Pub Date : 2025-03-18DOI: 10.1016/j.comgeo.2025.102187
Henk Alkema, Mark de Berg
<div><div>In <span>One-of-a-Set TSP</span>, also known as the <span>Generalised TSP</span>, the input is a collection <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of sets in a metric space and the goal is to compute a minimum-length tour that visits one element from each set.</div><div>In the Euclidean variant of this problem, each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be a hypercube that contains <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi></math></span>. We investigate how the complexity of <span>Euclidean One-of-a-Set TSP</span> depends on <em>λ</em>, the ply of the set <span><math><mi>H</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of hypercubes. (The ply is the smallest <em>λ</em> such that every point in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is contained in at most <em>λ</em> of the hypercubes). We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></msup></math></span> time, where <span><math><mi>n</mi><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></math></span> is the total number of points, and that the problem cannot be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time when <span><math><mi>λ</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, unless the Exponential Time Hypothesis (ETH) fails.</div><div>In <span>Rectilinear One-of-a-Cube TSP</span>, the input is a set <span><math><mi>H</mi></math></span> of hypercubes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and the goal is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></
{"title":"Geometric TSP on sets","authors":"Henk Alkema, Mark de Berg","doi":"10.1016/j.comgeo.2025.102187","DOIUrl":"10.1016/j.comgeo.2025.102187","url":null,"abstract":"<div><div>In <span>One-of-a-Set TSP</span>, also known as the <span>Generalised TSP</span>, the input is a collection <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of sets in a metric space and the goal is to compute a minimum-length tour that visits one element from each set.</div><div>In the Euclidean variant of this problem, each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be a hypercube that contains <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi></math></span>. We investigate how the complexity of <span>Euclidean One-of-a-Set TSP</span> depends on <em>λ</em>, the ply of the set <span><math><mi>H</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of hypercubes. (The ply is the smallest <em>λ</em> such that every point in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is contained in at most <em>λ</em> of the hypercubes). We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></msup></math></span> time, where <span><math><mi>n</mi><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></math></span> is the total number of points, and that the problem cannot be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time when <span><math><mi>λ</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, unless the Exponential Time Hypothesis (ETH) fails.</div><div>In <span>Rectilinear One-of-a-Cube TSP</span>, the input is a set <span><math><mi>H</mi></math></span> of hypercubes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and the goal is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102187"},"PeriodicalIF":0.4,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143681463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-13DOI: 10.1016/j.comgeo.2025.102184
Oswin Aichholzer , Anna Brötzner , Daniel Perz , Patrick Schnider
Let be a set of points in the plane in general position. We define the graph whose vertex set is the set of all plane matchings on with exactly m edges. Two vertices in are connected if the two corresponding matchings have edges in common. In this work we show that is connected and give an upper bound of on its diameter. Moreover, we present a lower bound of and an upper bound of for the diameter of for in convex position.
{"title":"Flips in odd matchings","authors":"Oswin Aichholzer , Anna Brötzner , Daniel Perz , Patrick Schnider","doi":"10.1016/j.comgeo.2025.102184","DOIUrl":"10.1016/j.comgeo.2025.102184","url":null,"abstract":"<div><div>Let <span><math><mi>P</mi></math></span> be a set of <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span> points in the plane in general position. We define the graph <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> whose vertex set is the set of all plane matchings on <span><math><mi>P</mi></math></span> with exactly <em>m</em> edges. Two vertices in <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> are connected if the two corresponding matchings have <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span> edges in common. In this work we show that <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> is connected and give an upper bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> on its diameter. Moreover, we present a lower bound of <span><math><mi>n</mi><mo>−</mo><mn>2</mn></math></span> and an upper bound of <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for the diameter of <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> for <span><math><mi>P</mi></math></span> in convex position.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102184"},"PeriodicalIF":0.4,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-26DOI: 10.1016/j.comgeo.2025.102174
Oswin Aichholzer , Sergio Cabello , Viola Mészáros , Patrick Schnider , Jan Soukup
We show that each set of points in the plane in general position has a straight-line matching with at least edges whose segments form a connected set, and such a matching can be computed in time. As an upper bound, we show that for some planar point sets in general position the largest matching whose segments form a connected set has edges. We also consider a colored version, where each edge of the matching should connect points with different colors.
