Hyeon Jin Jeong, B. Nam, Se Jong Jeong, Gisuk Lee, Sang-Gyu Kim, Jae Geun Kim
This study explores how elevated carbon dioxide (CO2) levels affects the growth and defense mechanisms of plants. We focused on Aristolochia contorta Bunge (Aristolochiaceae), a wild plant that exhibits growth reduction under elevated CO2 in the previous study. The plant has Sericinus montela Gray (Papilionidae) as a specialist herbivore. By analyzing primary metabolites, understanding both the growth and defense response of plants to herbivory under elevated CO2 conditions is possible. The experiment was conducted across four groups, combining two CO2 concentration conditions (ambient CO2 and elevated CO2) with two herbivory conditions (herbivory treated and untreated). Although many plants exhibit increased growth under elevated CO2 levels, A. contorta exhibited reduced growth with lower height, dry weight, and total leaf area. Under herbivory, A. contorta triggered both localized and systemic responses. More primary metabolites exhibited significant differences due to herbivory treatment in systemic tissue than local leaves that herbivory was directly treated. Herbivory under elevated CO2 level triggered more significant responses in primary metabolites (17 metabolites) than herbivory under ambient CO2 conditions (five metabolites). Several defense-related metabolites exhibited higher concentrations in the roots and lower concentrations in the leaves in response to the herbivory treatment in the elevated CO2 group. This suggests a potential intensification of defensive responses in the underground parts of the plant under elevated CO2 levels. Our findings underscore the importance of considering both abiotic and biotic factors in understanding plant responses to environmental changes. The adaptive strategies of A. contorta suggest a complex response mechanism to elevated CO2 and herbivory pressures.
本研究探讨了升高的二氧化碳(CO2)水平如何影响植物的生长和防御机制。我们重点研究了马兜铃(Aristolochia contorta Bunge)(马兜铃科),这是一种野生植物,在之前的研究中,它在二氧化碳升高的条件下表现出生长减弱。该植物的专性食草动物是 Sericinus montela Gray(马兜铃科)。通过分析初级代谢物,可以了解植物在二氧化碳升高条件下对食草动物的生长和防御反应。实验分四组进行,结合了两种二氧化碳浓度条件(环境二氧化碳和高浓度二氧化碳)和两种食草条件(食草处理和未处理)。虽然许多植物在二氧化碳浓度升高的条件下生长速度加快,但轮叶黑麦草(A. contorta)的生长速度减慢,高度、干重和总叶面积都有所降低。在草食作用下,轮叶黑麦草会引发局部和系统反应。与直接受到食草动物处理的局部叶片相比,系统组织中更多的初级代谢物因食草动物处理而表现出显著差异。与环境 CO2 条件下的草食作用(5 种代谢物)相比,高浓度 CO2 条件下的草食作用在初级代谢物(17 种代谢物)中引发了更多的显著反应。在高浓度 CO2 组中,与防御相关的几种代谢物在根部的浓度较高,而在叶片中的浓度较低。这表明在二氧化碳水平升高的情况下,植物地下部分的防御反应可能会加强。我们的研究结果强调了在理解植物对环境变化的反应时同时考虑非生物因素和生物因素的重要性。等叶草属植物的适应策略表明其对二氧化碳升高和食草动物压力的反应机制非常复杂。
{"title":"Primary Metabolic Response of Aristolochia contorta to Simulated Specialist Herbivory under Elevated CO2 Conditions","authors":"Hyeon Jin Jeong, B. Nam, Se Jong Jeong, Gisuk Lee, Sang-Gyu Kim, Jae Geun Kim","doi":"10.3390/plants13111456","DOIUrl":"https://doi.org/10.3390/plants13111456","url":null,"abstract":"This study explores how elevated carbon dioxide (CO2) levels affects the growth and defense mechanisms of plants. We focused on Aristolochia contorta Bunge (Aristolochiaceae), a wild plant that exhibits growth reduction under elevated CO2 in the previous study. The plant has Sericinus montela Gray (Papilionidae) as a specialist herbivore. By analyzing primary metabolites, understanding both the growth and defense response of plants to herbivory under elevated CO2 conditions is possible. The experiment was conducted across four groups, combining two CO2 concentration conditions (ambient CO2 and elevated CO2) with two herbivory conditions (herbivory treated and untreated). Although many plants exhibit increased growth under elevated CO2 levels, A. contorta exhibited reduced growth with lower height, dry weight, and total leaf area. Under herbivory, A. contorta triggered both localized and systemic responses. More primary metabolites exhibited significant differences due to herbivory treatment in systemic tissue than local leaves that herbivory was directly treated. Herbivory under elevated CO2 level triggered more significant responses in primary metabolites (17 metabolites) than herbivory under ambient CO2 conditions (five metabolites). Several defense-related metabolites exhibited higher concentrations in the roots and lower concentrations in the leaves in response to the herbivory treatment in the elevated CO2 group. This suggests a potential intensification of defensive responses in the underground parts of the plant under elevated CO2 levels. Our findings underscore the importance of considering both abiotic and biotic factors in understanding plant responses to environmental changes. The adaptive strategies of A. contorta suggest a complex response mechanism to elevated CO2 and herbivory pressures.