首页 > 最新文献

Stochastic Processes and their Applications最新文献

英文 中文
Hole radii for the Kac polynomials and derivatives Kac 多项式和导数的孔半径
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-25 DOI: 10.1016/j.spa.2024.104386
Hoi H. Nguyen , Oanh Nguyen

The Kac polynomial fn(x)=i=0nξixi with independent coefficients of variance 1 is one of the most studied models of random polynomials.

It is well-known that the empirical measure of the roots converges to the uniform measure on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which there are no roots, with high probability. In a beautiful work (Michelen, 2020), Michelen showed that the holes at ±1 are of order 1/n. We show that in fact, all the hole radii are of the same order. The same phenomenon is established for the derivatives of the Kac polynomial as well.

方差为 1 的独立系数 Kac 多项式是研究最多的随机多项式模型之一。
{"title":"Hole radii for the Kac polynomials and derivatives","authors":"Hoi H. Nguyen ,&nbsp;Oanh Nguyen","doi":"10.1016/j.spa.2024.104386","DOIUrl":"10.1016/j.spa.2024.104386","url":null,"abstract":"<div><p>The Kac polynomial <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> with independent coefficients of variance 1 is one of the most studied models of random polynomials.</p><p>It is well-known that the empirical measure of the roots converges to the uniform measure on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which there are no roots, with high probability. In a beautiful work (Michelen, 2020), Michelen showed that the holes at <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span> are of order <span><math><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></math></span>. We show that in fact, all the hole radii are of the same order. The same phenomenon is established for the derivatives of the Kac polynomial as well.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104386"},"PeriodicalIF":1.4,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Gaussian multiplicative chaos for singular measures 奇异度量的临界高斯乘法混沌
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-23 DOI: 10.1016/j.spa.2024.104388
Hubert Lacoin

Given d1, we provide a construction of the random measure – the critical Gaussian Multiplicative Chaos – formally defined as e2dXdμ where X is a log-correlated Gaussian field and μ is a locally finite measure on Rd. Our construction generalizes the one performed in the case where μ is the Lebesgue measure. It requires that the measure μ is sufficiently spread out, namely that for μ almost every x we have B(x,1)μ(dy)|xy|deρlog1|xy|<, where ρ:R+R+ can be chosen to be any lower envelope function for the 3-Bessel process (this includes ρ(x)=xα with α(0,1/2)). We prove that three distinct random objects converge to a common limit which defines the critical GMC: the derivative martingale, the critical martingale, and the exponential of the mollified field. We also show that the above criterion for the measure μ is in a sense optimal.

给定 d≥1,我们提供了一种随机度量的构造--临界高斯乘混沌--正式定义为 e2dXdμ,其中 X 是对数相关的高斯域,μ 是 Rd 上的局部有限度量。我们的构造概括了在μ 是 Lebesgue 度量的情况下所做的构造。它要求度量μ足够分散,即对于μ几乎每一个x,我们都有∫B(x,1)μ(dy)|x-y|deρlog1|x-y|<∞,其中ρ:R+→R+可以选择为3-贝塞尔过程的任何下包络函数(这包括α∈(0,1/2)的ρ(x)=xα)。我们证明了三个不同的随机对象会收敛到一个定义临界 GMC 的共同极限:导数鞅、临界鞅和鞅场的指数。我们还证明,上述关于度量 μ 的准则在某种意义上是最优的。
{"title":"Critical Gaussian multiplicative chaos for singular measures","authors":"Hubert Lacoin","doi":"10.1016/j.spa.2024.104388","DOIUrl":"https://doi.org/10.1016/j.spa.2024.104388","url":null,"abstract":"<div><p>Given <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we provide a construction of the random measure – the critical Gaussian Multiplicative Chaos – formally defined as <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><msqrt><mrow><mn>2</mn><mi>d</mi></mrow></msqrt><mi>X</mi></mrow></msup><mi>d</mi><mi>μ</mi></mrow></math></span> where <span><math><mi>X</mi></math></span> is a <span><math><mo>log</mo></math></span>-correlated Gaussian field and <span><math><mi>μ</mi></math></span> is a locally finite measure on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our construction generalizes the one performed in the case where <span><math><mi>μ</mi></math></span> is the Lebesgue measure. It requires that the measure <span><math><mi>μ</mi></math></span> is sufficiently spread out, namely that for <span><math><mi>μ</mi></math></span> almost every <span><math><mi>x</mi></math></span> we have <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></msub><mfrac><mrow><mi>μ</mi><mrow><mo>(</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>ρ</mi><mfenced><mrow><mo>log</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></msup></mrow></mfrac><mo>&lt;</mo><mi>∞</mi><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>ρ</mi><mo>:</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></math></span> can be chosen to be any lower envelope function for the 3-Bessel process (this includes <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>). We prove that three distinct random objects converge to a common limit which defines the critical GMC: the derivative martingale, the critical martingale, and the exponential of the mollified field. We also show that the above criterion for the measure <span><math><mi>μ</mi></math></span> is in a sense optimal.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104388"},"PeriodicalIF":1.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measure-valued affine and polynomial diffusions 量值仿射和多项式扩散
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-23 DOI: 10.1016/j.spa.2024.104392
Christa Cuchiero , Luca Di Persio , Francesco Guida , Sara Svaluto-Ferro

