首页 > 最新文献

Computational Geometry-Theory and Applications最新文献

英文 中文
Linear-time approximation scheme for k-means clustering of axis-parallel affine subspaces 轴平行仿射子空间k均值聚类的线性时间近似格式
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-06-01 DOI: 10.1016/j.comgeo.2023.101981
Kyungjin Cho, Eunjin Oh

In this paper, we present a linear-time approximation scheme for k-means clustering of incomplete data points in d-dimensional Euclidean space. An incomplete data point with Δ>0 unspecified entries is represented as an axis-parallel affine subspace of dimension Δ. The distance between two incomplete data points is defined as the Euclidean distance between two closest points in the axis-parallel affine subspaces corresponding to the data points. We present an algorithm for k-means clustering of n axis-parallel affine subspaces of dimension Δ that yields an (1+ϵ)-approximate solution in O(nd) time. The constants hidden behind O() depend only on Δ,ϵ and k. This improves the O(n2d)-time algorithm by Eiben et al. (2021) [7] by a factor of n.

本文给出了d维欧氏空间中不完全数据点的k均值聚类的线性时间近似方案。Δ>;0个未指定条目表示为维度为Δ的轴平行仿射子空间。两个不完全数据点之间的距离被定义为与数据点相对应的轴平行仿射子空间中的两个最近点之间的欧几里得距离。我们提出了一种对维度为Δ的n轴平行仿射子空间进行k均值聚类的算法,该算法在O(nd)时间内产生(1+)-近似解。隐藏在O(‧)后面的常数仅取决于Δ、Ş和k。这改进了Eiben等人的O(n2d)-时间算法。(2021)[7]的因子为n。
{"title":"Linear-time approximation scheme for k-means clustering of axis-parallel affine subspaces","authors":"Kyungjin Cho,&nbsp;Eunjin Oh","doi":"10.1016/j.comgeo.2023.101981","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.101981","url":null,"abstract":"<div><p>In this paper, we present a linear-time approximation scheme for <em>k</em>-means clustering of <em>incomplete</em> data points in <em>d</em>-dimensional Euclidean space. An <em>incomplete</em> data point with <span><math><mi>Δ</mi><mo>&gt;</mo><mn>0</mn></math></span><span><span> unspecified entries is represented as an axis-parallel affine subspace of dimension Δ. The distance between two incomplete data points is defined as the </span>Euclidean distance between two closest points in the axis-parallel affine subspaces corresponding to the data points. We present an algorithm for </span><em>k</em>-means clustering of <em>n</em> axis-parallel affine subspaces of dimension Δ that yields an <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ϵ</mi><mo>)</mo></math></span>-approximate solution in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>d</mi><mo>)</mo></math></span> time. The constants hidden behind <span><math><mi>O</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> depend only on <span><math><mi>Δ</mi><mo>,</mo><mi>ϵ</mi></math></span> and <em>k</em>. This improves the <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mo>)</mo></math></span>-time algorithm by Eiben et al. (2021) <span>[7]</span> by a factor of <em>n</em>.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49837673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colouring bottomless rectangles and arborescences 为无底矩形和树景着色
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-06-01 DOI: 10.1016/j.comgeo.2023.102020
Jean Cardinal , Kolja Knauer , Piotr Micek , Dömötör Pálvölgyi , Torsten Ueckerdt , Narmada Varadarajan

We study problems related to colouring families of bottomless rectangles in the plane, in an attempt to improve the polychromatic k-colouring number mk. This number is the smallest m such that any collection of bottomless rectangles can be k-coloured so that any m-fold covered point is covered by all k colours. We show that for many families of bottomless rectangles, such as unit-width bottomless rectangles, or bottomless rectangles whose left corners lie on a line, mk is linear in k. We present the lower bound mk2k1 for general families.