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"2 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid restoration and renewal of the moso bamboo logging zone after strip logging has emerged as a key research area, particularly regarding whether nutrient accumulation and utilization in reserve zones can aid in the restoration and regeneration of the logging zone. In this study, a dynamic 15N isotope tracking experiment was conducted by injecting labeled urea fertilizer into bamboo culms. Logging zones and reserve zones of 6 m, 8 m, and 10 m widths were established. The conventional selective logging treatment served as a control (Con). Measurements were taken in May and October to assess the differences in nitrogen accumulation ability, utilization rates, and nutrient content across different organs in bamboo forests at different growth stages and under different treatments. Principal component analysis was conducted to evaluate and determine the importance of each indicator and strip logging treatment comprehensively. The results showed that various bamboo organs exhibited higher nitrogen accumulation and utilization rates during the peak growth period compared to the late growth period. Leaves had the highest nitrogen accumulation and utilization rates than the other organs. The average C content in various bamboo organs under different logging treatments exhibited subtle differences, irrespective of variation in logging width treatments. Bamboo culm exhibited the highest carbon accumulation. The C content in various bamboo organs was higher during the peak growth period than in the late growth period. The nitrogen content peaked in the leaves during the two growth stages and was significantly higher compared to the other organs. Most bamboo organs in the logging zones exhibited relatively higher nitrogen content than in the reserve zone and Con group. The P content was highest in bamboo leaves compared with other organs across the different strip logging treatments. Principal component analysis revealed relatively high absolute values of the coefficients for the C content, bamboo stump C content, and culm Ndff%. Log8 and Res10 zones had the highest comprehensive evaluation scores, indicating that Log8 and Res10 had the best effect on the promotion of nitrogen utilization and nutrient accumulation in various organs of moso bamboo.
带状采伐后毛竹伐区的快速恢复和更新已成为一个关键的研究领域,特别是关于后备区的养分积累和利用是否有助于伐区的恢复和再生。本研究通过向竹秆注入标记尿素肥料,进行了 15N 同位素动态追踪实验。伐区和保留区的宽度分别为 6 米、8 米和 10 米。传统的选择性砍伐处理作为对照(Con)。在 5 月和 10 月进行测量,以评估不同生长阶段和不同处理下竹林不同器官的氮积累能力、利用率和养分含量的差异。通过主成分分析,全面评估和确定了各项指标和带状采伐处理的重要性。结果表明,与生长后期相比,竹林各器官在生长高峰期表现出更高的氮积累和利用率。与其他器官相比,叶片的氮积累和利用率最高。在不同的采伐处理下,竹子各器官的平均碳含量表现出微妙的差异,与采伐宽度的变化无关。竹秆的碳积累量最高。竹子各器官的碳含量在生长高峰期高于生长后期。叶片中的氮含量在这两个生长阶段达到峰值,并且明显高于其他器官。采伐区大部分竹子器官的含氮量相对高于保留区和 Con 组。在不同的带状采伐处理中,竹叶中的磷含量最高。主成分分析表明,C 含量、竹桩 C 含量和秆 Ndff% 的系数绝对值相对较高。Log8区和Res10区的综合评价得分最高,表明Log8区和Res10区对促进毛竹各器官氮素利用和养分积累的效果最好。
{"title":"Variation in Nitrogen Utilization and Nutrient Composition across Various Organs under Different Strip Logging Management Models in Moso Bamboo (Phyllostachys edulis) Forest","authors":"Bingjun Li, Linzheng Xu, Wenchen Chen, Yanmei Pan, Tianyou He, Liguang Chen, J. Rong, Yushan Zheng","doi":"10.3390/plants13111448","DOIUrl":"https://doi.org/10.3390/plants13111448","url":null,"abstract":"The rapid restoration and renewal of the moso bamboo logging zone after strip logging has emerged as a key research area, particularly regarding whether nutrient accumulation and utilization in reserve zones can aid in the restoration and regeneration of the logging zone. In this study, a dynamic 15N isotope tracking experiment was conducted by injecting labeled urea fertilizer into bamboo culms. Logging zones and reserve zones of 6 m, 8 m, and 10 m widths were established. The conventional selective logging treatment served as a control (Con). Measurements were taken in May and October to assess the differences in nitrogen accumulation ability, utilization rates, and nutrient content across different organs in bamboo forests at different growth stages and under different treatments. Principal component analysis was conducted to evaluate and determine the importance of each indicator and strip logging treatment comprehensively. The results showed that various bamboo organs exhibited higher nitrogen accumulation and utilization rates during the peak growth period compared to the late growth period. Leaves had the highest nitrogen accumulation and utilization rates than the other organs. The average C content in various bamboo organs under different logging treatments exhibited