首页 > 最新文献

Stochastic Processes and their Applications最新文献

英文 中文
Compound Poisson distributions for random dynamical systems using probabilistic approximations 使用概率近似值的随机动力系统复合泊松分布
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-22 DOI: 10.1016/j.spa.2024.104511
Lucas Amorim , Nicolai Haydn , Sandro Vaienti
We obtain quenched hitting distributions to be compound Poissonian for a certain class of random dynamical systems. The theory is general and designed to accommodate non-uniformly expanding behavior and targets that do not overlap much with the region where uniformity breaks. Based on annealed and quenched polynomial decay of correlations, our quenched result adopts annealed Kac-type time-normalization and finds limits to be noise-independent. The technique involves a probabilistic block-approximation where the quenched hit-counting function up to annealed Kac-normalized time is split into equally sized blocks which are mimicked by an independency of random variables distributed just like each of them. The theory is made operational due to a result that allows certain hitting quantities to be recovered from return quantities. Our application is to a class of random piecewise expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy between periodic and aperiodic points, their usual extremal index formula EI=11/JTp(x0), and recovering the Polya–Aeppli case for general Bernoulli-driven systems, but distinct behavior otherwise.
我们得到了某类随机动力系统的淬火命中分布是复合泊松的。该理论具有普遍性,可适用于非均匀扩展行为以及与均匀性破坏区域重叠不多的目标。基于相关性的退火和淬火多项式衰减,我们的淬火结果采用了退火 Kac 型时间归一化,并发现极限与噪声无关。该技术涉及一种概率块近似方法,即将退火 Kac 归一化时间内的淬火命中计数函数分割成大小相等的块,这些块由分布与每个块相同的独立随机变量模拟。由于一个结果允许从返回量中恢复某些命中量,因此该理论具有可操作性。我们将其应用于一类随机片断扩展的一维系统,为众所周知的周期点和非周期性点之间的确定性二分法、其通常的极值指数公式 EI=1-1/JTp(x0)、恢复一般伯努利驱动系统的 Polya-Aeppli 情况以及其他不同行为提供了新的启示。
{"title":"Compound Poisson distributions for random dynamical systems using probabilistic approximations","authors":"Lucas Amorim ,&nbsp;Nicolai Haydn ,&nbsp;Sandro Vaienti","doi":"10.1016/j.spa.2024.104511","DOIUrl":"10.1016/j.spa.2024.104511","url":null,"abstract":"<div><div>We obtain quenched hitting distributions to be compound Poissonian for a certain class of random dynamical systems. The theory is general and designed to accommodate non-uniformly expanding behavior and targets that do not overlap much with the region where uniformity breaks. Based on annealed and quenched polynomial decay of correlations, our quenched result adopts annealed Kac-type time-normalization and finds limits to be noise-independent. The technique involves a probabilistic block-approximation where the quenched hit-counting function up to annealed Kac-normalized time is split into equally sized blocks which are mimicked by an independency of random variables distributed just like each of them. The theory is made operational due to a result that allows certain hitting quantities to be recovered from return quantities. Our application is to a class of random piecewise expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy between periodic and aperiodic points, their usual extremal index formula <span><math><mrow><mo>EI</mo><mo>=</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>J</mi><msup><mrow><mi>T</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, and recovering the Polya–Aeppli case for general Bernoulli-driven systems, but distinct behavior otherwise.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104511"},"PeriodicalIF":1.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidemics on critical random graphs with heavy-tailed degree distribution 具有重尾程度分布的临界随机图上的流行病
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-21 DOI: 10.1016/j.spa.2024.104510
David Clancy Jr.
We study the susceptible–infected–recovered (SIR) epidemic on a random graph chosen uniformly over all graphs with certain critical, heavy-tailed degree distributions. We prove process level scaling limits for the number of individuals infected on day h on the largest connected components of the graph. The scaling limits contain non-negative jumps corresponding to some vertices of large degree. These weak convergence techniques allow us to describe the height profile of the α-stable continuum random graph (Goldschmidt et al., 2022; Conchon-Kerjan and Goldschmidt, 2023), extending results known in the Brownian case (Miermont and Sen, 2022). We also prove model-independent results that can be used on other critical random graph models.