We also investigate semi-online colouring algorithms, which need not colour each vertex immediately, but must maintain a proper colouring. We prove that for many sweeping orders, for any positive integers m,k, there is no semi-online algorithm that can k-colour bottomless rectangles presented in that order, so that any m-fold covered point is covered by at least two colours. This holds even for translates of quadrants, and is a corollary of a stronger result for arborescence colourings: Any semi-online colouring algorithm that colours an arborescence presented in post-order may produce arbitrarily long monochromatic paths.

我们研究了与平面中无底矩形的着色族有关的问题,试图改进多色k着色数mk。这个数字是最小的m,使得任何无底矩形的集合都可以是k色的,使得任何m倍覆盖点都被所有k色覆盖。我们证明了对于许多无底矩形族,如单位宽度的无底矩形,或左角位于一条线上的无底长方形,mk在k中是线性的。我们给出了一般族的下界mk≥2k−1。我们还研究了半在线着色算法,该算法不需要立即为每个顶点着色,但必须保持适当的着色。我们证明了对于许多扫频阶,对于任何正整数m,k,不存在可以k色按该阶呈现的无底矩形的半在线算法,使得任何m次覆盖点都被至少两种颜色覆盖。这甚至适用于象限的平移,也是树状图着色更强结果的必然结果:任何对按后序呈现的树状图进行着色的半在线着色算法都可能产生任意长的单色路径。
{"title":"Colouring bottomless rectangles and arborescences","authors":"Jean Cardinal ,&nbsp;Kolja Knauer ,&nbsp;Piotr Micek ,&nbsp;Dömötör Pálvölgyi ,&nbsp;Torsten Ueckerdt ,&nbsp;Narmada Varadarajan","doi":"10.1016/j.comgeo.2023.102020","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.102020","url":null,"abstract":"<div><p>We study problems related to colouring families of bottomless rectangles in the plane, in an attempt to improve the <em>polychromatic k-colouring number</em> <span><math><msubsup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. This number is the smallest <em>m</em> such that any collection of bottomless rectangles can be <em>k</em>-coloured so that any <em>m</em>-fold covered point is covered by all <em>k</em> colours. We show that for many families of bottomless rectangles, such as unit-width bottomless rectangles, or bottomless rectangles whose left corners lie on a line, <span><math><msubsup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> is linear in <em>k</em>. We present the lower bound <span><math><msubsup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>≥</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span> for general families.</p><p>We also investigate <em>semi-online</em> colouring algorithms, which need not colour each vertex immediately, but must maintain a proper colouring. We prove that for many sweeping orders, for any positive integers <span><math><mi>m</mi><mo>,</mo><mi>k</mi></math></span>, there is no semi-online algorithm that can <em>k</em>-colour bottomless rectangles presented in that order, so that any <em>m</em>-fold covered point is covered by at least two colours. This holds even for translates of quadrants, and is a corollary of a stronger result for arborescence colourings: Any semi-online colouring algorithm that colours an arborescence presented in post-order may produce arbitrarily long monochromatic paths.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49791319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Partial matchings induced by morphisms between persistence modules 持久模间态射引起的部分匹配
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-06-01 DOI: 10.1016/j.comgeo.2023.101985
R. Gonzalez-Diaz, M. Soriano-Trigueros, A. Torras-Casas

We study how to obtain partial matchings using the block function Mf, induced by a morphism f between persistence modules. Mf is defined algebraically and is linear with respect to direct sums of morphisms. We study some interesting properties of Mf, and provide a way of obtaining Mf using matrix operations.

我们研究了如何使用块函数Mf来获得部分匹配,这是由持久性模块之间的态射f引起的。Mf是代数定义的,并且相对于态射的直和是线性的。我们研究了Mf的一些有趣的性质,并提供了一种使用矩阵运算获得Mf的方法。
{"title":"Partial matchings induced by morphisms between persistence modules","authors":"R. Gonzalez-Diaz,&nbsp;M. Soriano-Trigueros,&nbsp;A. Torras-Casas","doi":"10.1016/j.comgeo.2023.101985","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.101985","url":null,"abstract":"<div><p>We study how to obtain partial matchings using the block function <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, induced by a morphism <em>f</em> between persistence modules. <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is defined algebraically and is linear with respect to direct sums of morphisms. We study some interesting properties of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, and provide a way of obtaining <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> using matrix operations.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49795349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shortcut hulls: Vertex-restricted outer simplifications of polygons 快捷外壳线:多边形的受顶点限制的外部简化
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-06-01 DOI: 10.1016/j.comgeo.2023.101983
Annika Bonerath , Jan-Henrik Haunert , Joseph S.B. Mitchell , Benjamin Niedermann