subtle differences, irrespective of variation in logging width treatments. Bamboo culm exhibited the highest carbon accumulation. The C content in various bamboo organs was higher during the peak growth period than in the late growth period. The nitrogen content peaked in the leaves during the two growth stages and was significantly higher compared to the other organs. Most bamboo organs in the logging zones exhibited relatively higher nitrogen content than in the reserve zone and Con group. The P content was highest in bamboo leaves compared with other organs across the different strip logging treatments. Principal component analysis revealed relatively high absolute values of the coefficients for the C content, bamboo stump C content, and culm Ndff%. Log8 and Res10 zones had the highest comprehensive evaluation scores, indicating that Log8 and Res10 had the best effect on the promotion of nitrogen utilization and nutrient accumulation in various organs of moso bamboo.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"38 41","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dezső Kovács, Katalin Horotán, László Orlóci, Marianna Makádi, István Mosonyi, Magdolna Sütöri-Diószegi, Szilvia Kisvarga
Biostimulants and other plant growth promoters can provide an effective solution to the challenge of urbanisation and climate change. Viburnum opulus ‘Roseum’ is a globally popular deciduous shrub species that can be made more resistant to urban influences by using natural growth-promoting substances. In our study, we investigated the effects of growth promoters Kelpak®, Bistep and Yeald Plus on the species, both histologically and physiologically (proline stress hormone measurement). Our measurements were complemented using the analysis of rhizosphere alkaline phosphatase, β-glucosidase and β-glucosaminidase enzymes, to obtain a more complete picture of the combined effect of biostimulants and species. We found that the Bistep biostimulant had an outstanding effect on the leaf tissue culture results of the variety. The transpiration and evapotranspiration findings also confirmed the efficacy of biostimulants. In the case of POD activity and rhizosphere enzyme measurements, Bistep and Yeald Plus obtained statistically higher values than the control group. Kelpak produced better results than the control group in several measurements (alkaline phosphatase levels; evapotranspiration results), but in other cases it resulted in lower values than the control treatment. The use of Bistep and Yeald Plus can greatly assist growers in the cultivation of V. opulus ‘Roseum’ in an urban environment.
生物刺激剂和其他植物生长促进剂可以为应对城市化和气候变化的挑战提供有效的解决方案。紫云英'Roseum'是一种全球流行的落叶灌木品种,可以通过使用天然的生长促进物质来增强其对城市影响的抵抗力。在我们的研究中,我们从组织学和生理学(脯氨酸应激激素测量)两方面研究了生长促进剂 Kelpak®、Bistep 和 Yeald Plus 对该物种的影响。我们还通过分析根瘤碱性磷酸酶、β-葡萄糖苷酶和β-葡萄糖苷酶对测量结果进行了补充,以便更全面地了解生物刺激剂和物种的综合影响。我们发现,Bistep 生物刺激剂对该品种的叶组织培养结果有突出影响。蒸腾作用和蒸散作用的研究结果也证实了生物刺激剂的功效。在 POD 活性和根瘤菌酶测定方面,Bistep 和 Yeald Plus 的统计值高于对照组。Kelpak 在几项测量(碱性磷酸酶水平、蒸腾作用结果)中的结果优于对照组,但在其他情况下,其结果低于对照组。使用 Bistep 和 Yeald Plus 可极大地帮助种植者在城市环境中栽培蔷薇。
{"title":"Histological and Physiological Study of the Effects of Biostimulants and Plant Growth Stimulants in Viburnum opulus ‘Roseum’","authors":"Dezső Kovács, Katalin Horotán, László Orlóci, Marianna Makádi, István Mosonyi, Magdolna Sütöri-Diószegi, Szilvia Kisvarga","doi":"10.3390/plants13111446","DOIUrl":"https://doi.org/10.3390/plants13111446","url":null,"abstract":"Biostimulants and other plant growth promoters can provide an effective solution to the challenge of urbanisation and climate change. Viburnum opulus ‘Roseum’ is a globally popular deciduous shrub species that can be made more resistant to urban influences by using natural growth-promoting substances. In our study, we investigated the effects of growth promoters Kelpak®, Bistep and Yeald Plus on the species, both histologically and physiologically (proline stress hormone measurement). Our measurements were complemented using the analysis of rhizosphere alkaline phosphatase, β-glucosidase and β-glucosaminidase enzymes, to obtain a more complete picture of the combined effect of biostimulants and species. We found that the Bistep biostimulant had an outstanding effect on the leaf tissue culture results of the variety. The transpiration and evapotranspiration findings also confirmed the efficacy of biostimulants. In the case of POD activity and rhizosphere enzyme measurements, Bistep and Yeald Plus obtained statistically higher values than the control group. Kelpak produced better results than the control group in several measurements (alkaline phosphatase levels; evapotranspiration results), but in other cases it resulted in lower values than the control treatment. The use of Bistep and Yeald Plus can greatly assist growers in the cultivation of V. opulus ‘Roseum’ in an urban environment.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"4 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isabella Peres de Oliveira, Camila Schaaf, Nathalia de Setta
