首页 > 最新文献

Computational Geometry-Theory and Applications最新文献

英文 中文
An analytical representation of the 2d generalized balanced power diagram 二维广义平衡功率图的分析表示法
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2024-04-17 DOI: 10.1016/j.comgeo.2024.102101
Christian Jung, Claudia Redenbach

Tessellations are an important tool to model the microstructure of cellular and polycrystalline materials. Classical tessellation models include the Voronoi diagram and the Laguerre tessellation whose cells are polyhedra. Due to the convexity of their cells, those models may be too restrictive to describe data that includes possibly anisotropic grains with curved boundaries. Several generalizations exist. The cells of the generalized balanced power diagram are induced by elliptic distances leading to more diverse structures. So far, methods for computing the generalized balanced power diagram are restricted to discretized versions in the form of label images. In this work, we derive an analytic representation of the vertices and edges of the generalized balanced power diagram in 2d. Based on that, we propose a novel algorithm to compute the whole diagram.

棋盘格是模拟蜂窝和多晶材料微观结构的重要工具。经典的网格模型包括 Voronoi 图和 Laguerre 网格,其单元是多面体。由于其单元的凸性,这些模型在描述包括可能具有弯曲边界的各向异性晶粒的数据时可能过于局限。目前存在几种通用模型。广义平衡幂图的单元是由椭圆距离引起的,从而产生更多样化的结构。迄今为止,计算广义平衡幂图的方法仅限于标签图像形式的离散版本。在这项工作中,我们推导出了广义平衡幂图顶点和边的二维解析表示。在此基础上,我们提出了一种计算整个图的新算法。
{"title":"An analytical representation of the 2d generalized balanced power diagram","authors":"Christian Jung,&nbsp;Claudia Redenbach","doi":"10.1016/j.comgeo.2024.102101","DOIUrl":"https://doi.org/10.1016/j.comgeo.2024.102101","url":null,"abstract":"<div><p>Tessellations are an important tool to model the microstructure of cellular and polycrystalline materials. Classical tessellation models include the Voronoi diagram and the Laguerre tessellation whose cells are polyhedra. Due to the convexity of their cells, those models may be too restrictive to describe data that includes possibly anisotropic grains with curved boundaries. Several generalizations exist. The cells of the generalized balanced power diagram are induced by elliptic distances leading to more diverse structures. So far, methods for computing the generalized balanced power diagram are restricted to discretized versions in the form of label images. In this work, we derive an analytic representation of the vertices and edges of the generalized balanced power diagram in 2d. Based on that, we propose a novel algorithm to compute the whole diagram.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000233/pdfft?md5=fa13c50875805de5231691dc670463bc&pid=1-s2.0-S0925772124000233-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exact algorithm for the Euclidean k-Steiner tree problem 欧氏 k-Steiner 树问题的精确算法
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2024-04-09 DOI: 10.1016/j.comgeo.2024.102099
Marcus Brazil , Michael Hendriksen , Jae Lee , Michael S. Payne , Charl Ras , Doreen Thomas

The Euclidean k-Steiner tree problem asks for a minimum-cost network connecting n given points in the plane, allowing at most k additional nodes referred to as Steiner points. In the classical Steiner tree problem in which there is no restriction on the number of nodes, every Steiner point must be of degree 3. The k-Steiner problem differs in that Steiner points of degree 4 may be included in an optimal solution. This simple change leads to a number of complexities when attempting to create a generation algorithm for optimal k-Steiner trees, which has proven to be a powerful component of the flagship algorithm, namely GeoSteiner, for solving the classical Steiner tree problem. In the present paper we firstly extend the basic framework of GeoSteiner's generation algorithm to include degree-4 Steiner points. We then introduce a number of novel results restricting the structural and geometric properties of optimal k-Steiner trees, and then show how these properties may be used as topological pruning methods underpinning our generation algorithm. Finally, we present experimental data to show the effectiveness of our pruning methods in reducing the number of sub-optimal solution topologies.