Let P be a polygon and C a set of shortcuts, where each shortcut is a directed straight-line segment connecting two vertices of P. A shortcut hull of P is another polygon that encloses P and whose oriented boundary is composed of elements from C. We require P and the output shortcut hull to be weakly simple polygons, which we define as a generalization of simple polygons. Shortcut hulls find their application in cartography, where a common task is to compute simplified representations of area features. We aim at a shortcut hull that has a small area and a small perimeter. Our optimization objective is to minimize a convex combination of these two criteria. If no holes in the shortcut hull are allowed, the problem admits a straight-forward solution via computation of shortest paths. For the more challenging case in which the shortcut hull may contain holes, we present a polynomial-time algorithm that is based on computing a constrained, weighted triangulation of the input polygon's exterior. We use this problem as a starting point for investigating further variants, e.g., restricting the number of edges or bends. We demonstrate that shortcut hulls can be used for the schematization of polygons.

设P是一个多边形,C是一组快捷方式,其中每个快捷方式是连接P的两个顶点的有向直线段。P的快捷方式外壳是另一个包围P的多边形,其定向边界由来自C的元素组成。我们要求P和输出快捷方式外壳为弱简单多边形,我们将其定义为简单多边形的推广。快捷外壳线在制图中得到了应用,其中一个常见的任务是计算区域特征的简化表示。我们瞄准的是一个面积小、周长小的捷径船体。我们的优化目标是最小化这两个标准的凸组合。如果捷径外壳上不允许有洞,则该问题可以通过计算最短路径来直接求解。对于快捷外壳可能包含孔的更具挑战性的情况,我们提出了一种多项式时间算法,该算法基于计算输入多边形外部的约束加权三角测量。我们将这个问题作为研究进一步变体的起点,例如,限制边缘或弯曲的数量。我们证明了快捷外壳可以用于多边形的模式化。
{"title":"Shortcut hulls: Vertex-restricted outer simplifications of polygons","authors":"Annika Bonerath ,&nbsp;Jan-Henrik Haunert ,&nbsp;Joseph S.B. Mitchell ,&nbsp;Benjamin Niedermann","doi":"10.1016/j.comgeo.2023.101983","DOIUrl":"https://doi.org/10.1016/j.comgeo.2023.101983","url":null,"abstract":"<div><p>Let <em>P</em> be a polygon and <span><math><mi>C</mi></math></span> a set of shortcuts, where each shortcut is a directed straight-line segment connecting two vertices of <em>P</em>. A shortcut hull of <em>P</em> is another polygon that encloses <em>P</em> and whose oriented boundary is composed of elements from <span><math><mi>C</mi></math></span>. We require <em>P</em><span> and the output shortcut hull to be weakly simple polygons<span>, which we define as a generalization of simple polygons. Shortcut hulls find their application in cartography, where a common task is to compute simplified representations of area features. We aim at a shortcut hull that has a small area and a small perimeter. Our optimization objective is to minimize a convex combination of these two criteria. If no holes in the shortcut hull are allowed, the problem admits a straight-forward solution via computation of shortest paths. For the more challenging case in which the shortcut hull may contain holes, we present a polynomial-time algorithm that is based on computing a constrained, weighted triangulation of the input polygon's exterior. We use this problem as a starting point for investigating further variants, e.g., restricting the number of edges or bends. We demonstrate that shortcut hulls can be used for the schematization of polygons.</span></span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49795346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rectangle stabbing and orthogonal range reporting lower bounds in moderate dimensions 矩形插入和正交范围报告中等尺寸的下限
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-04-01 DOI: 10.1016/j.comgeo.2022.101959
Peyman Afshani, Rasmus Killmann