Drought severely impacts plant development and reproduction, reducing biomass and seed number, and altering flowering patterns. Drought-tolerant Setaria italica and Setaria viridis species have emerged as prominent model species for investigating water deficit responses in the Poaceae family, the most important source of food and biofuel biomass worldwide. In higher plants, abscisic acid (ABA) regulates environmental stress responses, and its signaling entails interactions between PYR/PYL/RCAR receptors and clade A PP2C phosphatases, which in turn modulate SnRK2 kinases via reversible phosphorylation to activate ABA-responsive genes. To compare the diversity of PYR/PYL/RCAR, PP2C, and SnRK2 between S. italica and S. viridis, and their involvement in water deficit responses, we examined gene and regulatory region structures, investigated orthology relationships, and analyzed their gene expression patterns under water stress via a meta-analysis approach. Results showed that coding and regulatory sequences of PYR/PYL/RCARs, PP2Cs, and SnRK2s are highly conserved between Setaria spp., allowing us to propose pairs of orthologous genes for all the loci identified. Phylogenetic relationships indicate which clades of Setaria spp. sequences are homologous to the functionally well-characterized Arabidopsis thaliana PYR/PYL/RCAR, PP2C, and SnRK2 genes. Gene expression analysis showed a general downregulation of PYL genes, contrasting with upregulation of PP2C genes, and variable expression modulation of SnRK2 genes under drought stress. This complex network implies that ABA core signaling is a diverse and multifaceted process. Through our analysis, we identified promising candidate genes for further functional characterization, with great potential as targets for drought resistance studies, ultimately leading to advances in Poaceae biology and crop-breeding strategies.
{"title":"Drought Responses in Poaceae: Exploring the Core Components of the ABA Signaling Pathway in Setaria italica and Setaria viridis","authors":"Isabella Peres de Oliveira, Camila Schaaf, Nathalia de Setta","doi":"10.3390/plants13111451","DOIUrl":"https://doi.org/10.3390/plants13111451","url":null,"abstract":"Drought severely impacts plant development and reproduction, reducing biomass and seed number, and altering flowering patterns. Drought-tolerant Setaria italica and Setaria viridis species have emerged as prominent model species for investigating water deficit responses in the Poaceae family, the most important source of food and biofuel biomass worldwide. In higher plants, abscisic acid (ABA) regulates environmental stress responses, and its signaling entails interactions between PYR/PYL/RCAR receptors and clade A PP2C phosphatases, which in turn modulate SnRK2 kinases via reversible phosphorylation to activate ABA-responsive genes. To compare the diversity of PYR/PYL/RCAR, PP2C, and SnRK2 between S. italica and S. viridis, and their involvement in water deficit responses, we examined gene and regulatory region structures, investigated orthology relationships, and analyzed their gene expression patterns under water stress via a meta-analysis approach. Results showed that coding and regulatory sequences of PYR/PYL/RCARs, PP2Cs, and SnRK2s are highly conserved between Setaria spp., allowing us to propose pairs of orthologous genes for all the loci identified. Phylogenetic relationships indicate which clades of Setaria spp. sequences are homologous to the functionally well-characterized Arabidopsis thaliana PYR/PYL/RCAR, PP2C, and SnRK2 genes. Gene expression analysis showed a general downregulation of PYL genes, contrasting with upregulation of PP2C genes, and variable expression modulation of SnRK2 genes under drought stress. This complex network implies that ABA core signaling is a diverse and multifaceted process. Through our analysis, we identified promising candidate genes for further functional characterization, with great potential as targets for drought resistance studies, ultimately leading to advances in Poaceae biology and crop-breeding strategies.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inés Casimiro-Soriguer, David Aguilar-Benitez, Natalia Gutiérrez, Ana M. Torres
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization.