{"title":"Connected matchings","authors":"Oswin Aichholzer , Sergio Cabello , Viola Mészáros , Patrick Schnider , Jan Soukup","doi":"10.1016/j.comgeo.2025.102174","DOIUrl":"10.1016/j.comgeo.2025.102174","url":null,"abstract":"<div><div>We show that each set of <span><math><mi>n</mi><mo>⩾</mo><mn>2</mn></math></span> points in the plane in general position has a straight-line matching with at least <span><math><mo>(</mo><mn>5</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>27</mn></math></span> edges whose segments form a connected set, and such a matching can be computed in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time. As an upper bound, we show that for some planar point sets in general position the largest matching whose segments form a connected set has <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></math></span> edges. We also consider a colored version, where each edge of the matching should connect points with different colors.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102174"},"PeriodicalIF":0.4,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143550937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-25DOI: 10.1016/j.comgeo.2025.102173
Taehoon Ahn , Chaeyoon Chung , Hee-Kap Ahn , Sang Won Bae , Otfried Cheong , Sang Duk Yoon
A slab in d-dimensional space is the set of points enclosed by two parallel hyperplanes. We consider the problem of finding an optimal pair of parallel slabs, called a double-slab, that covers a given set P of n points in . We address two optimization problems in for any fixed dimension : the minimum-width double-slab problem, in which one wants to minimize the maximum width of the two slabs of the resulting double-slab, and the widest empty slab problem, in which one wants to maximize the gap between the two slabs. Our results include the first nontrivial exact algorithms that solve the former problem for and the latter problem for .
{"title":"Minimum-width double-slabs and widest empty slabs in high dimensions","authors":"Taehoon Ahn , Chaeyoon Chung , Hee-Kap Ahn , Sang Won Bae , Otfried Cheong , Sang Duk Yoon","doi":"10.1016/j.comgeo.2025.102173","DOIUrl":"10.1016/j.comgeo.2025.102173","url":null,"abstract":"<div><div>A <em>slab</em> in <em>d</em>-dimensional space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is the set of points enclosed by two parallel hyperplanes. We consider the problem of finding an optimal pair of parallel slabs, called a <em>double-slab</em>, that covers a given set <em>P</em> of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We address two optimization problems in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for any fixed dimension <span><math><mi>d</mi><mo>⩾</mo><mn>3</mn></math></span>: the <em>minimum-width double-slab</em> problem, in which one wants to minimize the maximum width of the two slabs of the resulting double-slab, and the <em>widest empty slab</em> problem, in which one wants to maximize the gap between the two slabs. Our results include the first nontrivial exact algorithms that solve the former problem for <span><math><mi>d</mi><mo>⩾</mo><mn>3</mn></math></span> and the latter problem for <span><math><mi>d</mi><mo>⩾</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102173"},"PeriodicalIF":0.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143550936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-18DOI: 10.1016/j.comgeo.2025.102172
Ahmad Biniaz , Prosenjit Bose , Patrick Devaney
Motivated by the problem of orienting directional antennas in wireless communication networks, we study average bounded-angle minimum spanning trees. Let P be a set of points in the plane and let α be an angle. An α-spanning tree (α-ST) of P is a spanning tree of the complete Euclidean graph induced by P such that all edges incident to each point lie in a fixed wedge of angle α with apex p. An α-minimum spanning tree (α-MST) of P is an α-ST with minimum total edge length.
An average-α-spanning tree (denoted by -ST) is a spanning tree with the relaxed condition that incident edges to all points lie in wedges with average angle α. An average-α-minimum spanning tree (-MST) is an -ST with minimum total edge length.
Let be the smallest ratio of the length of the -MST to the length of the standard MST, over all sets of points in the plane. We investigate bounds for . For , Biniaz, Bose, Lubiw, and Maheshwari (Algorithmica 2022) showed that . We improve the upper bound and show that . We also study this for and prove that .
