首页 > 最新文献

Computational Geometry-Theory and Applications最新文献

英文 中文
Hierarchical categories in colored searching 彩色搜索中的层次类别
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2024-03-04 DOI: 10.1016/j.comgeo.2024.102090
Peyman Afshani , Rasmus Killmann , Kasper G. Larsen

In colored range counting (CRC), the input is a set of points where each point is assigned a “color” (or a “category”) and the goal is to store them in a data structure such that the number of distinct categories inside a given query range can be counted efficiently. CRC has strong motivations as it allows data structure to deal with categorical data.

However, colors (i.e., the categories) in the CRC problem do not have any internal structure, whereas this is not the case for many datasets in practice where hierarchical categories exist or where a single input belongs to multiple categories. Motivated by these, we consider variants of the problem where such structures can be represented. We define two variants of the problem called hierarchical range counting (HCC) and sub-category colored range counting (SCRC) and consider hierarchical structures that can either be a DAG or a tree. We show that the two problems on some special trees are in fact equivalent to other well-known problems in the literature. Based on these, we also give efficient data structures when the underlying hierarchy can be represented as a tree. We show a conditional lower bound for the general case when the existing hierarchy can be any DAG, through a reduction from the orthogonal vectors problem.

在彩色范围计数(CRC)中,输入是一组点,其中每个点都被分配了一种 "颜色"(或 "类别"),目标是将它们存储在一个数据结构中,以便高效地计算给定查询范围内不同类别的数量。CRC 允许数据结构处理分类数据,因此具有强烈的动机。
{"title":"Hierarchical categories in colored searching","authors":"Peyman Afshani ,&nbsp;Rasmus Killmann ,&nbsp;Kasper G. Larsen","doi":"10.1016/j.comgeo.2024.102090","DOIUrl":"10.1016/j.comgeo.2024.102090","url":null,"abstract":"<div><p>In colored range counting (CRC), the input is a set of points where each point is assigned a “color” (or a “category”) and the goal is to store them in a data structure such that the number of distinct categories inside a given query range can be counted efficiently. CRC has strong motivations as it allows data structure to deal with categorical data.</p><p>However, colors (i.e., the categories) in the CRC problem do not have any internal structure, whereas this is not the case for many datasets in practice where hierarchical categories exist or where a single input belongs to multiple categories. Motivated by these, we consider variants of the problem where such structures can be represented. We define two variants of the problem called hierarchical range counting (HCC) and sub-category colored range counting (SCRC) and consider hierarchical structures that can either be a DAG or a tree. We show that the two problems on some special trees are in fact equivalent to other well-known problems in the literature. Based on these, we also give efficient data structures when the underlying hierarchy can be represented as a tree. We show a conditional lower bound for the general case when the existing hierarchy can be any DAG, through a reduction from the orthogonal vectors problem.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"121 ","pages":"Article 102090"},"PeriodicalIF":0.6,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000129/pdfft?md5=58168aae21edfa03ea4bb23171502329&pid=1-s2.0-S0925772124000129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating iterated persistent homology computations with warm starts 用热启动加速迭代持续同源计算
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2024-03-01 DOI: 10.1016/j.comgeo.2024.102089
Yuan Luo , Bradley J. Nelson

Persistent homology is a topological feature used in a variety of applications such as generating features for data analysis and penalizing optimization problems. We develop an approach to accelerate persistent homology computations performed on many similar filtered topological spaces which is based on updating associated matrix factorizations. Our approach improves the update scheme of Cohen-Steiner, Edelsbrunner, and Morozov for permutations by additionally handling addition and deletion of cells in a filtered topological space and by processing changes in a single batch. We show that the complexity of our scheme scales with the number of elementary changes to the filtration which as a result is often less expensive than the full persistent homology computation. Finally, we perform computational experiments demonstrating practical speedups in several situations including feature generation and optimization guided by persistent homology.

