结构的不同影响仍不清楚。在本研究中,我们在华北和华南的地理分界线地区共建立了30个Alternanthera philoxeroides入侵小区和30个对照小区。我们比较了入侵植物群落和本地植物群落在物种组成上的差异,然后采用回归分析、冗余分析和典型对应分析等方法研究了土壤理化性质对两类群落的四个α多样性指数和物种分布的影响。我们发现,A. philoxeroides入侵增加了优势植物物种重要性值之间的差异,入侵覆盖率与土壤可利用钾(R2 = 0.135; p = 0.046)和Patrick丰富度指数(R2 = 0.322; p < 0.001)呈负相关。在原生群落中,物种多样性是由土壤化学特性、帕特里克丰富度指数、辛普森优势指数和香农-维纳多样性指数决定的,它们都随着土壤 pH 值、可利用钾、有机质和铵态氮的增加而减少。然而,在受入侵群落中,物种多样性是由土壤物理特性决定的;皮鲁均匀度指数随着非毛管孔度的增加而增加,但随着毛管孔度的增加而减少。原生群落物种分布的决定因素是土壤孔隙度和硝态氮,而入侵群落的决定因素是土壤容重和可利用钾。此外,与原生群落相比,入侵群落中物种分布的集群程度加剧。我们的研究表明,在菲洛西芦菊入侵群落和本地植物群落之间,物种多样性和分布对土壤理化性质具有显著的异质性响应。因此,我们需要加强对入侵栖息地土壤特性的监测,并根据原生群落和入侵群落的异质性响应实施生物替代策略,以有效防止环境变化下植物入侵造成的生物同质化。
{"title":"Impacts of Soil Properties on Species Diversity and Structure in Alternanthera philoxeroides-Invaded and Native Plant Communities","authors":"Hao Wu, Yuxin Liu, Tiantian Zhang, Mingxia Xu, Benqiang Rao","doi":"10.3390/plants13091196","DOIUrl":"https://doi.org/10.3390/plants13091196","url":null,"abstract":"Soil properties can affect plant population dynamics and the coexistence of native and invasive plants, thus potentially affecting community structure and invasion trends. However, the different impacts of soil physicochemical properties on species diversity and structure in native and invaded plant communities remain unclear. In this study, we established a total of 30 Alternanthera philoxeroides-invaded plots and 30 control plots in an area at the geographical boundary between North and South China. We compared the differences in species composition between the invaded and native plant communities, and we then used the methods of regression analysis, redundancy analysis (RDA), and canonical correspondence analysis (CCA) to examine the impacts of soil physicochemical properties on four α-diversity indices and the species distribution of these two types of communities. We found that A. philoxeroides invasion increased the difference between the importance values of dominant plant species, and the invasion coverage had a negative relationship with the soil-available potassium (R2 = 0.135; p = 0.046) and Patrick richness index (R2 = 0.322; p < 0.001). In the native communities, the species diversity was determined with soil chemical properties, the Patrick richness index, the Simpson dominance index, and the Shannon–Wiener diversity index, which all decreased with the increase in soil pH value, available potassium, organic matter, and ammonium nitrogen. However, in the invaded communities, the species diversity was determined by soil physical properties; the Pielou evenness index increased with increasing non-capillary porosity but decreased with increasing capillary porosity. The determinants of species distribution in the native communities were soil porosity and nitrate nitrogen, while the determinants in the invaded communities were soil bulk density and available potassium. In addition, compared with the native communities, the clustering degree of species distribution in the invaded communities intensified. Our study indicates that species diversity and distribution have significant heterogeneous responses to soil physicochemical properties between A. philoxeroides-invaded and native plant communities. Thus, we need to intensify the monitoring of soil properties in invaded habitats and conduct biotic replacement strategies based on the heterogeneous responses of native and invaded communities to effectively prevent the biotic homogenization that is caused by plant invasions under environmental changes.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"89 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140654991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tree peony, a novel woody oil crop extensively cultivated in China, necessitates further investigation into artificial pollination technology to enhance seed yield. In this study, we conducted artificial pollination experiments with 6-year-old Paeonia ostii ‘Feng Dan’ seedings for suitable pollen sources, pollen concentration, pollination timing, and pollination frequency. By evaluating seed yields, active ingredients, and oil quality, we derived the following significant conclusions. Firstly, compared to natural pollination, artificial pollination could significantly increase the fruit diameter by 13.94–27.58%, seed yields by 35.17–58.99%, and oil content by 6.45–7.52% in tree peonies. In active ingredients, seeds produced by pollen from Hantai County significantly enhanced starch content (by 48.64%), total phenols (by 41.18%) and antioxidant capacity (by 54.39%). In oil quality, seeds produced by pollen from Heyang County exhibited the highest α-linolenic acid and total fatty acid content with enhancements of 1.68%, 7.41%, and 8.48%. Secondly, hand pollination with pure pollen significantly increased seed yield by 58.99%, total phenol content by 40.97%, antioxidant capacity by 54.39%, and oil content by 1.53% compared to natural pollination. Thirdly, pollination at 2/3 bloom range significantly increased seed number by 63.08% and yield by 45.61% compared to natural pollination. Finally, the effect of one, two, and three pollination events had no difference in seed yield. So, to summarize, applying a 100% concentration of allochthonous pollen once is recommended when the bloom range is more than two thirds.
{"title":"A Set of Artificial Pollination Technical Measures: Improved Seed Yields and Active Ingredients of Seeds in Oil Tree Peonies","authors":"Xihui Sun, Qingyu Zhang, Huiwen Zhang, Lixin Niu, Maifang Zhang, Yanlong Zhang","doi":"10.3390/plants13091194","DOIUrl":"https://doi.org/10.3390/plants13091194","url":null,"abstract":"The tree peony, a novel woody oil crop extensively cultivated in China, necessitates further investigation into artificial pollination technology to enhance seed yield. In this study, we conducted artificial pollination experiments with 6-year-old Paeonia ostii ‘Feng Dan’ seedings for suitable pollen sources, pollen concentration, pollination timing, and pollination frequency. By evaluating seed yields, active ingredients, and oil quality, we derived the following significant conclusions. Firstly, compared to natural pollination, artificial pollination could significantly increase the fruit diameter by 13.94–27.58%, seed yields by 35.17–58.99%, and oil content by 6.45–7.52% in tree peonies. In active ingredients, seeds produced by pollen from Hantai County significantly enhanced starch content (by 48.64%), total phenols (by 41.18%) and antioxidant capacity (by 54.39%). In oil quality, seeds produced by pollen from Heyang County exhibited the highest α-linolenic acid and total fatty acid content with enhancements of 1.68%, 7.41%, and 8.48%. Secondly, hand pollination with pure pollen significantly increased seed yield by 58.99%, total phenol content by 40.97%, antioxidant capacity by 54.39%, and oil content by 1.53% compared to natural pollination. Thirdly, pollination at 2/3 bloom range significantly increased seed number by 63.08% and yield by 45.61% compared to natural pollination. Finally, the effect of one, two, and three pollination events had no difference in seed yield. So, to summarize, applying a 100% concentration of allochthonous pollen once is recommended when the bloom range is more than two thirds.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"48 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}