{"title":"Transcriptome Analysis of Stigmas of Vicia faba L. Flowers","authors":"Inés Casimiro-Soriguer, David Aguilar-Benitez, Natalia Gutiérrez, Ana M. Torres","doi":"10.3390/plants13111443","DOIUrl":"https://doi.org/10.3390/plants13111443","url":null,"abstract":"Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"54 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141102906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plumbago indica L. contains a valuable bioactive compound called plumbagin. Elicited regenerated shoots grown in vitro could be another source of high-yielding plumbagin. The purpose of this investigation was to examine the effects of elicitor type and concentration, as well as elicitation period, on plumbagin content in in vitro-regenerated shoots of P. indica. Nodal explants were cultured on Murashige and Skoog (MS) medium containing 1 mg/L benzyladenine (BA) in combination with 0–150 mg/L yeast extract or 50–150 µM salicylic acid for four weeks. Plumbagin levels of 3.88 ± 0.38% and 3.81 ± 0.37% w/w g dry extract were achieved from the 50 and 100 mg/L yeast extract-elicited shoots, which were higher than the value obtained for the control. However, the addition of salicylic acid did not increase the plumbagin content. In the elicitation period experiment, nodal explants were cultured on MS medium supplemented with 1 mg/L BA and 50 mg/L yeast extract for durations of three, four and five weeks. The 4-week yeast extract-elicited shoot had a maximum plumbagin content of 3.22 ± 0.12% w/w g dry extract, greater than that of the control. In summary, the plumbagin content of the in vitro P. indica shoots was enhanced by 4-week elicitation using 50 mg/L yeast extract.
Plumbago indica L. 含有一种名为 plumbagin 的珍贵生物活性化合物。体外培植的诱导再生芽可能是另一种高产苦参碱的来源。本研究的目的是考察诱导剂的类型和浓度以及诱导期对籼稻离体再生芽中铅锤甙含量的影响。在含有 1 mg/L 苄基腺嘌呤(BA)和 0-150 mg/L 酵母提取物或 50-150 µM 水杨酸的 Murashige and Skoog(MS)培养基上培养节点外植体四周。50 和 100 毫克/升酵母提取物诱导的芽中,铅锤甙含量分别为 3.88 ± 0.38% 和 3.81 ± 0.37% w/w g 干提取物,高于对照组。然而,水杨酸的添加并没有增加垂盆草苷的含量。在诱导期实验中,将节间外植体放在添加了 1 mg/L BA 和 50 mg/L 酵母提取物的 MS 培养基上培养三周、四周和五周。酵母提取物诱导的 4 周芽的铅垂素最高含量为 3.22 ± 0.12% w/w g 干提取物,高于对照组。总之,使用 50 毫克/升酵母提取物诱导 4 周后,离体籼稻嫩芽的垂体素含量得到了提高。
{"title":"Enhancement of Plumbagin Production through Elicitation in In Vitro-Regenerated Shoots of Plumbago indica L.","authors":"Yaowapha Jirakiattikul, Srisopa Ruangnoo, Kanokwan Sangmukdee, Kornkanok Chamchusri, Panumart Rithichai","doi":"10.3390/plants13111450","DOIUrl":"https://doi.org/10.3390/plants13111450","url":null,"abstract":"Plumbago indica L. contains a valuable bioactive compound called plumbagin. Elicited regenerated shoots grown in vitro could be another source of high-yielding plumbagin. The purpose of this investigation was to examine the effects of elicitor type and concentration, as well as elicitation period, on plumbagin content in in vitro-regenerated shoots of P. indica. Nodal explants were cultured on Murashige and Skoog (MS) medium containing 1 mg/L benzyladenine (BA) in combination with 0–150 mg/L yeast extract or 50–150 µM salicylic acid for four weeks. Plumbagin levels of 3.88 ± 0.38% and 3.81 ± 0.37% w/w g dry extract were achieved from the 50 and 100 mg/L yeast extract-elicited shoots, which were higher than the value obtained for the control. However, the addition of salicylic acid did not increase the plumbagin content. In the elicitation period experiment, nodal explants were cultured on MS medium supplemented with 1 mg/L BA and 50 mg/L yeast extract for durations of three, four and five weeks. The 4-week yeast extract-elicited shoot had a maximum plumbagin content of 3.22 ± 0.12% w/w g dry extract, greater than that of the control. In summary, the plumbagin content of the in vitro P. indica shoots was enhanced by 4-week elicitation using 50 mg/L yeast extract.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"27 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongtao Gao, Guanji Wu, Feifei Wu, Xunjun Zhou, Yonggang Zhou, Keheng Xu, Yaxin Li, Wenping Zhang, Kuan Zhao, Yan Jing, Chen Feng, Nan Wang, Haiyan Li