持久同源性是一种拓扑特征,可用于多种应用,如生成数据分析特征和对优化问题进行惩罚。我们开发了一种基于更新相关矩阵因式的方法,用于加速在许多相似的过滤拓扑空间上进行的持久同源性计算。我们的方法改进了 Cohen-Steiner、Edelsbrunner 和 Morozov 针对排列的更新方案,额外处理了过滤拓扑空间中单元格的添加和删除,并在单个批次中处理变化。我们的研究表明,我们方案的复杂性与滤波的基本变化数量成比例,因此其成本往往低于完整的持久同调计算。最后,我们进行了计算实验,展示了在特征生成和持久同源性指导下的优化等几种情况下的实际加速效果。
{"title":"Accelerating iterated persistent homology computations with warm starts","authors":"Yuan Luo ,&nbsp;Bradley J. Nelson","doi":"10.1016/j.comgeo.2024.102089","DOIUrl":"10.1016/j.comgeo.2024.102089","url":null,"abstract":"<div><p>Persistent homology is a topological feature used in a variety of applications such as generating features for data analysis and penalizing optimization problems. We develop an approach to accelerate persistent homology computations performed on many similar filtered topological spaces which is based on updating associated matrix factorizations. Our approach improves the update scheme of Cohen-Steiner, Edelsbrunner, and Morozov for permutations by additionally handling addition and deletion of cells in a filtered topological space and by processing changes in a single batch. We show that the complexity of our scheme scales with the number of elementary changes to the filtration which as a result is often less expensive than the full persistent homology computation. Finally, we perform computational experiments demonstrating practical speedups in several situations including feature generation and optimization guided by persistent homology.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"120 ","pages":"Article 102089"},"PeriodicalIF":0.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological regularization via persistence-sensitive optimization 通过持久性敏感优化实现拓扑正则化
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2024-02-28 DOI: 10.1016/j.comgeo.2024.102086
Arnur Nigmetov , Aditi Krishnapriyan , Nicole Sanderson , Dmitriy Morozov

Optimization, a key tool in machine learning and statistics, relies on regularization to reduce overfitting. Traditional regularization methods control a norm of the solution to ensure its smoothness. Recently, topological methods have emerged as a way to provide a more precise and expressive control over the solution, relying on persistent homology to quantify and reduce its roughness. All such existing techniques back-propagate gradients through the persistence diagram, which is a summary of the topological features of a function. Their downside is that they provide information only at the critical points of the function. We propose a method that instead builds on persistence-sensitive simplification and translates the required changes to the persistence diagram into changes on large subsets of the domain, including both critical and regular points. This approach enables a faster and more precise topological regularization, the benefits of which we illustrate with experimental evidence.

优化是机器学习和统计学的重要工具,它依赖于正则化来减少过拟合。传统的正则化方法控制解的规范,以确保其平滑性。最近,拓扑方法应运而生,它能对解法进行更精确、更有表现力的控制,依靠持久同源性来量化和降低解法的粗糙度。所有这些现有技术都是通过持久图反向传播梯度,持久图是函数拓扑特征的总结。它们的缺点是只能提供函数临界点的信息。我们提出的方法则建立在对持久性敏感的简化基础上,将持久性图所需的变化转化为包括临界点和规则点在内的大域子集上的变化。这种方法可以实现更快、更精确的拓扑正则化,我们将通过实验来说明这种方法的优势。
{"title":"Topological regularization via persistence-sensitive optimization","authors":"Arnur Nigmetov ,&nbsp;Aditi Krishnapriyan ,&nbsp;Nicole Sanderson ,&nbsp;Dmitriy Morozov","doi":"10.1016/j.comgeo.2024.102086","DOIUrl":"10.1016/j.comgeo.2024.102086","url":null,"abstract":"<div><p>Optimization, a key tool in machine learning and statistics, relies on regularization to reduce overfitting. Traditional regularization methods control a norm of the solution to ensure its smoothness. Recently, topological methods have emerged as a way to provide a more precise and expressive control over the solution, relying on persistent homology to quantify and reduce its roughness. All such existing techniques back-propagate gradients through the persistence diagram, which is a summary of the topological features of a function. Their downside is that they provide information only at the critical points of the function. We propose a method that instead builds on persistence-sensitive simplification and translates the required changes to the persistence diagram into changes on large subsets of the domain, including both critical and regular points. This approach enables a faster and more precise topological regularization, the benefits of which we illustrate with experimental evidence.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"120 ","pages":"Article 102086"},"PeriodicalIF":0.6,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000087/pdfft?md5=6740a147d9e195f49dbdb29746bfe080&pid=1-s2.0-S0925772124000087-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piercing families of convex sets in the plane that avoid a certain subfamily with lines 平面中避开某线段的凸集穿孔族
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2024-02-27 DOI: 10.1016/j.comgeo.2024.102087
Daniel McGinnis