欧几里得 k-Steiner 树问题要求在平面上连接 n 个给定点的最小成本网络中,最多允许 k 个额外的节点(称为 Steiner 点)。在节点数量不受限制的经典斯坦纳树问题中,每个斯坦纳点的度数都必须是 3,而 k-斯坦纳问题的不同之处在于,最优解中可以包含度数为 4 的斯坦纳点。这一简单的变化导致了在尝试创建最优 k-Steiner 树生成算法时的许多复杂性,而事实证明,k-Steiner 树生成算法是解决经典 Steiner 树问题的旗舰算法(即 GeoSteiner)的强大组成部分。在本文中,我们首先扩展了 GeoSteiner 生成算法的基本框架,将 4 度 Steiner 点纳入其中。然后,我们介绍了一系列限制最优 k-Steiner 树的结构和几何特性的新结果,并展示了如何将这些特性用作拓扑剪枝方法,以支持我们的生成算法。最后,我们通过实验数据展示了我们的剪枝方法在减少次优解拓扑数量方面的有效性。
{"title":"An exact algorithm for the Euclidean k-Steiner tree problem","authors":"Marcus Brazil ,&nbsp;Michael Hendriksen ,&nbsp;Jae Lee ,&nbsp;Michael S. Payne ,&nbsp;Charl Ras ,&nbsp;Doreen Thomas","doi":"10.1016/j.comgeo.2024.102099","DOIUrl":"https://doi.org/10.1016/j.comgeo.2024.102099","url":null,"abstract":"<div><p>The Euclidean <em>k</em>-Steiner tree problem asks for a minimum-cost network connecting <em>n</em> given points in the plane, allowing at most <em>k</em> additional nodes referred to as <em>Steiner points</em>. In the classical Steiner tree problem in which there is no restriction on the number of nodes, every Steiner point must be of degree 3. The <em>k</em>-Steiner problem differs in that Steiner points of degree 4 may be included in an optimal solution. This simple change leads to a number of complexities when attempting to create a <em>generation algorithm</em> for optimal <em>k</em>-Steiner trees, which has proven to be a powerful component of the flagship algorithm, namely GeoSteiner, for solving the classical Steiner tree problem. In the present paper we firstly extend the basic framework of GeoSteiner's generation algorithm to include degree-4 Steiner points. We then introduce a number of novel results restricting the structural and geometric properties of optimal <em>k</em>-Steiner trees, and then show how these properties may be used as topological pruning methods underpinning our generation algorithm. Finally, we present experimental data to show the effectiveness of our pruning methods in reducing the number of sub-optimal solution topologies.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092577212400021X/pdfft?md5=e2fe47e64b9ad0273f7021d80587df58&pid=1-s2.0-S092577212400021X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Panel-point model for rigidity and flexibility analysis of rigid origami 用于刚性折纸刚度和柔度分析的面板点模型
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1016/j.comgeo.2024.102100
Kentaro Hayakawa , Zeyuan He , Simon D. Guest

In this study, we lay the groundwork for a systematic investigation of the rigidity and flexibility of rigid origami by using the mathematical model referred to as the panel-point model. Rigid origami is commonly known as a type of panel-hinge structure where rigid polygonal panels are connected by rotational hinges, and its motion and stability are often investigated from the perspective of its consistency constraints representing the rigidity and connection conditions of panels. In the proposed methodology, vertex coordinates are directly treated as the variables to represent the rigid origami in the panel-point model, and these variables are constrained by the conditions for the out-of-plane and in-plane rigidity of panels. This model offers several advantages including: 1) the simplicity of polynomial consistency constraints; 2) the ease of incorporating displacement boundary conditions; and 3) the straightforwardness of numerical simulation and visualization. It is anticipated that the presented theories in this article are valuable to a broad audience, including mathematicians, engineers, and architects.