We study the orthogonal range reporting and rectangle stabbing problems in moderate dimensions, i.e., when the dimension is clog(n) for some constant c. In orthogonal range reporting, the input is a set of n points in d dimensions, and the goal is to store these n points in a data structure such that given a query rectangle, we can report all the input points contained in the rectangle. The rectangle stabbing problem is the “dual” problem where the input is a set of rectangles, and the query is a point.

Our main result is the following: assume using S(n) space, we can solve either problem in d=clogn dimensions, c4, using Q(n)+O(t) time in the pointer machine model of computation where t is the output size. Then, we show that if the query time is small, that is, Q(n)=n1γ, for γ22+logc, then the space must be Ω(n1γncγ/eo(cγ)). Interestingly, we obtain this lower bound using a non-constructive method, and we show the existence of some codes that generalize a specific aspect of error correction codes. Our result overcomes the shortcomings of the previous lower bounds in the pointer machine model for non-constant dimension [3], [4], [5], [13], as the previous results could not be extended for d=Ω(logn).

The only known lower bounds for rectangle stabbing, when the dimension is non-constant, are based on conditional lower bounds upon the best-known results on CNF-SAT [21]. Therefore, our lower bound is the first non-trivial unconditional lower bound for orthogonal range reporting and rectangle stabbing with non-constant dimension.

我们研究了中等维度的正交范围报告和矩形插入问题,即当维度被阻塞时⁡(n) 对于某个常数c。在正交范围报告中,输入是d维中的一组n点,目标是将这n点存储在数据结构中,以便在给定查询矩形的情况下,我们可以报告矩形中包含的所有输入点。矩形插入问题是“对偶”问题,其中输入是一组矩形,查询是一个点。我们的主要结果如下:假设使用S(n)空间,我们可以解决d=阻塞中的任何一个问题⁡n维,c≥4,在计算的指针机模型中使用Q(n)+O(t)时间,其中t是输出大小。然后,我们证明了如果查询时间很小,即Q(n)=n1-γ,对于γ≥22+log⁡c、 则空间必须是Ω(n1-γncγ/e−o(cγ))。有趣的是,我们使用非构造性方法获得了这个下界,并且我们证明了一些代码的存在,这些代码推广了纠错码的特定方面。我们的结果克服了指针机模型中非常维[3]、[4]、[5]、[13]的先前下界的缺点,因为先前的结果不能扩展到d=Ω(log⁡n) .当尺寸为非常数时,矩形插入的唯一已知下界是基于CNF-SAT[21]上最著名结果的条件下界。因此,我们的下界是正交范围报告和非常维矩形插入的第一个非平凡无条件下界。
{"title":"Rectangle stabbing and orthogonal range reporting lower bounds in moderate dimensions","authors":"Peyman Afshani,&nbsp;Rasmus Killmann","doi":"10.1016/j.comgeo.2022.101959","DOIUrl":"https://doi.org/10.1016/j.comgeo.2022.101959","url":null,"abstract":"<div><p>We study the orthogonal range reporting and rectangle stabbing problems in moderate dimensions, i.e., when the dimension is <span><math><mi>c</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for some constant <em>c</em>. In orthogonal range reporting, the input is a set of <em>n</em> points in <em>d</em> dimensions, and the goal is to store these <em>n</em><span> points in a data structure such that given a query rectangle, we can report all the input points contained in the rectangle. The rectangle stabbing problem is the “dual” problem where the input is a set of rectangles, and the query is a point.</span></p><p>Our main result is the following: assume using <span><math><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space, we can solve either problem in <span><math><mi>d</mi><mo>=</mo><mi>c</mi><mi>log</mi><mo>⁡</mo><mi>n</mi></math></span> dimensions, <span><math><mi>c</mi><mo>≥</mo><mn>4</mn></math></span>, using <span><math><mi>Q</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span> time in the pointer machine model of computation where </span><em>t</em> is the output size. Then, we show that if the query time is small, that is, <span><math><mi>Q</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow></msup></math></span>, for <span><math><mi>γ</mi><mo>≥</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mo>+</mo><mi>log</mi><mo>⁡</mo><mi>c</mi></mrow></mfrac></math></span>, then the space must be <span><math><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><msqrt><mrow><mi>c</mi><mi>γ</mi></mrow></msqrt><mo>/</mo><mi>e</mi><mo>−</mo><mi>o</mi><mo>(</mo><msqrt><mrow><mi>c</mi><mi>γ</mi></mrow></msqrt><mo>)</mo></mrow></msup><mo>)</mo></mrow></math></span><span>. Interestingly, we obtain this lower bound using a non-constructive method, and we show the existence of some codes that generalize a specific aspect of error correction codes. Our result overcomes the shortcomings of the previous lower bounds in the pointer machine model for non-constant dimension </span><span>[3]</span>, <span>[4]</span>, <span>[5]</span>, <span>[13]</span>, as the previous results could not be extended for <span><math><mi>d</mi><mo>=</mo><mi>Ω</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>.</p><p>The only known lower bounds for rectangle stabbing, when the dimension is non-constant, are based on conditional lower bounds upon the best-known results on CNF-SAT <span>[21]</span>. Therefore, our lower bound is the first non-trivial unconditional lower bound for orthogonal range reporting and rectangle stabbing with non-constant dimension.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49851373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Unfoldings and nets of regular polytopes 正则多面体的展开与网
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-04-01 DOI: 10.1016/j.comgeo.2022.101977
Satyan L. Devadoss , Matthew Harvey

