Accurate prediction of gastric cancer survival state is one of great significant tasks for clinical decision-making. Many advanced machine learning classification techniques have been applied to predict the survival status of cancer patients in three or 5 years, however, many of them have a low sensitivity because of class imbalance. This is a non-negligible problem due to the poor prognosis of gastric cancer patients. Furthermore, models in the medical domain require strong interpretability to increase their applicability. Due to the better performance and interpretability of the XGBoost model, we design a loss function taking into account cost sensitive and focal loss from the algorithm level for XGBoost to deal with the imbalance problem. We apply the improved model into the prediction of the survival status of gastric cancer patients and analyse the important related features. We use two types of indicators to evaluate the model, and we also design the confusion matrix of two models' predictive results to compare two models. The results show that the improved model has better performance. Furthermore, we calculate the importance of features related to survival with three different time periods and analyse their evolution, which are consistent with existing clinical research or further expand their research conclusions. These all support for clinically relevant decision-making and has the potential to expand into survival prediction of other cancer patients.
{"title":"Imbalanced survival prediction for gastric cancer patients based on improved XGBoost with cost sensitive and focal loss","authors":"Liangchen Xu, Chonghui Guo","doi":"10.1111/exsy.13666","DOIUrl":"10.1111/exsy.13666","url":null,"abstract":"<p>Accurate prediction of gastric cancer survival state is one of great significant tasks for clinical decision-making. Many advanced machine learning classification techniques have been applied to predict the survival status of cancer patients in three or 5 years, however, many of them have a low sensitivity because of class imbalance. This is a non-negligible problem due to the poor prognosis of gastric cancer patients. Furthermore, models in the medical domain require strong interpretability to increase their applicability. Due to the better performance and interpretability of the XGBoost model, we design a loss function taking into account cost sensitive and focal loss from the algorithm level for XGBoost to deal with the imbalance problem. We apply the improved model into the prediction of the survival status of gastric cancer patients and analyse the important related features. We use two types of indicators to evaluate the model, and we also design the confusion matrix of two models' predictive results to compare two models. The results show that the improved model has better performance. Furthermore, we calculate the importance of features related to survival with three different time periods and analyse their evolution, which are consistent with existing clinical research or further expand their research conclusions. These all support for clinically relevant decision-making and has the potential to expand into survival prediction of other cancer patients.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 11","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel González Cortés, Enrique Onieva, Iker Pastor, Laura Trinchera, Jian Wu
While machine learning's role in financial trading has advanced considerably, algorithmic transparency and explainability challenges still exist. This research enriches prior studies focused on high-frequency financial data prediction by introducing an explainable reinforcement learning model for portfolio management. This model transcends basic asset prediction, formulating concrete, actionable trading strategies. The methodology is applied in a custom trading environment mimicking the CAC-40 index's financial conditions, allowing the model to adapt dynamically to market changes based on iterative learning from historical data. Empirical findings reveal that the model outperforms an equally weighted portfolio in out-of-sample tests. The study offers a dual contribution: it elevates algorithmic planning while significantly boosting transparency and interpretability in financial machine learning. This approach tackles the enduring ‘black-box’ issue and provides a holistic, transparent framework for managing investment portfolios.
{"title":"Portfolio construction using explainable reinforcement learning","authors":"Daniel González Cortés, Enrique Onieva, Iker Pastor, Laura Trinchera, Jian Wu","doi":"10.1111/exsy.13667","DOIUrl":"10.1111/exsy.13667","url":null,"abstract":"<p>While machine learning's role in financial trading has advanced considerably, algorithmic transparency and explainability challenges still exist. This research enriches prior studies focused on high-frequency financial data prediction by introducing an explainable reinforcement learning model for portfolio management. This model transcends basic asset prediction, formulating concrete, actionable trading strategies. The methodology is applied in a custom trading environment mimicking the CAC-40 index's financial conditions, allowing the model to adapt dynamically to market changes based on iterative learning from historical data. Empirical findings reveal that the model outperforms an equally weighted portfolio in out-of-sample tests. The study offers a dual contribution: it elevates algorithmic planning while significantly boosting transparency and interpretability in financial machine learning. This approach tackles the enduring ‘black-box’ issue and provides a holistic, transparent framework for managing investment portfolios.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 11","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13667","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Object tracking is an essential component of computer vision and plays a significant role in various practical applications. Recently, transformer‐based trackers have become the predominant method for tracking due to their robustness and efficiency. However, existing transformer‐based trackers typically focus solely on the template features, neglecting the interactions between the search features and the template features during the tracking process. To address this issue, this article introduces a multi‐head cross‐attention transformer for visual tracking (MCTT), which effectively enhance the interaction between the template branch and the search branch, enabling the tracker to prioritize discriminative feature. Additionally, an auxiliary segmentation mask head has been designed to produce a pixel‐level feature representation, enhancing and tracking accuracy by predicting a set of binary masks. Comprehensive experiments have been performed on benchmark datasets, such as LaSOT, GOT‐10k, UAV123 and TrackingNet using various advanced methods, demonstrating that our approach achieves promising tracking performance. MCTT achieves an AO score of 72.8 on the GOT‐10k.
{"title":"An efficient object tracking based on multi‐head cross‐attention transformer","authors":"Jiahai Dai, Huimin Li, Shan Jiang, Hongwei Yang","doi":"10.1111/exsy.13650","DOIUrl":"https://doi.org/10.1111/exsy.13650","url":null,"abstract":"Object tracking is an essential component of computer vision and plays a significant role in various practical applications. Recently, transformer‐based trackers have become the predominant method for tracking due to their robustness and efficiency. However, existing transformer‐based trackers typically focus solely on the template features, neglecting the interactions between the search features and the template features during the tracking process. To address this issue, this article introduces a multi‐head cross‐attention transformer for visual tracking (MCTT), which effectively enhance the interaction between the template branch and the search branch, enabling the tracker to prioritize discriminative feature. Additionally, an auxiliary segmentation mask head has been designed to produce a pixel‐level feature representation, enhancing and tracking accuracy by predicting a set of binary masks. Comprehensive experiments have been performed on benchmark datasets, such as LaSOT, GOT‐10k, UAV123 and TrackingNet using various advanced methods, demonstrating that our approach achieves promising tracking performance. MCTT achieves an AO score of 72.8 on the GOT‐10k.","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"28 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}