在本研究中,我们通过使用称为板点模型的数学模型,为系统研究刚性折纸的刚性和柔性奠定了基础。通常,刚性折纸是一种通过旋转铰链连接刚性多边形面板的面板-铰链结构,其运动和稳定性通常从代表面板刚性和连接条件的一致性约束角度进行研究。在所提出的方法中,顶点坐标被直接视为面板点模型中表示刚性折纸的变量,这些变量受到面板平面外和平面内刚度条件的约束。该模型具有以下几个优点1) 简单的多项式一致性约束;2) 易于纳入位移边界条件;3) 数值模拟和可视化的直接性。预计本文提出的理论对包括数学家、工程师和建筑师在内的广大读者很有价值。
{"title":"Panel-point model for rigidity and flexibility analysis of rigid origami","authors":"Kentaro Hayakawa ,&nbsp;Zeyuan He ,&nbsp;Simon D. Guest","doi":"10.1016/j.comgeo.2024.102100","DOIUrl":"https://doi.org/10.1016/j.comgeo.2024.102100","url":null,"abstract":"<div><p>In this study, we lay the groundwork for a systematic investigation of the rigidity and flexibility of rigid origami by using the mathematical model referred to as the panel-point model. Rigid origami is commonly known as a type of panel-hinge structure where rigid polygonal panels are connected by rotational hinges, and its motion and stability are often investigated from the perspective of its consistency constraints representing the rigidity and connection conditions of panels. In the proposed methodology, vertex coordinates are directly treated as the variables to represent the rigid origami in the panel-point model, and these variables are constrained by the conditions for the out-of-plane and in-plane rigidity of panels. This model offers several advantages including: 1) the simplicity of polynomial consistency constraints; 2) the ease of incorporating displacement boundary conditions; and 3) the straightforwardness of numerical simulation and visualization. It is anticipated that the presented theories in this article are valuable to a broad audience, including mathematicians, engineers, and architects.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum-width rainbow-bisecting empty annulus 最大宽度彩虹分光空环
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2024-03-06 DOI: 10.1016/j.comgeo.2024.102088
Sang Won Bae , Sandip Banerjee , Arpita Baral , Priya Ranjan Sinha Mahapatra , Sang Duk Yoon

Given a set of n colored points with k colors in the plane, we study the problem of computing a maximum-width rainbow-bisecting empty annulus (of objects specifically axis-parallel square, axis-parallel rectangle and circle) problem. We call a region rainbow if it contains at least one point of each color. The maximum-width rainbow-bisecting empty annulus problem asks to find an annulus A of a particular shape with maximum possible width such that A does not contain any input points and it bisects the input point set into two parts, each of which is a rainbow. We compute a maximum-width rainbow-bisecting empty axis-parallel square, axis-parallel rectangular and circular annulus in O(n3) time using O(n) space, in O(k2n2logn) time using O(nlogn) space and in O(n3) time using O(n2) space respectively.

给定平面上 k 种颜色的 n 个彩色点的集合,我们研究的是计算最大宽度彩虹等分线空环面(对象具体为轴平行的正方形、轴平行的矩形和圆形)问题。如果一个区域至少包含每种颜色的一个点,我们就称该区域为彩虹区域。最大宽度彩虹分叉空环问题要求找到一个特定形状的最大宽度环 A,使得 A 不包含任何输入点,并且将输入点集一分为二,每一部分都是彩虹。我们使用 O(n) 空间在 O(n3) 时间内、使用 O(nlogn) 空间在 O(k2n2logn) 时间内以及使用 O(n2) 空间在 O(n3) 时间内分别计算出了最大宽度的彩虹分叉空轴平行正方形、轴平行矩形和圆形环面。
{"title":"Maximum-width rainbow-bisecting empty annulus","authors":"Sang Won Bae ,&nbsp;Sandip Banerjee ,&nbsp;Arpita Baral ,&nbsp;Priya Ranjan Sinha Mahapatra ,&nbsp;Sang Duk Yoon","doi":"10.1016/j.comgeo.2024.102088","DOIUrl":"https://doi.org/10.1016/j.comgeo.2024.102088","url":null,"abstract":"<div><p>Given a set of <em>n</em> colored points with <em>k</em> colors in the plane, we study the problem of computing a maximum-width rainbow-bisecting empty annulus (of objects specifically axis-parallel square, axis-parallel rectangle and circle) problem. We call a region <em>rainbow</em> if it contains at least one point of each color. The maximum-width rainbow-bisecting empty annulus problem asks to find an annulus <em>A</em> of a particular shape with maximum possible width such that <em>A</em> does not contain any input points and it bisects the input point set into two parts, each of which is a <em>rainbow</em>. We compute a maximum-width rainbow-bisecting empty axis-parallel square, axis-parallel rectangular and circular annulus in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> time using <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space, in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time using <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> space and in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> time using <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> space respectively.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140113725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical categories in colored searching 彩色搜索中的层次类别
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2024-03-04 DOI: 10.1016/j.comgeo.2024.102090
Peyman Afshani , Rasmus Killmann , Kasper G. Larsen

In colored range counting (CRC), the input is a set of points where each point is assigned a “color” (or a “category”) and the goal is to store them in a data structure such that the number of distinct categories inside a given query range can be counted efficiently. CRC has strong motivations as it allows data structure to deal with categorical data.