We introduce a class of measure-valued processes, which – in analogy to their finite dimensional counterparts – will be called measure-valued polynomial diffusions. We show the so-called moment formula, i.e. a representation of the conditional marginal moments via a system of finite dimensional linear PDEs. Furthermore, we characterize the corresponding infinitesimal generators obtaining a representation analogous to polynomial diffusions on R+m, in cases where their domain is large enough. In general the infinite dimensional setting allows for richer specifications strictly beyond this representation. As a special case, we recover measure-valued affine diffusions, sometimes also called Dawson–Watanabe superprocesses. From a mathematical finance point of view, the polynomial framework is especially attractive since it allows to transfer many famous finite dimensional models and their tractability properties to an infinite dimensional measure-valued setting.

我们引入了一类量值过程,与它们的有限维对应过程类似,这些过程将被称为量值多项式扩散。我们展示了所谓的矩公式,即通过有限维线性 PDEs 系统来表示条件边际矩。此外,我们还描述了相应无穷小生成器的特征,从而在其域足够大的情况下,获得了类似于多项式扩散的表示。一般来说,无限维设置允许严格超出这一表示的更丰富的规范。作为一种特例,我们恢复了度量值仿射扩散,有时也称为道森-瓦塔那比超过程。从数学金融学的角度来看,多项式框架尤其具有吸引力,因为它可以将许多著名的有限维模型及其可操作性转移到无限维的量值环境中。
{"title":"Measure-valued affine and polynomial diffusions","authors":"Christa Cuchiero ,&nbsp;Luca Di Persio ,&nbsp;Francesco Guida ,&nbsp;Sara Svaluto-Ferro","doi":"10.1016/j.spa.2024.104392","DOIUrl":"10.1016/j.spa.2024.104392","url":null,"abstract":"<div><p>We introduce a class of measure-valued processes, which – in analogy to their finite dimensional counterparts – will be called measure-valued polynomial diffusions. We show the so-called moment formula, i.e. a representation of the conditional marginal moments via a system of finite dimensional linear PDEs. Furthermore, we characterize the corresponding infinitesimal generators obtaining a representation analogous to polynomial diffusions on <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>m</mi></mrow></msubsup></math></span>, in cases where their domain is large enough. In general the infinite dimensional setting allows for richer specifications strictly beyond this representation. As a special case, we recover measure-valued affine diffusions, sometimes also called Dawson–Watanabe superprocesses. From a mathematical finance point of view, the polynomial framework is especially attractive since it allows to transfer many famous finite dimensional models and their tractability properties to an infinite dimensional measure-valued setting.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104392"},"PeriodicalIF":1.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030441492400098X/pdfft?md5=95b1e3d27661758cbdcb509b968b0392&pid=1-s2.0-S030441492400098X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deviation inequality for Banach-valued orthomartingales 巴拿赫值正交模型的偏差不等式
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-21 DOI: 10.1016/j.spa.2024.104391
Davide Giraudo

We show a deviation inequality inequalities for multi-indexed martingale We then provide applications to kernel regression for random fields and rates in the law of large numbers for orthomartingale difference random fields.