We define a C(k) to be a family of k sets F1,,Fk such that conv(FiFi+1)conv(FjFj+1)= when {i,i+1}{j,j+1}= (indices are taken modulo k). We show that if F is a family of compact, convex sets that does not contain a C(k), then there are k2 lines that pierce F. Additionally, we give an example of a family of compact, convex sets that contains no C(k) and cannot be pierced by k21 lines.

我们将 a 定义为这样的集合族,即当(指数取模)时,a 。我们证明,如果是一个不包含 a 的紧凑凸集族,那么就有直线穿透 。此外,我们还给出了一个紧凑凸集合族的例子,它不包含且不能被直线穿透。
{"title":"Piercing families of convex sets in the plane that avoid a certain subfamily with lines","authors":"Daniel McGinnis","doi":"10.1016/j.comgeo.2024.102087","DOIUrl":"10.1016/j.comgeo.2024.102087","url":null,"abstract":"<div><p>We define a <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> to be a family of <em>k</em> sets <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that <span><math><mtext>conv</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mtext>conv</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> when <span><math><mo>{</mo><mi>i</mi><mo>,</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>j</mi><mo>,</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo>}</mo><mo>=</mo><mo>∅</mo></math></span> (indices are taken modulo <em>k</em>). We show that if <span><math><mi>F</mi></math></span> is a family of compact, convex sets that does not contain a <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>, then there are <span><math><mi>k</mi><mo>−</mo><mn>2</mn></math></span> lines that pierce <span><math><mi>F</mi></math></span>. Additionally, we give an example of a family of compact, convex sets that contains no <span><math><mi>C</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> and cannot be pierced by <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></math></span> lines.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"120 ","pages":"Article 102087"},"PeriodicalIF":0.6,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds on soft rectangle packing ratios 软矩形包装率的界限
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2023-12-22 DOI: 10.1016/j.comgeo.2023.102078
Judith Brecklinghaus, Ulrich Brenner, Oliver Kiss

We examine rectangle packing problems where only the areas a1,,an of the rectangles to be packed are given while their aspect ratios may be chosen from a given interval [1γ,γ]. In particular, we ask for the smallest possible size of a rectangle R such that, under these constraints, any collection a1,,an of rectangle areas of total size 1 can be packed into R. As for standard square packing problems, which are contained as a special case for γ=1, this question leads us to three different answers, depending on whether the aspect ratio of R is given or whether we may choose it either with or without knowing the areas a1,,an. Generalizing known results for square packing problems, we provide upper and lower bounds for the size of R with respect to all three variants of the problem, which are tight at least for larger values of γ. Moreover, we show how to improve these bounds on the size of R if we restrict ourselves to instances where the largest element in a1,,an is bounded.