However, colors (i.e., the categories) in the CRC problem do not have any internal structure, whereas this is not the case for many datasets in practice where hierarchical categories exist or where a single input belongs to multiple categories. Motivated by these, we consider variants of the problem where such structures can be represented. We define two variants of the problem called hierarchical range counting (HCC) and sub-category colored range counting (SCRC) and consider hierarchical structures that can either be a DAG or a tree. We show that the two problems on some special trees are in fact equivalent to other well-known problems in the literature. Based on these, we also give efficient data structures when the underlying hierarchy can be represented as a tree. We show a conditional lower bound for the general case when the existing hierarchy can be any DAG, through a reduction from the orthogonal vectors problem.

在彩色范围计数(CRC)中,输入是一组点,其中每个点都被分配了一种 "颜色"(或 "类别"),目标是将它们存储在一个数据结构中,以便高效地计算给定查询范围内不同类别的数量。CRC 允许数据结构处理分类数据,因此具有强烈的动机。
{"title":"Hierarchical categories in colored searching","authors":"Peyman Afshani ,&nbsp;Rasmus Killmann ,&nbsp;Kasper G. Larsen","doi":"10.1016/j.comgeo.2024.102090","DOIUrl":"10.1016/j.comgeo.2024.102090","url":null,"abstract":"<div><p>In colored range counting (CRC), the input is a set of points where each point is assigned a “color” (or a “category”) and the goal is to store them in a data structure such that the number of distinct categories inside a given query range can be counted efficiently. CRC has strong motivations as it allows data structure to deal with categorical data.</p><p>However, colors (i.e., the categories) in the CRC problem do not have any internal structure, whereas this is not the case for many datasets in practice where hierarchical categories exist or where a single input belongs to multiple categories. Motivated by these, we consider variants of the problem where such structures can be represented. We define two variants of the problem called hierarchical range counting (HCC) and sub-category colored range counting (SCRC) and consider hierarchical structures that can either be a DAG or a tree. We show that the two problems on some special trees are in fact equivalent to other well-known problems in the literature. Based on these, we also give efficient data structures when the underlying hierarchy can be represented as a tree. We show a conditional lower bound for the general case when the existing hierarchy can be any DAG, through a reduction from the orthogonal vectors problem.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000129/pdfft?md5=58168aae21edfa03ea4bb23171502329&pid=1-s2.0-S0925772124000129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating iterated persistent homology computations with warm starts 用热启动加速迭代持续同源计算
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2024-03-01 DOI: 10.1016/j.comgeo.2024.102089
Yuan Luo , Bradley J. Nelson

Persistent homology is a topological feature used in a variety of applications such as generating features for data analysis and penalizing optimization problems. We develop an approach to accelerate persistent homology computations performed on many similar filtered topological spaces which is based on updating associated matrix factorizations. Our approach improves the update scheme of Cohen-Steiner, Edelsbrunner, and Morozov for permutations by additionally handling addition and deletion of cells in a filtered topological space and by processing changes in a single batch. We show that the complexity of our scheme scales with the number of elementary changes to the filtration which as a result is often less expensive than the full persistent homology computation. Finally, we perform computational experiments demonstrating practical speedups in several situations including feature generation and optimization guided by persistent homology.

持久同源性是一种拓扑特征,可用于多种应用,如生成数据分析特征和对优化问题进行惩罚。我们开发了一种基于更新相关矩阵因式的方法,用于加速在许多相似的过滤拓扑空间上进行的持久同源性计算。我们的方法改进了 Cohen-Steiner、Edelsbrunner 和 Morozov 针对排列的更新方案,额外处理了过滤拓扑空间中单元格的添加和删除,并在单个批次中处理变化。我们的研究表明,我们方案的复杂性与滤波的基本变化数量成比例,因此其成本往往低于完整的持久同调计算。最后,我们进行了计算实验,展示了在特征生成和持久同源性指导下的优化等几种情况下的实际加速效果。
{"title":"Accelerating iterated persistent homology computations with warm starts","authors":"Yuan Luo ,&nbsp;Bradley J. Nelson","doi":"10.1016/j.comgeo.2024.102089","DOIUrl":"10.1016/j.comgeo.2024.102089","url":null,"abstract":"<div><p>Persistent homology is a topological feature used in a variety of applications such as generating features for data analysis and penalizing optimization problems. We develop an approach to accelerate persistent homology computations performed on many similar filtered topological spaces which is based on updating associated matrix factorizations. Our approach improves the update scheme of Cohen-Steiner, Edelsbrunner, and Morozov for permutations by additionally handling addition and deletion of cells in a filtered topological space and by processing changes in a single batch. We show that the complexity of our scheme scales with the number of elementary changes to the filtration which as a result is often less expensive than the full persistent homology computation. Finally, we perform computational experiments demonstrating practical speedups in several situations including feature generation and optimization guided by persistent homology.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological regularization via persistence-sensitive optimization 通过持久性敏感优化实现拓扑正则化
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2024-02-28 DOI: 10.1016/j.comgeo.2024.102086
Arnur Nigmetov , Aditi Krishnapriyan , Nicole Sanderson , Dmitriy Morozov