我们研究了随机图上的易感-感染-恢复(SIR)流行病,该随机图是在具有一定临界重尾程度分布的所有图中均匀选择的。我们证明了在图的最大连通部分上第 h 天受感染个体数量的过程级缩放极限。缩放极限包含与一些大度顶点相对应的非负跃迁。这些弱收敛技术允许我们描述 α 稳定连续随机图的高度轮廓(Goldschmidt 等人,2022 年;Conchon-Kerjan 和 Goldschmidt,2023 年),扩展了布朗情况下的已知结果(Miermont 和 Sen,2022 年)。我们还证明了与模型无关的结果,可用于其他临界随机图模型。
{"title":"Epidemics on critical random graphs with heavy-tailed degree distribution","authors":"David Clancy Jr.","doi":"10.1016/j.spa.2024.104510","DOIUrl":"10.1016/j.spa.2024.104510","url":null,"abstract":"<div><div>We study the susceptible–infected–recovered (SIR) epidemic on a random graph chosen uniformly over all graphs with certain critical, heavy-tailed degree distributions. We prove process level scaling limits for the number of individuals infected on day <span><math><mi>h</mi></math></span> on the largest connected components of the graph. The scaling limits contain non-negative jumps corresponding to some vertices of large degree. These weak convergence techniques allow us to describe the height profile of the <span><math><mi>α</mi></math></span>-stable continuum random graph (Goldschmidt et al., 2022; Conchon-Kerjan and Goldschmidt, 2023), extending results known in the Brownian case (Miermont and Sen, 2022). We also prove model-independent results that can be used on other critical random graph models.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104510"},"PeriodicalIF":1.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coarsening in zero-range processes 零程过程中的粗化
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-21 DOI: 10.1016/j.spa.2024.104507
Inés Armendáriz , Johel Beltrán , Daniela Cuesta , Milton Jara
We prove a fluid limit describing coarsening for zero-range processes on a finite number of sites, with asymptotically constant jump rates. When time and occupation per site are linearly rescaled by the total number of particles, the evolution of the process is described by a piecewise linear trajectory in the simplex indexed by the sites. The linear coefficients are determined by the trace process of the underlying random walk on the subset of non-empty sites, and the trajectory reaches an absorbing configuration in finite time. A boundary of the simplex is called absorbing for the fluid limit if a trajectory started at a configuration in the boundary remains in it for all times. We identify the set of absorbing configurations and characterize the absorbing boundaries.
我们证明了一个流体极限,它描述了在有限数量的点上,以渐近恒定的跃迁率进行的零范围过程的粗化。当时间和每个位点的占用率被粒子总数线性放大时,该过程的演化由位点索引的单纯形中的片断线性轨迹描述。线性系数由非空位子集上的基本随机行走的迹过程决定,轨迹在有限时间内达到吸收配置。如果从边界中的配置开始的轨迹在所有时间内都保持在该配置上,则称为流体极限的吸收简约边界。我们确定了吸收配置的集合,并描述了吸收边界的特征。
{"title":"Coarsening in zero-range processes","authors":"Inés Armendáriz ,&nbsp;Johel Beltrán ,&nbsp;Daniela Cuesta ,&nbsp;Milton Jara","doi":"10.1016/j.spa.2024.104507","DOIUrl":"10.1016/j.spa.2024.104507","url":null,"abstract":"<div><div>We prove a fluid limit describing coarsening for zero-range processes on a finite number of sites, with asymptotically constant jump rates. When time and occupation per site are linearly rescaled by the total number of particles, the evolution of the process is described by a piecewise linear trajectory in the simplex indexed by the sites. The linear coefficients are determined by the trace process of the underlying random walk on the subset of non-empty sites, and the trajectory reaches an absorbing configuration in finite time. A boundary of the simplex is called absorbing for the fluid limit if a trajectory started at a configuration in the boundary remains in it for all times. We identify the set of absorbing configurations and characterize the absorbing boundaries.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104507"},"PeriodicalIF":1.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling by change of measure for conditional McKean–Vlasov SDEs and applications 条件麦金-弗拉索夫 SDE 的量纲变化耦合及其应用
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-19 DOI: 10.1016/j.spa.2024.104508
Xing Huang
The couplings by change of measure are applied to establish log-Harnack inequality(equivalently the entropy-cost estimate) for conditional McKean–Vlasov SDEs and derive the quantitative conditional propagation of chaos in relative entropy for mean field interacting particle system with common noise. For the log-Harnack inequality, two different types of couplings will be constructed for non-degenerate conditional McKean–Vlasov SDEs with multiplicative noise. As to the quantitative conditional propagation of chaos in relative entropy, the initial distribution of interacting particle system is allowed to be singular with that of limit equation. The above results are also extended to conditional distribution dependent stochastic Hamiltonian system.