Over a decade ago, it was shown that every edge unfolding of the Platonic solids was without self-overlap, yielding a valid net. We consider this property for their higher-dimensional analogs, the regular polytopes. Three classes of regular polytopes exist for all dimensions (n-simplex, n-cube, n-orthoplex) and three additional regular polytopes appear only in four-dimensions (24-cell, 120-cell, 600-cell). It was recently proven that all unfoldings of the n-cube yield nets. We extend this to the n-simplex and the 4-orthoplex using the geometry of simplicial chains. Finally, we demonstrate failure of this property for any orthoplex of higher dimension, as well as for the 600-cell, providing counterexamples. We conjecture failure for the two remaining open cases, the 24-cell and the 120-cell.

十多年前,研究表明,柏拉图固体的每一个边缘展开都没有自重叠,从而产生了一个有效的网络。我们考虑它们的高维类似物,规则多面体的这个性质。三类正则多面体存在于所有维度(n-单纯形、n-立方体、n-正交),并且三个额外的正则多面体仅出现在四个维度(24单元、120单元、600单元)。最近证明了n-立方体的所有展开都产生了网络。我们利用单纯形链的几何把它推广到n-单纯形和4-正射算子。最后,我们证明了这种性质在任何高维正射法以及600单元中的失败,并提供了反例。我们推测剩余的两种开放情况,即24细胞和120细胞的失败。
{"title":"Unfoldings and nets of regular polytopes","authors":"Satyan L. Devadoss ,&nbsp;Matthew Harvey","doi":"10.1016/j.comgeo.2022.101977","DOIUrl":"https://doi.org/10.1016/j.comgeo.2022.101977","url":null,"abstract":"<div><p><span>Over a decade ago, it was shown that every edge unfolding of the Platonic solids<span> was without self-overlap, yielding a valid net. We consider this property for their higher-dimensional analogs, the regular polytopes. Three classes of regular polytopes exist for all dimensions (</span></span><em>n</em>-simplex, <em>n</em>-cube, <em>n</em>-orthoplex) and three additional regular polytopes appear only in four-dimensions (24-cell, 120-cell, 600-cell). It was recently proven that all unfoldings of the <em>n</em>-cube yield nets. We extend this to the <em>n</em><span><span>-simplex and the 4-orthoplex using the geometry of simplicial chains. Finally, we demonstrate failure of this property for any orthoplex of higher dimension, as well as for the 600-cell, providing </span>counterexamples. We conjecture failure for the two remaining open cases, the 24-cell and the 120-cell.</span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49810277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Untangling circular drawings: Algorithms and complexity 解开圆形图形的角度:算法和复杂性
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-04-01 DOI: 10.1016/j.comgeo.2022.101975
Sujoy Bhore , Guangping Li , Martin Nöllenburg , Ignaz Rutter , Hsiang-Yun Wu