Owing to the rising demand for vegetable soybean products, there is an increasing need for high-yield soybean varieties. However, the complex correlation patterns among quantitative traits with genetic architecture pose a challenge for improving vegetable soybean through breeding. Herein, a genome-wide association study (GWAS) was applied to 6 yield-related traits in 188 vegetable soybean accessions. Using a BLINK model, a total of 116 single nucleotide polymorphisms (SNPs) were identified for plant height, pod length, pod number, pod thickness, pod width, and fresh pod weight. Furthermore, a total of 220 genes were found in the 200 kb upstream and downstream regions of significant SNPs, including 11 genes encoding functional proteins. Among them, four candidate genes, Glyma.13G109100, Glyma.03G183200, Glyma.09G102200, and Glyma.09G102300 were analyzed for significant haplotype variations and to be in LD block, which encode MYB-related transcription factor, auxin-responsive protein, F-box protein, and CYP450, respectively. The relative expression of candidate genes in V030 and V071 vegetable soybean (for the plant height, pod number, and fresh pod weight of V030 were lower than those of the V071 strains) was significantly different, and these genes could be involved in plant growth and development via various pathways. Altogether, we identified four candidate genes for pod yield and plant height from vegetable soybean germplasm. This study provides insights into the genomic basis for improving soybean and crucial genomic resources that can facilitate genome-assisted high-yielding vegetable soybean breeding.
{"title":"Genome-Wide Association Analysis of Yield-Related Traits and Candidate Genes in Vegetable Soybean","authors":"Hongtao Gao, Guanji Wu, Feifei Wu, Xunjun Zhou, Yonggang Zhou, Keheng Xu, Yaxin Li, Wenping Zhang, Kuan Zhao, Yan Jing, Chen Feng, Nan Wang, Haiyan Li","doi":"10.3390/plants13111442","DOIUrl":"https://doi.org/10.3390/plants13111442","url":null,"abstract":"Owing to the rising demand for vegetable soybean products, there is an increasing need for high-yield soybean varieties. However, the complex correlation patterns among quantitative traits with genetic architecture pose a challenge for improving vegetable soybean through breeding. Herein, a genome-wide association study (GWAS) was applied to 6 yield-related traits in 188 vegetable soybean accessions. Using a BLINK model, a total of 116 single nucleotide polymorphisms (SNPs) were identified for plant height, pod length, pod number, pod thickness, pod width, and fresh pod weight. Furthermore, a total of 220 genes were found in the 200 kb upstream and downstream regions of significant SNPs, including 11 genes encoding functional proteins. Among them, four candidate genes, Glyma.13G109100, Glyma.03G183200, Glyma.09G102200, and Glyma.09G102300 were analyzed for significant haplotype variations and to be in LD block, which encode MYB-related transcription factor, auxin-responsive protein, F-box protein, and CYP450, respectively. The relative expression of candidate genes in V030 and V071 vegetable soybean (for the plant height, pod number, and fresh pod weight of V030 were lower than those of the V071 strains) was significantly different, and these genes could be involved in plant growth and development via various pathways. Altogether, we identified four candidate genes for pod yield and plant height from vegetable soybean germplasm. This study provides insights into the genomic basis for improving soybean and crucial genomic resources that can facilitate genome-assisted high-yielding vegetable soybean breeding.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"24 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleksey Nazarov, Sergey Chetverikov, Maxim Timergalin, Ruslan Ivanov, Nadezhda Ryazanova, Zinnur Shigapov, Iren Tuktarova, Ruslan Urazgildin, Guzel Kudoyarova
Improving the quality of tree planting material for carbon sequestration through reforestation can help solve environmental problems, including the need to reduce the concentration of carbon dioxide in the atmosphere. The purpose of this study was to investigate the possibility of using humic substances in combination with rhizosphere microorganisms Pseudomonas protegens DA1.2 and Pseudomonas sp. 4CH as a means to stimulate the growth of seedlings of pine, poplar, large-leaved linden, red oak, horse chestnut, and rowan. Humic substances stimulated the growth of shoots and roots of pine, large-leaved linden, and horse chestnut seedlings. The effects of bacteria depended on both plant and bacteria species: Pseudomonas protegens DA1.2 showed a higher stimulatory effect than Pseudomonas sp. 4CH on pine and linden, and Pseudomonas sp. 4CH was more effective in the case of chestnut. An additive effect of humates and Pseudomonas protegens DA1.2 on the growth rate of pine and linden saplings was discovered. Poplar, red oak, and rowan seedlings were unresponsive to the treatments. The growth-stimulating effects of the treatments are discussed in connection with the changes in carbon, chlorophyll, and nitrogen contents in plants. The results show the need for further research in bacterial species capable of stimulating the growth of plant species that were unresponsive in the present experiments.