我们展示了多指数马丁格尔的偏差不等式,然后将其应用于随机场的核回归和正马丁格尔差分随机场的大数定律率。
{"title":"Deviation inequality for Banach-valued orthomartingales","authors":"Davide Giraudo","doi":"10.1016/j.spa.2024.104391","DOIUrl":"https://doi.org/10.1016/j.spa.2024.104391","url":null,"abstract":"<div><p>We show a deviation inequality inequalities for multi-indexed martingale We then provide applications to kernel regression for random fields and rates in the law of large numbers for orthomartingale difference random fields.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104391"},"PeriodicalIF":1.4,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924000978/pdfft?md5=a0bf3937d893b48c3aa8bb47e30a0427&pid=1-s2.0-S0304414924000978-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141239063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic expansion of the quadratic variation of fractional stochastic differential equation 分数随机微分方程二次变化的渐近展开
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-21 DOI: 10.1016/j.spa.2024.104389
Hayate Yamagishi, Nakahiro Yoshida

We derive an asymptotic expansion for the quadratic variation of a stochastic process satisfying a stochastic differential equation driven by a fractional Brownian motion, based on the theory of asymptotic expansion of Skorohod integrals converging to a mixed normal limit. In order to apply the general theory, it is necessary to estimate functionals that are a randomly weighted sum of products of multiple integrals of the fractional Brownian motion, in expanding the quadratic variation and identifying the limit random symbols. To overcome the difficulty, we utilized the theory of exponents of functionals, which was introduced by the authors in Yamagishi and Yoshida (2023).

我们根据收敛于混合正态极限的斯科罗霍德积分渐近展开理论,推导出满足由分数布朗运动驱动的随机微分方程的随机过程的二次变化的渐近展开。为了应用一般理论,有必要在扩展二次变化和识别极限随机符号时,估计作为分数布朗运动多个积分乘积的随机加权和的函数。为了克服这一困难,我们利用了作者在 Yamagishi 和 Yoshida(2023 年)中提出的函数指数理论。
{"title":"Asymptotic expansion of the quadratic variation of fractional stochastic differential equation","authors":"Hayate Yamagishi,&nbsp;Nakahiro Yoshida","doi":"10.1016/j.spa.2024.104389","DOIUrl":"10.1016/j.spa.2024.104389","url":null,"abstract":"<div><p>We derive an asymptotic expansion for the quadratic variation of a stochastic process satisfying a stochastic differential equation driven by a fractional Brownian motion, based on the theory of asymptotic expansion of Skorohod integrals converging to a mixed normal limit. In order to apply the general theory, it is necessary to estimate functionals that are a randomly weighted sum of products of multiple integrals of the fractional Brownian motion, in expanding the quadratic variation and identifying the limit random symbols. To overcome the difficulty, we utilized the theory of exponents of functionals, which was introduced by the authors in Yamagishi and Yoshida (2023).</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104389"},"PeriodicalIF":1.4,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924000954/pdfft?md5=310eab5d5d78f093c4fe4c9cea6a910f&pid=1-s2.0-S0304414924000954-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141132836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation 随机晶粒模型非线性函数的缩放极限,在布尔格斯方程中的应用
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-21 DOI: 10.1016/j.spa.2024.104390
Donatas Surgailis

We study scaling limits of nonlinear functions G of random grain model X on Rd with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity M of the underlying Poisson process of grains increases together with the scaling parameter λ as M=λγ, for some γ>0. The results are applicable to the Boolean model and exponential G and rely on an expansion of G in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.