We consider the problem of untangling a given (non-planar) straight-line circular drawing δG of an outerplanar graph G=(V,E) into a planar straight-line circular drawing of G by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph G, it is obvious that such a crossing-free circular drawing always exists and we define the circular shifting number shift(δG) as the minimum number of vertices that are required to be shifted in order to resolve all crossings of δG. We show that the problem Circular Untangling, asking whether shift(δG)K for a given integer K, is NP-complete. For n-vertex outerplanar graphs, we obtain a tight upper bound of shift(δG)nn22. Moreover, we study the Circular Untangling for almost-planar circular drawings, in which a single edge is involved in all of the crossings. For this problem, we provide a tight upper bound shift(δG)n21 and present an O(n2)-time algorithm to compute the circular shifting number of almost-planar drawings.

我们考虑将外平面图G=(V,E)的给定(非平面)直线圆图δG通过将最小数量的顶点移动到圆上的新位置来解开为G的平面直线圆图的问题。对于外平面图G,很明显,这样一个无交叉的圆形图总是存在的,并且我们将圆移位数移位∘(δG)定义为为了解决δG的所有交叉而需要移位的最小顶点数。我们证明了循环解开问题,即对于给定的整数K,移位∘(δG)是否≤K,是NP完全的。对于n-顶点外平面图,我们得到了移位(δG)≤n-−n−2的紧上界。此外,我们研究了几乎平面圆形图形的圆形取消倾斜,其中单个边涉及所有交叉点。对于这个问题,我们提供了一个紧的上界移位(δG)≤n2−1,并提出了一个O(n2)-时间算法来计算几乎平面图的圆移位数。
{"title":"Untangling circular drawings: Algorithms and complexity","authors":"Sujoy Bhore ,&nbsp;Guangping Li ,&nbsp;Martin Nöllenburg ,&nbsp;Ignaz Rutter ,&nbsp;Hsiang-Yun Wu","doi":"10.1016/j.comgeo.2022.101975","DOIUrl":"https://doi.org/10.1016/j.comgeo.2022.101975","url":null,"abstract":"<div><p>We consider the problem of untangling a given (non-planar) straight-line circular drawing <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> of an outerplanar graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> into a planar straight-line circular drawing of <em>G</em> by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph <em>G</em>, it is obvious that such a crossing-free circular drawing always exists and we define the <em>circular shifting number</em> <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> as the minimum number of vertices that are required to be shifted in order to resolve all crossings of <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>. We show that the problem <span>Circular Untangling</span>, asking whether <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>K</mi></math></span> for a given integer <em>K</em>, is <span>NP</span>-complete. For <em>n</em>-vertex outerplanar graphs, we obtain a tight upper bound of <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><msqrt><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msqrt><mo>⌋</mo><mo>−</mo><mn>2</mn></math></span>. Moreover, we study the <span>Circular Untangling</span> for <em>almost-planar</em> circular drawings, in which a single edge is involved in all of the crossings. For this problem, we provide a tight upper bound <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>−</mo><mn>1</mn></math></span> and present an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-time algorithm to compute the circular shifting number of almost-planar drawings.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49851374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How close is a quad mesh to a polycube? 四边形网格与多边形网格的距离有多近?
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-04-01 DOI: 10.1016/j.comgeo.2022.101978
Markus Baumeister, Leif Kobbelt