{"title":"Improving Tree Seedling Quality Using Humates Combined with Bacteria to Address Decarbonization Challenges through Forest Restoration","authors":"Aleksey Nazarov, Sergey Chetverikov, Maxim Timergalin, Ruslan Ivanov, Nadezhda Ryazanova, Zinnur Shigapov, Iren Tuktarova, Ruslan Urazgildin, Guzel Kudoyarova","doi":"10.3390/plants13111452","DOIUrl":"https://doi.org/10.3390/plants13111452","url":null,"abstract":"Improving the quality of tree planting material for carbon sequestration through reforestation can help solve environmental problems, including the need to reduce the concentration of carbon dioxide in the atmosphere. The purpose of this study was to investigate the possibility of using humic substances in combination with rhizosphere microorganisms Pseudomonas protegens DA1.2 and Pseudomonas sp. 4CH as a means to stimulate the growth of seedlings of pine, poplar, large-leaved linden, red oak, horse chestnut, and rowan. Humic substances stimulated the growth of shoots and roots of pine, large-leaved linden, and horse chestnut seedlings. The effects of bacteria depended on both plant and bacteria species: Pseudomonas protegens DA1.2 showed a higher stimulatory effect than Pseudomonas sp. 4CH on pine and linden, and Pseudomonas sp. 4CH was more effective in the case of chestnut. An additive effect of humates and Pseudomonas protegens DA1.2 on the growth rate of pine and linden saplings was discovered. Poplar, red oak, and rowan seedlings were unresponsive to the treatments. The growth-stimulating effects of the treatments are discussed in connection with the changes in carbon, chlorophyll, and nitrogen contents in plants. The results show the need for further research in bacterial species capable of stimulating the growth of plant species that were unresponsive in the present experiments.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"38 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141107732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roxana Nicoleta Gavril (Rațu), O. Constantin, Elena Enachi, Florina Stoica, F. Lipșa, N. Stănciuc, I. Aprodu, G. Râpeanu
It has been discovered that the peel of a pumpkin (Cucurbita maxima), regarded as a waste product of pumpkin processing, has significant amounts of carotenoids and other antioxidants. This study aims to identify the most effective extraction parameters for an ultrasonic-assisted extraction method to extract the total carotenoids (TCs) and assess the antioxidant activity (AA) of pumpkin peel. To determine the effects of the extraction time, temperature, and material-to-solvent ratio on the recovery of TCs and AA, a response surface methodology utilizing the central composite design (CCD) was used. The extraction temperature (6.25–98.75 °C), extraction duration (13.98–128.98 min), and solvent ratio (0.23–50.23 mL) were the variables studied in the coded form of the experimental plan. The carotenoid concentration varied from 0.53 to 1.06 mg/g DW, while the AA varied from 0.34 to 7.28 µM TE/g DW. The findings indicated that the optimal extraction parameters were an 80 °C temperature, a 10 mL solvent ratio, and a 100 min extraction time. The study confirmed that the optimum extraction conditions resulted in an experimental TC yield of 0.97 mg/g DW and an AA of 7.25 µM TE/g DW. Overall, it should be emphasized that the extraction process can be enhanced by setting the operating factors to maximize the model responses.