Optimization, a key tool in machine learning and statistics, relies on regularization to reduce overfitting. Traditional regularization methods control a norm of the solution to ensure its smoothness. Recently, topological methods have emerged as a way to provide a more precise and expressive control over the solution, relying on persistent homology to quantify and reduce its roughness. All such existing techniques back-propagate gradients through the persistence diagram, which is a summary of the topological features of a function. Their downside is that they provide information only at the critical points of the function. We propose a method that instead builds on persistence-sensitive simplification and translates the required changes to the persistence diagram into changes on large subsets of the domain, including both critical and regular points. This approach enables a faster and more precise topological regularization, the benefits of which we illustrate with experimental evidence.

优化是机器学习和统计学的重要工具,它依赖于正则化来减少过拟合。传统的正则化方法控制解的规范,以确保其平滑性。最近,拓扑方法应运而生,它能对解法进行更精确、更有表现力的控制,依靠持久同源性来量化和降低解法的粗糙度。所有这些现有技术都是通过持久图反向传播梯度,持久图是函数拓扑特征的总结。它们的缺点是只能提供函数临界点的信息。我们提出的方法则建立在对持久性敏感的简化基础上,将持久性图所需的变化转化为包括临界点和规则点在内的大域子集上的变化。这种方法可以实现更快、更精确的拓扑正则化,我们将通过实验来说明这种方法的优势。
{"title":"Topological regularization via persistence-sensitive optimization","authors":"Arnur Nigmetov ,&nbsp;Aditi Krishnapriyan ,&nbsp;Nicole Sanderson ,&nbsp;Dmitriy Morozov","doi":"10.1016/j.comgeo.2024.102086","DOIUrl":"10.1016/j.comgeo.2024.102086","url":null,"abstract":"<div><p>Optimization, a key tool in machine learning and statistics, relies on regularization to reduce overfitting. Traditional regularization methods control a norm of the solution to ensure its smoothness. Recently, topological methods have emerged as a way to provide a more precise and expressive control over the solution, relying on persistent homology to quantify and reduce its roughness. All such existing techniques back-propagate gradients through the persistence diagram, which is a summary of the topological features of a function. Their downside is that they provide information only at the critical points of the function. We propose a method that instead builds on persistence-sensitive simplification and translates the required changes to the persistence diagram into changes on large subsets of the domain, including both critical and regular points. This approach enables a faster and more precise topological regularization, the benefits of which we illustrate with experimental evidence.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000087/pdfft?md5=6740a147d9e195f49dbdb29746bfe080&pid=1-s2.0-S0925772124000087-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piercing families of convex sets in the plane that avoid a certain subfamily with lines 平面中避开某线段的凸集穿孔族
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2024-02-27 DOI: 10.1016/j.comgeo.2024.102087
Daniel McGinnis

We define a C(k) to be a family of k sets F1,,Fk such that conv(FiFi+1)conv(FjFj+1)= when {i,i+1}{j,j+1}= (indices are taken modulo k). We show that if F is a family of compact, convex sets that does not contain a C(k), then there are k2 lines that pierce F. Additionally, we give an example of a family of compact, convex sets that contains no C(k) and cannot be pierced by k21 lines.