We compute the shortest sequence of local connectivity modifications that transform a genus 0 quad mesh to a polycube. The modification operations are (dual) loop preserving and thus, we are restricted to quad meshes where loops don't self-intersect and two loops intersect at most twice. The intersection patterns of the loops are encoded in a simplicial complex, which we call loop complex. To formulate the modification search over the loop complex, we characterise polycubes combinatorially and determine dependencies between modifications. We show that the full task can be encoded as a mixed-integer problem that is solved by a commodity MIP-solver. We demonstrate the practical feasibility by a number of examples with varying complexity.

我们计算局部连通性修改的最短序列,该序列将亏格0四元网格转换为多立方体。修改操作是(双重)循环保留的,因此,我们被限制为四元网格,其中循环不自相交,两个循环最多相交两次。循环的交集模式被编码在一个单纯复形中,我们称之为循环复形。为了公式化环复形上的修改搜索,我们组合地刻画了多边形,并确定了修改之间的依赖关系。我们证明了整个任务可以编码为混合整数问题,该问题由商品MIP求解器解决。我们通过一些不同复杂度的例子来证明实际的可行性。
{"title":"How close is a quad mesh to a polycube?","authors":"Markus Baumeister,&nbsp;Leif Kobbelt","doi":"10.1016/j.comgeo.2022.101978","DOIUrl":"https://doi.org/10.1016/j.comgeo.2022.101978","url":null,"abstract":"<div><p>We compute the shortest sequence of local connectivity modifications that transform a genus 0 quad mesh to a polycube. The modification operations are (dual) loop preserving and thus, we are restricted to quad meshes where loops don't self-intersect and two loops intersect at most twice. The intersection patterns of the loops are encoded in a simplicial complex, which we call loop complex. To formulate the modification search over the loop complex, we characterise polycubes combinatorially and determine dependencies between modifications. We show that the full task can be encoded as a mixed-integer problem that is solved by a commodity MIP-solver. We demonstrate the practical feasibility by a number of examples with varying complexity.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49810278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic data structures for k-nearest neighbor queries k近邻查询的动态数据结构
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-04-01 DOI: 10.1016/j.comgeo.2022.101976
Sarita de Berg, Frank Staals

Our aim is to develop dynamic data structures that support k-nearest neighbors (k-NN) queries for a set of n point sites in the plane in O(f(n)+k) time, where f(n) is some polylogarithmic function of n. The key component is a general query algorithm that allows us to find the k-NN spread over t substructures simultaneously, thus reducing an O(tk) term in the query time to O(k). Combining this technique with the logarithmic method allows us to turn any static k-NN data structure into a data structure supporting both efficient insertions and queries. For the fully dynamic case, this technique allows us to recover the deterministic, worst-case, O(log2n/loglogn+k) query time for the Euclidean distance claimed before, while preserving the polylogarithmic update times. We adapt this data structure to also support fully dynamic geodesic k-NN queries among a set of sites in a simple polygon. For this purpose, we design a shallow cutting based, deletion-only k-NN data structure. More generally, we obtain a dynamic planar k-NN data structure for any type of distance functions for which we can build vertical shallow cuttings. We apply all of our methods in the plane for the Euclidean distance, the geodesic distance, and general, constant-complexity, algebraic distance functions.