{"title":"Optimization of the Parameters Influencing the Antioxidant Activity and Concentration of Carotenoids Extracted from Pumpkin Peel Using a Central Composite Design","authors":"Roxana Nicoleta Gavril (Rațu), O. Constantin, Elena Enachi, Florina Stoica, F. Lipșa, N. Stănciuc, I. Aprodu, G. Râpeanu","doi":"10.3390/plants13111447","DOIUrl":"https://doi.org/10.3390/plants13111447","url":null,"abstract":"It has been discovered that the peel of a pumpkin (Cucurbita maxima), regarded as a waste product of pumpkin processing, has significant amounts of carotenoids and other antioxidants. This study aims to identify the most effective extraction parameters for an ultrasonic-assisted extraction method to extract the total carotenoids (TCs) and assess the antioxidant activity (AA) of pumpkin peel. To determine the effects of the extraction time, temperature, and material-to-solvent ratio on the recovery of TCs and AA, a response surface methodology utilizing the central composite design (CCD) was used. The extraction temperature (6.25–98.75 °C), extraction duration (13.98–128.98 min), and solvent ratio (0.23–50.23 mL) were the variables studied in the coded form of the experimental plan. The carotenoid concentration varied from 0.53 to 1.06 mg/g DW, while the AA varied from 0.34 to 7.28 µM TE/g DW. The findings indicated that the optimal extraction parameters were an 80 °C temperature, a 10 mL solvent ratio, and a 100 min extraction time. The study confirmed that the optimum extraction conditions resulted in an experimental TC yield of 0.97 mg/g DW and an AA of 7.25 µM TE/g DW. Overall, it should be emphasized that the extraction process can be enhanced by setting the operating factors to maximize the model responses.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"104 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soufiane Lahbouki, A. Hashem, Ajay Kumar, E. F. Abd_Allah, A. Meddich
Climate change poses major challenges for agriculture in arid and semi-arid regions, with drought conditions severely affecting water-intensive crops such as tomatoes. This study evaluates the efficacy of organic amendments, derived from horse manure, and arbuscular mycorrhizal fungi (AMF) on enhancing tomato (Solanum lycopersicum L.) fruit quality and soil health under semi-arid field conditions. The experimental design included two irrigation regimes (well-watered and drought stress) and two levels of vermicompost application (C1 5 t ha−1 and C2 10 t ha−1), applied individually or in combination with AMF. The results indicate that drought stress reduced tomato fruit growth and yield, while osmoprotectant accumulation, antioxidant enzyme activity, and bioactive compound levels increased, and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of tomato fruit also increased. Notably, the biostimulants application, especially (C1+AMF), counteracted the adverse effects of drought, compared to the control, by significantly enhancing fruit yields (60%), as well as increasing ascorbic acid levels (59%) and free amino acids content (90%). These treatments also improved the activity of bioactive compounds and nutrient uptake in the fruit. Furthermore, biostimulant application positively affected the physicochemical properties of soil. The results obtained confirm that the application of biostimulants can be suitable for improving crop sustainability and adaptability under conditions of water stress in semi-arid field regions.
{"title":"Integration of Horse Manure Vermicompost Doses and Arbuscular Mycorrhizal Fungi to Improve Fruit Quality, and Soil Fertility in Tomato Field Facing Drought Stress","authors":"Soufiane Lahbouki, A. Hashem, Ajay Kumar, E. F. Abd_Allah, A. Meddich","doi":"10.3390/plants13111449","DOIUrl":"https://doi.org/10.3390/plants13111449","url":null,"abstract":"Climate change poses major challenges for agriculture in arid and semi-arid regions, with drought conditions severely affecting water-intensive crops such as tomatoes. This study evaluates the efficacy of organic amendments, derived from horse manure, and arbuscular mycorrhizal fungi (AMF) on enhancing tomato (Solanum lycopersicum L.) fruit quality and soil health under semi-arid field conditions. The experimental design included two irrigation regimes (well-watered and drought stress) and two levels of vermicompost application (C1 5 t ha−1 and C2 10 t ha−1), applied individually or in combination with AMF. The results indicate that drought stress reduced tomato fruit growth and yield, while osmoprotectant accumulation, antioxidant enzyme activity, and bioactive compound levels increased, and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of tomato fruit also increased. Notably, the biostimulants application, especially (C1+AMF), counteracted the adverse effects of drought, compared to the control, by significantly enhancing fruit yields (60%), as well as increasing ascorbic acid levels (59%) and free amino acids content (90%). These treatments also improved the activity of bioactive compounds and nutrient uptake in the fruit. Furthermore, biostimulant application positively affected the physicochemical properties of soil. The results obtained confirm that the application of biostimulants can be suitable for improving crop sustainability and adaptability under conditions of water stress in semi-arid field regions.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"29 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141106340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}