我们研究的矩形打包问题只给出待打包矩形的面积 a1、...、an,而它们的长宽比可以从给定区间 [1γ,γ]中选择。对于作为 γ=1 的特例而包含的标准正方形堆积问题,这个问题有三种不同的答案,取决于 R 的长宽比是给定的,还是可以在知道或不知道面积 a1、...、an 的情况下选择。根据已知的正方形包装问题的结果,我们提供了与问题的所有三个变体有关的 R 大小的上界和下界,这些上界和下界至少对较大的 γ 值是严密的。此外,我们还展示了如果我们将自己限制在 a1、...,an 中最大元素有界的实例中,如何改进 R 大小的这些界值。
{"title":"Bounds on soft rectangle packing ratios","authors":"Judith Brecklinghaus,&nbsp;Ulrich Brenner,&nbsp;Oliver Kiss","doi":"10.1016/j.comgeo.2023.102078","DOIUrl":"10.1016/j.comgeo.2023.102078","url":null,"abstract":"<div><p><span>We examine rectangle packing problems where only the areas </span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of the rectangles to be packed are given while their aspect ratios may be chosen from a given interval </span><span><math><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac><mo>,</mo><mi>γ</mi><mo>]</mo></math></span>. In particular, we ask for the smallest possible size of a rectangle <em>R</em> such that, under these constraints, any collection <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of rectangle areas of total size 1 can be packed into </span><em>R</em>. As for standard square packing problems, which are contained as a special case for <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span>, this question leads us to three different answers, depending on whether the aspect ratio of <em>R</em> is given or whether we may choose it either with or without knowing the areas <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>. Generalizing known results for square packing problems, we provide upper and lower bounds for the size of </span><em>R</em> with respect to all three variants of the problem, which are tight at least for larger values of <em>γ</em>. Moreover, we show how to improve these bounds on the size of <em>R</em> if we restrict ourselves to instances where the largest element in <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is bounded.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"119 ","pages":"Article 102078"},"PeriodicalIF":0.6,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139025451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: “Densest Lattice Packings of 3–Polytopes” [Computational Geometry 16 (2000) 157–186] 勘误:"3-Polytopes 的最密集晶格堆积》[《计算几何》16 (2000) 157-186] 勘误
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2023-12-20 DOI: 10.1016/j.comgeo.2023.102076
Martin Henk
{"title":"Erratum to: “Densest Lattice Packings of 3–Polytopes” [Computational Geometry 16 (2000) 157–186]","authors":"Martin Henk","doi":"10.1016/j.comgeo.2023.102076","DOIUrl":"10.1016/j.comgeo.2023.102076","url":null,"abstract":"","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"119 ","pages":"Article 102076"},"PeriodicalIF":0.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772123000962/pdfft?md5=74ebaf1a02f0eaa3ea8c548c7860a1ec&pid=1-s2.0-S0925772123000962-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139017293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global strong convexity and characterization of critical points of time-of-arrival-based source localization 基于到达时间的源定位的全局强凸性和临界点特征
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2023-12-19 DOI: 10.1016/j.comgeo.2023.102077
Yuen-Man Pun , Anthony Man-Cho So

In this work, we study a least-squares formulation of the source localization problem given time-of-arrival measurements. We show that the formulation, albeit non-convex in general, is globally strongly convex under certain condition on the geometric configuration of the anchors and the source and on the measurement noise. Next, we derive a characterization of the critical points of the least-squares formulation, leading to a bound on the maximum number of critical points under a very mild assumption on the measurement noise. In particular, the result provides a sufficient condition for the critical points of the least-squares formulation to be isolated. Prior to our work, the isolation of the critical points is treated as an assumption without any justification in the localization literature. The said characterization also leads to an algorithm that can find a global optimum of the least-squares formulation by searching through all critical points. We then establish an upper bound of the estimation error of the least-squares estimator. Finally, our numerical results corroborate the theoretical findings and show that our proposed algorithm can obtain a global solution regardless of the geometric configuration of the anchors and the source.