{"title":"Approximating average bounded-angle minimum spanning trees","authors":"Ahmad Biniaz , Prosenjit Bose , Patrick Devaney","doi":"10.1016/j.comgeo.2025.102172","DOIUrl":"10.1016/j.comgeo.2025.102172","url":null,"abstract":"<div><div>Motivated by the problem of orienting directional antennas in wireless communication networks, we study average bounded-angle minimum spanning trees. Let <em>P</em> be a set of points in the plane and let <em>α</em> be an angle. An <em>α</em>-spanning tree (<em>α</em>-ST) of <em>P</em> is a spanning tree of the complete Euclidean graph induced by <em>P</em> such that all edges incident to each point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi></math></span> lie in a fixed wedge of angle <em>α</em> with apex <em>p</em>. An <em>α</em>-minimum spanning tree (<em>α</em>-MST) of P is an <em>α</em>-ST with minimum total edge length.</div><div>An average-<em>α</em>-spanning tree (denoted by <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-ST) is a spanning tree with the relaxed condition that incident edges to all points lie in wedges with average angle <em>α</em>. An average-<em>α</em>-minimum spanning tree (<span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-MST) is an <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-ST with minimum total edge length.</div><div>Let <span><math><mi>A</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></math></span> be the smallest ratio of the length of the <span><math><mover><mrow><mi>α</mi></mrow><mo>‾</mo></mover></math></span>-MST to the length of the standard MST, over all sets of points in the plane. We investigate bounds for <span><math><mi>A</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></math></span>. For <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, Biniaz, Bose, Lubiw, and Maheshwari (Algorithmica 2022) showed that <span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>≤</mo><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We improve the upper bound and show that <span><math><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>9</mn></mrow></mfrac></math></span>. We also study this for <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and prove that <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>A</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102172"},"PeriodicalIF":0.4,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-17DOI: 10.1016/j.comgeo.2025.102171
Sergio Cabello , Arun Kumar Das , Sandip Das , Joydeep Mukherjee
A terrain is an x-monotone polygon whose lower boundary is a single line segment. We present an algorithm to find in a terrain a triangle of largest area in time, where n is the number of vertices defining the terrain. The best previous algorithm for this problem has a running time of .
{"title":"Finding a largest-area triangle in a terrain in near-linear time","authors":"Sergio Cabello , Arun Kumar Das , Sandip Das , Joydeep Mukherjee","doi":"10.1016/j.comgeo.2025.102171","DOIUrl":"10.1016/j.comgeo.2025.102171","url":null,"abstract":"<div><div>A terrain is an <em>x</em>-monotone polygon whose lower boundary is a single line segment. We present an algorithm to find in a terrain a triangle of largest area in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time, where <em>n</em> is the number of vertices defining the terrain. The best previous algorithm for this problem has a running time of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102171"},"PeriodicalIF":0.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1016/j.comgeo.2025.102163
David Barnhill , Ruriko Yoshida , Keiji Miura
We consider a minimum enclosing and maximum inscribed tropical balls for any given tropical polytope over the tropical projective torus in terms of the tropical metric with the max-plus algebra. We show that we can obtain such tropical balls via linear programming. Then we apply minimum enclosing and maximum inscribed tropical balls of any given tropical polytope to estimate the volume of and sample uniformly from the tropical polytope.
{"title":"Maximum inscribed and minimum enclosing tropical balls of tropical polytopes and applications to volume estimation and uniform sampling","authors":"David Barnhill , Ruriko Yoshida , Keiji Miura","doi":"10.1016/j.comgeo.2025.102163","DOIUrl":"10.1016/j.comgeo.2025.102163","url":null,"abstract":"<div><div>We consider a minimum enclosing and maximum inscribed tropical balls for any given tropical polytope over the tropical projective torus in terms of the tropical metric with the max-plus algebra. We show that we can obtain such tropical balls via linear programming. Then we apply minimum enclosing and maximum inscribed tropical balls of any given tropical polytope to estimate the volume of and sample uniformly from the tropical polytope.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102163"},"PeriodicalIF":0.4,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1016/j.comgeo.2024.102162
Yueqi Cao, Anthea Monod
The Fréchet mean is an important statistical summary and measure of centrality of data; it has been defined and studied for persistent homology captured by persistence diagrams. However, the complicated geometry of the space of persistence diagrams implies that the Fréchet mean for a given set of persistence diagrams is not necessarily unique, which prohibits theoretical guarantees for empirical means with respect to population means. In this paper, we derive a variance expression for a set of persistence diagrams exhibiting a multi-matching between the persistence points known as a grouping. Moreover, we propose a condition for groupings, which we refer to as flatness; we prove that sets of persistence diagrams that exhibit flat groupings give rise to unique Fréchet means. We derive a finite sample convergence result for general groupings, which results in convergence for Fréchet means if the groupings are flat. We then interpret flat groupings in a recently-proposed general framework of Fréchet means in Alexandrov geometry. Finally, we show that for manifold-valued data, the persistence diagrams can be truncated to construct flat groupings.