应用量纲变化耦合建立条件麦金-弗拉索夫 SDE 的对数-哈纳克不等式(等价于熵-成本估计),并推导出具有共同噪声的均场相互作用粒子系统相对熵的定量条件混沌传播。对于对数-哈纳克不等式,将为具有乘法噪声的非退化条件麦金-弗拉索夫 SDEs 构造两种不同类型的耦合。至于相对熵中混沌的定量条件传播,允许相互作用粒子系统的初始分布与极限方程的初始分布奇异。上述结果还扩展到条件分布依赖随机哈密顿系统。
{"title":"Coupling by change of measure for conditional McKean–Vlasov SDEs and applications","authors":"Xing Huang","doi":"10.1016/j.spa.2024.104508","DOIUrl":"10.1016/j.spa.2024.104508","url":null,"abstract":"<div><div>The couplings by change of measure are applied to establish log-Harnack inequality(equivalently the entropy-cost estimate) for conditional McKean–Vlasov SDEs and derive the quantitative conditional propagation of chaos in relative entropy for mean field interacting particle system with common noise. For the log-Harnack inequality, two different types of couplings will be constructed for non-degenerate conditional McKean–Vlasov SDEs with multiplicative noise. As to the quantitative conditional propagation of chaos in relative entropy, the initial distribution of interacting particle system is allowed to be singular with that of limit equation. The above results are also extended to conditional distribution dependent stochastic Hamiltonian system.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104508"},"PeriodicalIF":1.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First passage percolation with recovery 第一段渗滤与回收
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-19 DOI: 10.1016/j.spa.2024.104512
Elisabetta Candellero , Tom Garcia-Sanchez
<div><div>First passage percolation with recovery is a process aimed at modeling the spread of epidemics. On a graph <span><math><mi>G</mi></math></span> place a red particle at a reference vertex <span><math><mi>o</mi></math></span> and colorless particles (seeds) at all other vertices. The red particle starts spreading a <em>red first passage percolation</em> of rate 1, while all seeds are dormant. As soon as a seed is reached by the process, it turns red and starts spreading red first passage percolation. All vertices are equipped with independent exponential clocks ringing at rate <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, when a clock rings the corresponding <em>red vertex turns black</em>. For <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denote the size of the longest red path and of the largest red cluster present at time <span><math><mi>t</mi></math></span>. If <span><math><mi>G</mi></math></span> is the semi-line, then for all <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span> almost surely <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mo>log</mo><mi>t</mi></mrow><mrow><mo>log</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In contrast, if <span><math><mi>G</mi></math></span> is an infinite Galton–Watson tree with offspring mean <span><math><mrow><mi>m</mi><mo>></mo><mn>1</mn></mrow></math></span> then, for all <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, almost surely <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mo>log</mo><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>, while <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>c</mi><mi>t</mi></mrow></msup></mrow></mfrac><mo>≤</mo><mn>1</mn></mrow></math></span>, for all <span><math><mrow><mi>c</mi><mo>></mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>.