在这项工作中,我们研究了给定到达时间测量的源定位问题的最小二乘公式。我们的研究表明,尽管该公式一般情况下是非凸的,但在锚点和源的几何配置以及测量噪声的特定条件下,该公式是全局强凸的。接下来,我们推导出最小二乘公式临界点的特征,从而得出在非常温和的测量噪声假设下临界点最大数量的约束。特别是,该结果为最小二乘公式的临界点被隔离提供了充分条件。在我们的工作之前,临界点的孤立性被视为一种假设,在本地化文献中没有任何正当理由。上述特征还引出了一种算法,该算法可以通过搜索所有临界点找到最小二乘公式的全局最优点。然后,我们建立了最小二乘估计器的估计误差上限。最后,我们的数值结果证实了理论发现,并表明无论锚点和源的几何配置如何,我们提出的算法都能获得全局解。
{"title":"Global strong convexity and characterization of critical points of time-of-arrival-based source localization","authors":"Yuen-Man Pun ,&nbsp;Anthony Man-Cho So","doi":"10.1016/j.comgeo.2023.102077","DOIUrl":"10.1016/j.comgeo.2023.102077","url":null,"abstract":"<div><p>In this work, we study a least-squares formulation of the source localization problem given time-of-arrival measurements. We show that the formulation, albeit non-convex in general, is globally strongly convex under certain condition on the geometric configuration of the anchors and the source and on the measurement noise. Next, we derive a characterization of the critical points of the least-squares formulation, leading to a bound on the maximum number of critical points under a very mild assumption on the measurement noise. In particular, the result provides a sufficient condition for the critical points of the least-squares formulation to be isolated. Prior to our work, the isolation of the critical points is treated as an assumption without any justification in the localization literature. The said characterization also leads to an algorithm that can find a global optimum of the least-squares formulation by searching through all critical points. We then establish an upper bound of the estimation error of the least-squares estimator. Finally, our numerical results corroborate the theoretical findings and show that our proposed algorithm can obtain a global solution regardless of the geometric configuration of the anchors and the source.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"119 ","pages":"Article 102077"},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139023994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational tensegrities through the lens of toric geometry 通过环面几何透镜的有理张拉整体
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2023-11-30 DOI: 10.1016/j.comgeo.2023.102075
Fatemeh Mohammadi , Xian Wu

A classical tensegrity model consists of an embedded graph in a vector space with rigid bars representing edges, and an assignment of a stress to every edge such that at every vertex of the graph the stresses sum up to zero. The tensegrity frameworks have been recently extended from the two dimensional graph case to the multidimensional setting. We study the multidimensional tensegrities using tools from toric geometry. We introduce a link between self-stresses and Chow rings on toric varieties. More precisely, for a given rational tensegrity framework F, we construct a glued toric surface XF. We show that the abelian group of tensegrities on F is isomorphic to a subgroup of the Chow group A1(XF;Q). In the case of planar frameworks, we show how to explicitly carry out the computation of tensegrities via classical tools in toric geometry.

一个经典的张拉整体模型由一个嵌入在向量空间中的图形组成,其中刚性条表示边缘,并为每个边缘分配应力,使图的每个顶点的应力总和为零。张拉整体框架最近已经从二维图的情况下扩展到多维设置。我们利用环面几何的工具研究了多维张拉整体。我们介绍了自应力和周环之间的联系,在toric品种。更准确地说,对于给定的有理张拉整体框架F,我们构造了一个粘接的环面XF。我们证明了F上张拉整体的阿贝尔群同构于Chow群A1(XF;Q)的一个子群。在平面框架的情况下,我们展示了如何通过经典工具在环几何中显式地执行张拉整体的计算。
{"title":"Rational tensegrities through the lens of toric geometry","authors":"Fatemeh Mohammadi ,&nbsp;Xian Wu","doi":"10.1016/j.comgeo.2023.102075","DOIUrl":"10.1016/j.comgeo.2023.102075","url":null,"abstract":"<div><p>A classical tensegrity model consists of an embedded graph in a vector space with rigid bars representing edges, and an assignment of a stress to every edge such that at every vertex of the graph the stresses sum up to zero. The tensegrity frameworks have been recently extended from the two dimensional graph case to the multidimensional setting. We study the multidimensional tensegrities using tools from toric geometry. We introduce a link between self-stresses and Chow rings on toric varieties. More precisely, for a given rational tensegrity framework <span><math><mi>F</mi></math></span>, we construct a glued toric surface <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span><span>. We show that the abelian group of tensegrities on </span><span><math><mi>F</mi></math></span> is isomorphic to a subgroup of the Chow group <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>;</mo><mi>Q</mi><mo>)</mo></math></span>. In the case of planar frameworks, we show how to explicitly carry out the computation of tensegrities via classical tools in toric geometry.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"119 ","pages":"Article 102075"},"PeriodicalIF":0.6,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138521877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized class cover problem with axis-parallel strips 轴平行带的广义类覆盖问题
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2023-11-17 DOI: 10.1016/j.comgeo.2023.102065
Apurva Mudgal , Supantha Pandit