我们的目标是开发动态数据结构,支持在O(f(n)+k)时间内对平面中的一组n个点位进行k近邻(k-NN)查询,其中f(n是n的一些多对数函数。关键组件是一种通用查询算法,它允许我们同时找到分布在t个子结构上的k-NN,从而将查询时间中的O(tk)项减少到O(k)。将该技术与对数方法相结合,可以将任何静态k-NN数据结构转换为支持有效插入和查询的数据结构。对于完全动态的情况,该技术允许我们恢复确定性的、最坏情况下的O(log2⁡n/log⁡日志⁡n+k)查询时间,同时保留多对数更新时间。我们对这种数据结构进行了调整,以支持在简单多边形中的一组站点之间进行完全动态的测地k-NN查询。为此,我们设计了一种基于浅切割、仅删除的k-NN数据结构。更一般地说,我们获得了任何类型的距离函数的动态平面k-NN数据结构,我们可以为其构建垂直浅路堑。我们在平面上应用我们所有的方法来计算欧几里得距离、测地距离和一般的常复杂度代数距离函数。
{"title":"Dynamic data structures for k-nearest neighbor queries","authors":"Sarita de Berg,&nbsp;Frank Staals","doi":"10.1016/j.comgeo.2022.101976","DOIUrl":"https://doi.org/10.1016/j.comgeo.2022.101976","url":null,"abstract":"<div><p>Our aim is to develop dynamic data structures that support <em>k</em>-nearest neighbors (<em>k</em>-NN) queries for a set of <em>n</em> point sites in the plane in <span><math><mi>O</mi><mo>(</mo><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>k</mi><mo>)</mo></math></span> time, where <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is some polylogarithmic function of <em>n</em>. The key component is a general query algorithm that allows us to find the <em>k</em>-NN spread over <em>t</em> substructures simultaneously, thus reducing an <span><math><mi>O</mi><mo>(</mo><mi>t</mi><mi>k</mi><mo>)</mo></math></span> term in the query time to <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>. Combining this technique with the logarithmic method allows us to turn any static <em>k</em>-NN data structure into a data structure supporting both efficient insertions and queries. For the fully dynamic case, this technique allows us to recover the deterministic, worst-case, <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mi>k</mi><mo>)</mo></math></span> query time for the Euclidean distance claimed before, while preserving the polylogarithmic update times. We adapt this data structure to also support fully dynamic <em>geodesic k</em>-NN queries among a set of sites in a simple polygon. For this purpose, we design a shallow cutting based, deletion-only <em>k</em>-NN data structure. More generally, we obtain a dynamic planar <em>k</em>-NN data structure for any type of distance functions for which we can build vertical shallow cuttings. We apply all of our methods in the plane for the Euclidean distance, the geodesic distance, and general, constant-complexity, algebraic distance functions.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49810273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete Fréchet distance for closed curves 闭合曲线的离散Fréchet距离
IF 0.6 4区 计算机科学 Q2 Mathematics Pub Date : 2023-04-01 DOI: 10.1016/j.comgeo.2022.101967
Evgeniy Vodolazskiy

The paper presents a discrete variation of the Fréchet distance between closed curves, which can be seen as an approximation of the continuous measure. A rather straightforward approach to compute the discrete Fréchet distance between two closed sequences of m and n points using binary search takes O(mnlogmn) time. We present an algorithm that takes O(mnlogmn) time, where log is the iterated logarithm.

本文给出了闭曲线之间Fréchet距离的离散变化,它可以看作是连续测度的近似值。使用二进制搜索计算m和n点的两个闭合序列之间的离散Fréchet距离的一种相当简单的方法取O(mnlog⁡mn)时间。我们提出了一个算法,该算法将O(mnlog⁡mn)时间,其中log是重对数。
{"title":"Discrete Fréchet distance for closed curves","authors":"Evgeniy Vodolazskiy","doi":"10.1016/j.comgeo.2022.101967","DOIUrl":"https://doi.org/10.1016/j.comgeo.2022.101967","url":null,"abstract":"<div><p>The paper presents a discrete variation of the Fréchet distance between closed curves, which can be seen as an approximation of the continuous measure. A rather straightforward approach to compute the discrete Fréchet distance between two closed sequences of <em>m</em> and <em>n</em> points using binary search takes <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>m</mi><mi>n</mi><mo>)</mo></math></span> time. We present an algorithm that takes <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⁡</mo><mi>m</mi><mi>n</mi><mo>)</mo></math></span> time, where <span><math><msup><mrow><mi>log</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the iterated logarithm.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49810275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Geometry-Theory and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1