带恢复的第一通道渗流是一种旨在模拟流行病传播的过程。在一个图 G 上,在参考顶点 o 处放置一个红色粒子,在所有其他顶点放置无色粒子(种子)。红色粒子开始传播速率为 1 的红色第一通道渗流,而所有种子处于休眠状态。一旦进程到达某个种子,它就会变成红色,并开始传播红色第一通道渗流。所有顶点都配有独立的指数时钟,以 γ>0 的速率振铃,当时钟振铃时,相应的红色顶点变黑。对于 t≥0,让 Ht 和 Mt 表示 t 时刻存在的最长红色路径和最大红色集群的大小。如果 G 是半直线,那么对于所有 γ>0 几乎肯定 lim suptHtloglogtlogt=1 和 lim inftHt=0。相反,如果 G 是一棵后代均值为 m>1 的无限加尔顿-沃森树,那么对于所有 γ>0,几乎可以肯定 lim inftHtlogtt≥m-1 和 lim inftMtlogtt≥m-1,而对于所有 c>m-1,lim suptMtect≤1。此外,如果我们把注意力限制在有界度图上,那么对于任何 ɛ>0 都有一个临界值 γc>0,这样对于所有 γ>γc,几乎可以肯定 lim suptMtt≤ɛ。
{"title":"First passage percolation with recovery","authors":"Elisabetta Candellero ,&nbsp;Tom Garcia-Sanchez","doi":"10.1016/j.spa.2024.104512","DOIUrl":"10.1016/j.spa.2024.104512","url":null,"abstract":"&lt;div&gt;&lt;div&gt;First passage percolation with recovery is a process aimed at modeling the spread of epidemics. On a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; place a red particle at a reference vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and colorless particles (seeds) at all other vertices. The red particle starts spreading a &lt;em&gt;red first passage percolation&lt;/em&gt; of rate 1, while all seeds are dormant. As soon as a seed is reached by the process, it turns red and starts spreading red first passage percolation. All vertices are equipped with independent exponential clocks ringing at rate &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, when a clock rings the corresponding &lt;em&gt;red vertex turns black&lt;/em&gt;. For &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; denote the size of the longest red path and of the largest red cluster present at time &lt;span&gt;&lt;math&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. If &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the semi-line, then for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; almost surely &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;lim sup&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;lim inf&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. In contrast, if &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is an infinite Galton–Watson tree with offspring mean &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; then, for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, almost surely &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;lim inf&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;lim inf&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, while &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;lim sup&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. ","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104512"},"PeriodicalIF":1.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SDEs with two reflecting barriers driven by optional processes with regulated trajectories 具有两个反映障碍的 SDE,由具有调节轨迹的可选过程驱动
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-19 DOI: 10.1016/j.spa.2024.104509
Adrian Falkowski
We study the existence, uniqueness, and approximation of solutions of general stochastic differential equations (SDEs) with two time-dependent reflecting barriers driven by optional semimartingales. We do not assume that the probability space has to satisfy the usual conditions. We define and solve an appropriate version of the deterministic Skorokhod problem for regulated functions. Applications to currency option pricing in financial models are given.
我们研究一般随机微分方程(SDE)的解的存在性、唯一性和近似性,该方程有两个由可选半马勒驱动的随时间变化的反射屏障。我们不假设概率空间必须满足常规条件。我们为调节函数定义并求解了确定性斯科罗霍德问题的适当版本。我们还给出了金融模型中货币期权定价的应用。
{"title":"SDEs with two reflecting barriers driven by optional processes with regulated trajectories","authors":"Adrian Falkowski","doi":"10.1016/j.spa.2024.104509","DOIUrl":"10.1016/j.spa.2024.104509","url":null,"abstract":"<div><div>We study the existence, uniqueness, and approximation of solutions of general stochastic differential equations (SDEs) with two time-dependent reflecting barriers driven by optional semimartingales. We do not assume that the probability space has to satisfy the usual conditions. We define and solve an appropriate version of the deterministic Skorokhod problem for regulated functions. Applications to currency option pricing in financial models are given.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104509"},"PeriodicalIF":1.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of maximal solutions for the financial stochastic Stefan problem of a volatile asset with spread 有价差的波动资产的金融随机斯特凡问题的最大解的存在性
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-18 DOI: 10.1016/j.spa.2024.104506
D.C. Antonopoulou , D. Farazakis , G. Karali
In this work, we consider the outer Stefan problem for the short-time prediction of the spread of a volatile asset traded in a financial market. The stochastic equation for the evolution of the density of sell and buy orders is the Heat Equation with a space–time white noise, posed in a moving boundary domain with velocity given by the Stefan condition. This condition determines the dynamics of the spread, and the solid phase [s(t),s+(t)] defines the bid–ask spread area wherein the transactions vanish. We introduce a reflection measure and prove existence and uniqueness of maximal solutions up to stopping times in which the spread s+(t)s(t) stays a.s. non-negative and bounded. For this, we define an approximation scheme, and use some of the estimates of Hambly et al. (2020) for the Green’s function and the associated to the reflection measure obstacle problem. Analogous results are obtained for the equation without reflection corresponding to a signed density.