We initiate the study of a generalization of the class cover problem [Cannon and Cowen [1], Bereg et al. [2]] the generalized class cover problem, where we are allowed to misclassify some points provided we pay an associated positive penalty for every misclassified point. Two versions: single coverage and multiple coverage, of the generalized class cover problem are investigated. We study five different variants of both versions of the generalized class cover problem with axis-parallel strips and axis-parallel half-strips extending to different directions in the plane, thus extending similar work by Bereg et al. (2012) [2] on the class cover problem. We prove that the multiple coverage version of the generalize class cover problem with axis-parallel strips are in P, whereas the single coverage version is NP-hard. A factor 2 approximation algorithm is provided for the later problem. The APX-hardness result is also shown for the single coverage version. For half-strips extending to exactly one direction, both the single and multiple coverage versions can be solved in polynomial time using dynamic programming. In the case of half-strips extending to two orthogonal directions, we prove the class cover problem is NP-hard followed by APX-hard. This gives improve hardness results compare to Bereg et al. (2012) [2], where they proved the class cover problem with half-strips oriented in four different directions is NP-hard. These NP- and APX-hardness results can directly apply to both single and multiple versions. Finally, constant factor approximation algorithms are provided for half-strips extending to more than one direction.

我们开始研究类覆盖问题的一般化[Cannon and Cowen [1], Bereg et al.[2]],即广义类覆盖问题,在这个问题中,我们允许对某些点进行错误分类,前提是我们为每个错误分类的点支付相应的正惩罚。研究了广义类覆盖问题的单覆盖和多覆盖两种版本。我们研究了轴平行带和轴平行半带在平面上向不同方向扩展的广义类覆盖问题的两个版本的五种不同变体,从而扩展了Bereg et al.(2012)[2]在类覆盖问题上的类似工作。证明了具有轴平行带的广义类覆盖问题的多覆盖版本在P内,而单覆盖版本是np困难的。对于后面的问题,给出了一个因子2近似算法。单覆盖版本的apx硬度结果也显示出来。对于只向一个方向扩展的半带,单覆盖和多覆盖都可以在多项式时间内用动态规划求解。在半带扩展到两个正交方向的情况下,我们证明了类覆盖问题是np困难的,其次是apx困难的。这与Bereg等人(2012)[2]相比,硬度结果有所提高,他们证明了在四个不同方向上有半条的类盖问题是NP-hard。这些NP-和apx -硬度结果可以直接应用于单个和多个版本。最后,给出了扩展到多个方向的半带的常因子近似算法。
{"title":"Generalized class cover problem with axis-parallel strips","authors":"Apurva Mudgal ,&nbsp;Supantha Pandit","doi":"10.1016/j.comgeo.2023.102065","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102065","url":null,"abstract":"<div><p>We initiate the study of a <em>generalization</em> of the class cover problem [Cannon and Cowen <span>[1]</span>, Bereg et al. <span>[2]</span>] the <span><em>generalized class</em><em> cover problem</em></span>, where we are allowed to <em>misclassify</em> some points provided we pay an associated positive <em>penalty</em> for every misclassified point. Two versions: <em>single coverage</em> and <em>multiple coverage</em>, of the generalized class cover problem are investigated. We study five different variants of both versions of the generalized class cover problem with axis-parallel <em>strips</em> and axis-parallel <em>half-strips</em> extending to different directions in the plane, thus extending similar work by Bereg et al. (2012) <span>[2]</span> on the class cover problem. We prove that the multiple coverage version of the generalize class cover problem with axis-parallel strips are in <span><math><mi>P</mi></math></span>, whereas the single coverage version is <span><math><mi>NP</mi></math></span><span>-hard. A factor 2 approximation algorithm is provided for the later problem. The </span><span><math><mi>APX</mi></math></span><span><span>-hardness result is also shown for the single coverage version. For half-strips extending to exactly one direction, both the single and multiple coverage versions can be solved in polynomial time using </span>dynamic programming. In the case of half-strips extending to two orthogonal directions, we prove the class cover problem is </span><span><math><mi>NP</mi></math></span>-hard followed by <span><math><mi>APX</mi></math></span>-hard. This gives improve hardness results compare to Bereg et al. (2012) <span>[2]</span>, where they proved the class cover problem with half-strips oriented in four different directions is <span><math><mi>NP</mi></math></span>-hard. These <span><math><mi>NP</mi></math></span>- and <span><math><mi>APX</mi></math></span>-hardness results can directly apply to both single and multiple versions. Finally, constant factor approximation algorithms are provided for half-strips extending to more than one direction.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"119 ","pages":"Article 102065"},"PeriodicalIF":0.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138471747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enumerating combinatorial resultant trees 枚举组合结果树
IF 0.6 4区 计算机科学 Q4 MATHEMATICS Pub Date : 2023-10-31 DOI: 10.1016/j.comgeo.2023.102064
Goran Malić , Ileana Streinu