我们将 a 定义为这样的集合族,即当(指数取模)时,a 。我们证明,如果是一个不包含 a 的紧凑凸集族,那么就有直线穿透 。此外,我们还给出了一个紧凑凸集合族的例子,它不包含且不能被直线穿透。
{"title":"Piercing families of convex sets in the plane that avoid a certain subfamily with lines","authors":"Daniel McGinnis","doi":"10.1016/j.comgeo.2024.102087","DOIUrl":"10.1016/j.comgeo.2024.102087","url":null,"abstract":"<div><p>We define a <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> to be a family of <em>k</em> sets <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that <span><math><mtext>conv</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mtext>conv</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> when <span><math><mo>{</mo><mi>i</mi><mo>,</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>j</mi><mo>,</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>}</mo><mo>=</mo><mo>∅</mo></math></span> (indices are taken modulo <em>k</em>). We show that if <span><math><mi>F</mi></math></span> is a family of compact, convex sets that does not contain a <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>, then there are <span><math><mi>k</mi><mo>−</mo><mn>2</mn></math></span> lines that pierce <span><math><mi>F</mi></math></span>. Additionally, we give an example of a family of compact, convex sets that contains no <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> and cannot be pierced by <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></math></span> lines.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds on soft rectangle packing ratios 软矩形包装率的界限
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-12-22 DOI: 10.1016/j.comgeo.2023.102078
Judith Brecklinghaus, Ulrich Brenner, Oliver Kiss

We examine rectangle packing problems where only the areas a1,,an of the rectangles to be packed are given while their aspect ratios may be chosen from a given interval [1γ,γ]. In particular, we ask for the smallest possible size of a rectangle R such that, under these constraints, any collection a1,,an of rectangle areas of total size 1 can be packed into R. As for standard square packing problems, which are contained as a special case for γ=1, this question leads us to three different answers, depending on whether the aspect ratio of R is given or whether we may choose it either with or without knowing the areas a1,,an. Generalizing known results for square packing problems, we provide upper and lower bounds for the size of R with respect to all three variants of the problem, which are tight at least for larger values of γ. Moreover, we show how to improve these bounds on the size of R if we restrict ourselves to instances where the largest element in a1,,an is bounded.

我们研究的矩形打包问题只给出待打包矩形的面积 a1、...、an,而它们的长宽比可以从给定区间 [1γ,γ]中选择。对于作为 γ=1 的特例而包含的标准正方形堆积问题,这个问题有三种不同的答案,取决于 R 的长宽比是给定的,还是可以在知道或不知道面积 a1、...、an 的情况下选择。根据已知的正方形包装问题的结果,我们提供了与问题的所有三个变体有关的 R 大小的上界和下界,这些上界和下界至少对较大的 γ 值是严密的。此外,我们还展示了如果我们将自己限制在 a1、...,an 中最大元素有界的实例中,如何改进 R 大小的这些界值。
{"title":"Bounds on soft rectangle packing ratios","authors":"Judith Brecklinghaus,&nbsp;Ulrich Brenner,&nbsp;Oliver Kiss","doi":"10.1016/j.comgeo.2023.102078","DOIUrl":"10.1016/j.comgeo.2023.102078","url":null,"abstract":"<div><p><span>We examine rectangle packing problems where only the areas </span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of the rectangles to be packed are given while their aspect ratios may be chosen from a given interval </span><span><math><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac><mo>,</mo><mi>γ</mi><mo>]</mo></math></span>. In particular, we ask for the smallest possible size of a rectangle <em>R</em> such that, under these constraints, any collection <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of rectangle areas of total size 1 can be packed into </span><em>R</em>. As for standard square packing problems, which are contained as a special case for <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span>, this question leads us to three different answers, depending on whether the aspect ratio of <em>R</em> is given or whether we may choose it either with or without knowing the areas <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>. Generalizing known results for square packing problems, we provide upper and lower bounds for the size of </span><em>R</em> with respect to all three variants of the problem, which are tight at least for larger values of <em>γ</em>. Moreover, we show how to improve these bounds on the size of <em>R</em> if we restrict ourselves to instances where the largest element in <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is bounded.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139025451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: “Densest Lattice Packings of 3–Polytopes” [Computational Geometry 16 (2000) 157–186] 勘误:"3-Polytopes 的最密集晶格堆积》[《计算几何》16 (2000) 157-186] 勘误
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-12-20 DOI: 10.1016/j.comgeo.2023.102076
Martin Henk
{"title":"Erratum to: “Densest Lattice Packings of 3–Polytopes” [Computational Geometry 16 (2000) 157–186]","authors":"Martin Henk","doi":"10.1016/j.comgeo.2023.102076","DOIUrl":"10.1016/j.comgeo.2023.102076","url":null,"abstract":"","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772123000962/pdfft?md5=74ebaf1a02f0eaa3ea8c548c7860a1ec&pid=1-s2.0-S0925772123000962-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139017293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Geometry-Theory and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1