在这项研究中,我们考虑的是金融市场波动资产价差短期预测的外斯特凡问题。卖出和买入订单密度演化的随机方程是带有时空白噪声的热方程,在移动边界域中提出,其速度由斯特凡条件给出。该条件决定了价差的动态变化,而实体相 [s-(t),s+(t)] 则定义了交易消失的买卖价差区域。我们引入了一种反射量度,并证明了最大解的存在性和唯一性,直至价差 s+(t)-s-(t)保持非负且有界的停止时间。为此,我们定义了一个近似方案,并使用了 Hambly 等人(2020 年)对格林函数的一些估计以及与反射量障碍问题相关的估计。对于与有符号密度相对应的无反射方程,我们也得到了类似的结果。
{"title":"Existence of maximal solutions for the financial stochastic Stefan problem of a volatile asset with spread","authors":"D.C. Antonopoulou ,&nbsp;D. Farazakis ,&nbsp;G. Karali","doi":"10.1016/j.spa.2024.104506","DOIUrl":"10.1016/j.spa.2024.104506","url":null,"abstract":"<div><div>In this work, we consider the outer Stefan problem for the short-time prediction of the spread of a volatile asset traded in a financial market. The stochastic equation for the evolution of the density of sell and buy orders is the Heat Equation with a space–time white noise, posed in a moving boundary domain with velocity given by the Stefan condition. This condition determines the dynamics of the spread, and the solid phase <span><math><mrow><mo>[</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>]</mo></mrow></math></span> defines the bid–ask spread area wherein the transactions vanish. We introduce a reflection measure and prove existence and uniqueness of maximal solutions up to stopping times in which the spread <span><math><mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> stays a.s. non-negative and bounded. For this, we define an approximation scheme, and use some of the estimates of Hambly et al. (2020) for the Green’s function and the associated to the reflection measure obstacle problem. Analogous results are obtained for the equation without reflection corresponding to a signed density.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104506"},"PeriodicalIF":1.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L2-Wasserstein contraction for Euler schemes of elliptic diffusions and interacting particle systems 椭圆扩散和相互作用粒子系统欧拉方案的 L2-Wasserstein 收缩
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-18 DOI: 10.1016/j.spa.2024.104504
Linshan Liu , Mateusz B. Majka , Pierre Monmarché
We show L2-Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed L1-Wasserstein contraction, or Lp-Wasserstein bounds for p>1 that were, however, not true contractions. We explain how showing a true L2-Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding L2-Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.