{"title":"A geometric condition for uniqueness of Fréchet means of persistence diagrams","authors":"Yueqi Cao, Anthea Monod","doi":"10.1016/j.comgeo.2024.102162","DOIUrl":"10.1016/j.comgeo.2024.102162","url":null,"abstract":"<div><div>The Fréchet mean is an important statistical summary and measure of centrality of data; it has been defined and studied for persistent homology captured by persistence diagrams. However, the complicated geometry of the space of persistence diagrams implies that the Fréchet mean for a given set of persistence diagrams is not necessarily unique, which prohibits theoretical guarantees for empirical means with respect to population means. In this paper, we derive a variance expression for a set of persistence diagrams exhibiting a multi-matching between the persistence points known as a grouping. Moreover, we propose a condition for groupings, which we refer to as flatness; we prove that sets of persistence diagrams that exhibit flat groupings give rise to unique Fréchet means. We derive a finite sample convergence result for general groupings, which results in convergence for Fréchet means if the groupings are flat. We then interpret flat groupings in a recently-proposed general framework of Fréchet means in Alexandrov geometry. Finally, we show that for manifold-valued data, the persistence diagrams can be truncated to construct flat groupings.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102162"},"PeriodicalIF":0.4,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.comgeo.2024.102161
Rusul J. Alsaedi, Joachim Gudmundsson, André van Renssen
Given a set of unit disk robots in the Euclidean plane, we consider the Pattern Formation problem, i.e., the robots must reposition themselves to form a given target pattern. This problem arises under obstructed visibility, where a robot cannot see another robot if there is a third robot on the straight line segment between the two robots. Recently, this problem was solved in the asynchonous model for fat robots that agree on at least one axis in the robots with lights model where each robot is equipped with an externally visible persistent light that can assume colors from a fixed set of colors [1]. In this work, we reduce the number of colors needed and remove the axis-agreement requirement in the fully synchronous model. In particular, we present an algorithm requiring 7 colors when scaling the target pattern is allowed and an 8-color algorithm if scaling is not allowed. Our algorithms run in rounds with probability at least .
{"title":"Pattern formation for fat robots with lights","authors":"Rusul J. Alsaedi, Joachim Gudmundsson, André van Renssen","doi":"10.1016/j.comgeo.2024.102161","DOIUrl":"10.1016/j.comgeo.2024.102161","url":null,"abstract":"<div><div>Given a set of <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span> unit disk robots in the Euclidean plane, we consider the Pattern Formation problem, i.e., the robots must reposition themselves to form a given target pattern. This problem arises under obstructed visibility, where a robot cannot see another robot if there is a third robot on the straight line segment between the two robots. Recently, this problem was solved in the asynchonous model for fat robots that agree on at least one axis in the robots with lights model where each robot is equipped with an externally visible persistent light that can assume colors from a fixed set of colors <span><span>[1]</span></span>. In this work, we reduce the number of colors needed and remove the axis-agreement requirement in the fully synchronous model. In particular, we present an algorithm requiring 7 colors when scaling the target pattern is allowed and an 8-color algorithm if scaling is not allowed. Our algorithms run in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>O</mi><mo>(</mo><mi>q</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> rounds with probability at least <span><math><mn>1</mn><mo>−</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>q</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102161"},"PeriodicalIF":0.4,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1016/j.comgeo.2024.102160
Philip L. Bowers , Lorenzo Ruffoni
We show that given an infinite triangulation K of a surface with punctures (i.e., with no vertices at the punctures) and a set of target cone angles smaller than π at the punctures that satisfy a Gauss-Bonnet inequality, there exists a hyperbolic metric that has the prescribed angles and supports a circle packing in the combinatorics of K. Moreover, if K is very symmetric, then we can identify the underlying Riemann surface and show that it does not depend on the angles. In particular, this provides examples of a triangulation K and a conformal class X such that there are infinitely many conical hyperbolic structures in the conformal class X with a circle packing in the combinatorics of K. This is in sharp contrast with a conjecture of Kojima-Mizushima-Tan in the closed case.
{"title":"Infinite circle packings on surfaces with conical singularities","authors":"Philip L. Bowers , Lorenzo Ruffoni","doi":"10.1016/j.comgeo.2024.102160","DOIUrl":"10.1016/j.comgeo.2024.102160","url":null,"abstract":"<div><div>We show that given an infinite triangulation <em>K</em> of a surface with punctures (i.e., with no vertices at the punctures) and a set of target cone angles smaller than <em>π</em> at the punctures that satisfy a Gauss-Bonnet inequality, there exists a hyperbolic metric that has the prescribed angles and supports a circle packing in the combinatorics of <em>K</em>. Moreover, if <em>K</em> is very symmetric, then we can identify the underlying Riemann surface and show that it does not depend on the angles. In particular, this provides examples of a triangulation <em>K</em> and a conformal class <em>X</em> such that there are infinitely many conical hyperbolic structures in the conformal class <em>X</em> with a circle packing in the combinatorics of <em>K</em>. This is in sharp contrast with a conjecture of Kojima-Mizushima-Tan in the closed case.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"127 ","pages":"Article 102160"},"PeriodicalIF":0.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}