A 2D rigidity circuit is a minimal graph G=(V,E) supporting a non-trivial stress in any generic placement of its vertices in the Euclidean plane. All 2D rigidity circuits can be constructed from K4 graphs using combinatorial resultant (CR) operations. A combinatorial resultant tree (CR-tree) is a rooted binary tree capturing the structure of such a construction.

The CR operation has a specific algebraic interpretation, where an essentially unique circuit polynomial is associated to each circuit graph. Performing Sylvester resultant operations on these polynomials is in one-to-one correspondence with CR operations on circuit graphs. This mixed combinatorial/algebraic approach led recently to an effective algorithm for computing circuit polynomials. Its complexity analysis remains an open problem, but it is known to be influenced by the depth and shape of CR-trees in ways that have only partially been investigated.

In this paper, we present an effective algorithm for enumerating all the CR-trees of a given circuit with n vertices. Our algorithm has been fully implemented in Mathematica and allows for computational experimentation with various optimality criteria in the resulting, potentially exponentially large collections of CR-trees.

二维刚性电路是一个极小图G=(V,E),它在欧几里得平面上的顶点的任意一般位置上支持一个非平凡应力。所有的二维刚性电路都可以用组合结运算从K4图构造出来。组合结树(CR-tree)是一种有根的二叉树,它捕获了这种结构的结构。CR操作具有特定的代数解释,其中本质上唯一的电路多项式与每个电路图相关联。在这些多项式上执行Sylvester结式运算与在电路图上执行CR运算是一一对应的。这种混合组合/代数方法最近导致了一种计算电路多项式的有效算法。它的复杂性分析仍然是一个悬而未决的问题,但已知它受到cr树的深度和形状的影响,而这些影响只在一定程度上得到了研究。在本文中,我们提出了一种有效的算法来枚举给定电路的所有n个顶点的cr树。我们的算法已经在Mathematica中完全实现,并允许在结果中使用各种最优性标准进行计算实验,可能是指数级大的cr树集合。
{"title":"Enumerating combinatorial resultant trees","authors":"Goran Malić ,&nbsp;Ileana Streinu","doi":"10.1016/j.comgeo.2023.102064","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102064","url":null,"abstract":"<div><p>A 2D rigidity circuit is a minimal graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> supporting a non-trivial stress in any generic placement of its vertices in the Euclidean plane. All 2D rigidity circuits can be constructed from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> graphs using <em>combinatorial resultant (CR)</em> operations. A <em>combinatorial resultant tree (CR-tree)</em> is a rooted binary tree capturing the structure of such a construction.</p><p>The CR operation has a specific algebraic interpretation, where an essentially unique <em>circuit polynomial</em> is associated to each circuit graph. Performing Sylvester resultant operations on these polynomials is in one-to-one correspondence with CR operations on circuit graphs. This mixed combinatorial/algebraic approach led recently to an effective algorithm for computing circuit polynomials. Its complexity analysis remains an open problem, but it is known to be influenced by the depth and shape of CR-trees in ways that have only partially been investigated.</p><p>In this paper, we present an effective algorithm for enumerating all the CR-trees of a given circuit with <em>n</em> vertices. Our algorithm has been fully implemented in Mathematica and allows for computational experimentation with various optimality criteria in the resulting, potentially exponentially large collections of CR-trees.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"118 ","pages":"Article 102064"},"PeriodicalIF":0.6,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772123000846/pdfft?md5=b5e5388817484fb1e7de948f68aa70c6&pid=1-s2.0-S0925772123000846-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134656261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Geometry-Theory and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1