在漂移的无穷收缩性条件和足够高的扩散性要求下,我们证明了离散化扩散过程过渡核的 L2-Wasserstein 收缩。这扩展了最近的一些结果,这些结果在漂移的类似假设下,显示了 L1-Wasserstein 收缩,或 p>1 的 Lp-Wasserstein 边界,但这并不是真正的收缩。我们解释了显示真正的 L2-Wasserstein 收缩对于获得扩散的欧拉方案过渡核的局部波恩卡列不等式是如何至关重要的。此外,我们还讨论了我们的收缩结果的其他后果,如 KL-发散和总变异的集中不等式和收敛率。我们还研究了相互作用扩散离散的相应 L2-Wasserstein 收缩。作为一个特殊的应用,这使我们能够分析粒子系统的行为,这些粒子系统可以用来近似最近在均值场优化文献中研究的一类麦肯-弗拉索夫 SDEs。
{"title":"L2-Wasserstein contraction for Euler schemes of elliptic diffusions and interacting particle systems","authors":"Linshan Liu ,&nbsp;Mateusz B. Majka ,&nbsp;Pierre Monmarché","doi":"10.1016/j.spa.2024.104504","DOIUrl":"10.1016/j.spa.2024.104504","url":null,"abstract":"<div><div>We show <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Wasserstein contraction, or <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-Wasserstein bounds for <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> that were, however, not true contractions. We explain how showing a true <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104504"},"PeriodicalIF":1.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some remarks on the effect of the Random Batch Method on phase transition 关于随机分批法对相变影响的一些评论
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-16 DOI: 10.1016/j.spa.2024.104498
Arnaud Guillin , Pierre Le Bris , Pierre Monmarché
In this article, we focus on two toy models : the Curie–Weiss model and the system of N particles in linear interactions in a double well confining potential. Both models, which have been extensively studied, describe a large system of particles with a mean-field limit that admits a phase transition. We are concerned with the numerical simulation of these particle systems. To deal with the quadratic complexity of the numerical scheme, corresponding to the computation of the O(N2) interactions per time step, the Random Batch Method (RBM) has been suggested. It consists in randomly (and uniformly) dividing the particles into batches of size p>1, and computing the interactions only within each batch, thus reducing the numerical complexity to O(Np) per time step. The convergence of this numerical method has been proved in other works.
This work is motivated by the observation that the RBM, via the random constructions of batches, artificially adds noise to the particle system. The goal of this article is to study the effect of this added noise on the phase transition of the nonlinear limit, and more precisely we study the effective dynamics of the two models to show how a phase transition may still be observed with the RBM but at a lower critical temperature.
本文重点讨论两个玩具模型:居里-韦斯模型和双井约束势中线性相互作用的 N 粒子系统。这两个模型都已被广泛研究,它们描述了一个大型粒子系统,其平均场极限允许相变。我们关注的是这些粒子系统的数值模拟。为了解决数值方案的二次方复杂性(相当于每个时间步计算 O(N2) 次相互作用),我们提出了随机批处理方法(RBM)。它包括随机(均匀)地将粒子分成大小为 p>1 的批次,并只计算每个批次内的相互作用,从而将每个时间步的数值复杂度降低到 O(Np)。这一数值方法的收敛性已在其他著作中得到证明。这项工作的动机是观察到 RBM 通过批次的随机构造人为地增加了粒子系统的噪声。本文的目的是研究这种增加的噪声对非线性极限相变的影响,更准确地说,我们研究了这两种模型的有效动力学,以说明如何在较低的临界温度下仍然可以观察到 RBM 的相变。
{"title":"Some remarks on the effect of the Random Batch Method on phase transition","authors":"Arnaud Guillin ,&nbsp;Pierre Le Bris ,&nbsp;Pierre Monmarché","doi":"10.1016/j.spa.2024.104498","DOIUrl":"10.1016/j.spa.2024.104498","url":null,"abstract":"<div><div>In this article, we focus on two toy models : the <em>Curie–Weiss</em> model and the system of <span><math><mi>N</mi></math></span> particles in linear interactions in a <em>double well confining potential</em>. Both models, which have been extensively studied, describe a large system of particles with a mean-field limit that admits a phase transition. We are concerned with the numerical simulation of these particle systems. To deal with the quadratic complexity of the numerical scheme, corresponding to the computation of the <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> interactions per time step, the <em>Random Batch Method</em> (RBM) has been suggested. It consists in randomly (and uniformly) dividing the particles into batches of size <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, and computing the interactions only within each batch, thus reducing the numerical complexity to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mi>p</mi><mo>)</mo></mrow></mrow></math></span> per time step. The convergence of this numerical method has been proved in other works.</div><div>This work is motivated by the observation that the RBM, via the random constructions of batches, artificially adds noise to the particle system. The goal of this article is to study the effect of this added noise on the phase transition of the nonlinear limit, and more precisely we study the <em>effective dynamics</em> of the two models to show how a phase transition may still be observed with the RBM but at a lower critical temperature.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104498"},"PeriodicalIF":1.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic representation for solutions of a system of coupled HJB-Isaacs equations with integral–differential operators 带积分微分算子的 HJB-Isaacs 耦合方程组解的随机表示法
IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-15 DOI: 10.1016/j.spa.2024.104502
Sheng Luo , Wenqiang Li , Xun Li , Qingmeng Wei
In this paper, we focus on the stochastic representation of a system of coupled Hamilton–Jacobi–Bellman–Isaacs (HJB–Isaacs (HJBI), for short) equations which is in fact a system of coupled Isaacs’ type integral-partial differential equation. For this, we introduce an associated zero-sum stochastic differential game, where the state process is described by a classical stochastic differential equation (SDE, for short) with jumps, and the cost functional of recursive type is defined by a new type of backward stochastic differential equation (BSDE, for short) with two Poisson random measures, whose wellposedness and a prior estimate as well as the comparison theorem are investigated for the first time. One of the Poisson random measures μ appearing in the SDE and the BSDE stems from the integral term of the HJBI equations; the other random measure in BSDE is introduced to link the coupling factor of the HJBI equations. We show through an extension of the dynamic programming principle that the lower value function of this game problem is the viscosity solution of the system of our coupled HJBI equations. The uniqueness of the viscosity solution is also obtained in a space of continuous functions satisfying certain growth condition. In addition, also the upper value function of the game is shown to be the solution of the associated system of coupled Isaacs’ type of integral-partial differential equations. As a byproduct, we obtain the existence of the value for the game problem under the well-known Isaacs’ condition.
在本文中,我们将重点研究耦合汉密尔顿-雅各比-贝尔曼-艾萨克斯(简称 HJB-艾萨克斯(HJBI))方程组的随机表示,该方程组实际上是一个耦合艾萨克斯型积分-部分微分方程组。为此,我们引入了一个相关的零和随机微分博弈,其中状态过程由一个带跳跃的经典随机微分方程(简称 SDE)描述,递归类型的代价函数由一个带有两个泊松随机度量的新型后向随机微分方程(简称 BSDE)定义。在 SDE 和 BSDE 中出现的泊松随机量之一 μ 源自 HJBI 方程的积分项;BSDE 中的另一个随机量是为了连接 HJBI 方程的耦合因子而引入的。我们通过对动态编程原理的扩展证明,该博弈问题的低值函数就是我们的耦合 HJBI 方程系统的粘性解。在满足一定增长条件的连续函数空间中,我们还得到了粘性解的唯一性。此外,还证明了博弈的上值函数是相关的耦合艾萨克式积分偏微分方程系的解。作为副产品,我们在著名的艾萨克斯条件下得到了博弈问题的存在值。
{"title":"Stochastic representation for solutions of a system of coupled HJB-Isaacs equations with integral–differential operators","authors":"Sheng Luo ,&nbsp;Wenqiang Li ,&nbsp;Xun Li ,&nbsp;Qingmeng Wei","doi":"10.1016/j.spa.2024.104502","DOIUrl":"10.1016/j.spa.2024.104502","url":null,"abstract":"<div><div>In this paper, we focus on the stochastic representation of a system of coupled Hamilton–Jacobi–Bellman–Isaacs (HJB–Isaacs (HJBI), for short) equations which is in fact a system of coupled Isaacs’ type integral-partial differential equation. For this, we introduce an associated zero-sum stochastic differential game, where the state process is described by a classical stochastic differential equation (SDE, for short) with jumps, and the cost functional of recursive type is defined by a new type of backward stochastic differential equation (BSDE, for short) with two Poisson random measures, whose wellposedness and a prior estimate as well as the comparison theorem are investigated for the first time. One of the Poisson random measures <span><math><mi>μ</mi></math></span> appearing in the SDE and the BSDE stems from the integral term of the HJBI equations; the other random measure in BSDE is introduced to link the coupling factor of the HJBI equations. We show through an extension of the dynamic programming principle that the lower value function of this game problem is the viscosity solution of the system of our coupled HJBI equations. The uniqueness of the viscosity solution is also obtained in a space of continuous functions satisfying certain growth condition. In addition, also the upper value function of the game is shown to be the solution of the associated system of coupled Isaacs’ type of integral-partial differential equations. As a byproduct, we obtain the existence of the value for the game problem under the well-known Isaacs’ condition.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104502"},"PeriodicalIF":1.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stochastic Processes and their Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1