我们研究的是具有长程依赖性和边际泊松分布的 Rd 上随机晶粒模型 X 的非线性函数 G 的缩放极限。根据 Kaj 等人(2007 年)的研究,我们假定在某个 γ>0 条件下,谷粒的基本泊松过程的强度 M 随缩放参数 λ 的增大而增大,即 M=λγ。这些结果适用于布尔模型和指数 G,并依赖于 G 在夏利多项式中的展开和梅勒公式的广义化。讨论了布尔格斯方程与初始聚合随机粒度数据的求解应用。
{"title":"Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation","authors":"Donatas Surgailis","doi":"10.1016/j.spa.2024.104390","DOIUrl":"https://doi.org/10.1016/j.spa.2024.104390","url":null,"abstract":"<div><p>We study scaling limits of nonlinear functions <span><math><mi>G</mi></math></span> of random grain model <span><math><mi>X</mi></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity <span><math><mi>M</mi></math></span> of the underlying Poisson process of grains increases together with the scaling parameter <span><math><mi>λ</mi></math></span> as <span><math><mrow><mi>M</mi><mo>=</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The results are applicable to the Boolean model and exponential <span><math><mi>G</mi></math></span> and rely on an expansion of <span><math><mi>G</mi></math></span> in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104390"},"PeriodicalIF":1.4,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter inference for degenerate diffusion processes 退化扩散过程的参数推断
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-17 DOI: 10.1016/j.spa.2024.104384
Yuga Iguchi , Alexandros Beskos , Matthew M. Graham

We study parametric inference for ergodic diffusion processes with a degenerate diffusion matrix. Existing research focuses on a particular class of hypo-elliptic Stochastic Differential Equations (SDEs), with components split into ‘rough’/‘smooth’ and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the highly degenerate class of SDEs, where components split into further sub-groups. Such models include e.g. the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general ‘recipe’ for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.

我们研究具有退化扩散矩阵的遍历扩散过程的参数推断。现有研究集中于一类特殊的次椭圆随机微分方程(SDEs),其分量分为 "粗糙"/"平滑 "两类,粗糙分量的噪声直接传播到平滑分量上。我们的目标是填补这一空白,从而分析高度退化的 SDE 类模型,其中的分量又进一步分为多个子组。这类模型包括广义朗格文方程等显著案例。我们提出了一种量身定制的时间离散化方案,并提供了在高频、全面观测背景下支持我们方案的渐近结果。我们提出的离散化方案适用于更广泛的数据环境,并通过模拟研究证明,在只观测到平滑分量的实际情况下也能克服偏差。我们对高度退化 SDEs 的研究与现有研究相结合,为开发时间离散化方案提供了一个通用 "配方",该方案可用于一般类别的次椭圆 SDEs 统计方法。
{"title":"Parameter inference for degenerate diffusion processes","authors":"Yuga Iguchi ,&nbsp;Alexandros Beskos ,&nbsp;Matthew M. Graham","doi":"10.1016/j.spa.2024.104384","DOIUrl":"https://doi.org/10.1016/j.spa.2024.104384","url":null,"abstract":"<div><p>We study parametric inference for ergodic diffusion processes with a degenerate diffusion matrix. Existing research focuses on a particular class of hypo-elliptic Stochastic Differential Equations (SDEs), with components split into ‘rough’/‘smooth’ and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the <em>highly degenerate</em> class of SDEs, where components split into further sub-groups. Such models include e.g. the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general ‘recipe’ for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104384"},"PeriodicalIF":1.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924000905/pdfft?md5=89cc3606fec53926f51d3f981aa8013d&pid=1-s2.0-S0304414924000905-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements 根据局部测量结果对带有乘法噪声的随机热方程进行参数估计
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-16 DOI: 10.1016/j.spa.2024.104385
Josef Janák , Markus Reiß

For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator, derived in Altmeyer and Reiß (2021) for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.

对于有乘法噪声的随机热方程,我们考虑的问题是估计拉普拉斯算子前的扩散参数。基于空间局部观测,我们首先研究了 Altmeyer 和 Reiß (2021) 针对加性噪声推导出的估计器。一个稳定的中心极限定理表明,这个估计值是一致的,并且在渐近上是混合正态的。考虑到二次变化,我们提出了两个新的估计器。它们的极限分布显示出更小的(条件)方差,最后一个估计值也适用于消失的噪声水平。证明基于克服复杂非线性的局部近似结果,以及关于圆柱布朗运动随机积分的稳定中心极限定理。模拟结果说明了理论发现。
{"title":"Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements","authors":"Josef Janák ,&nbsp;Markus Reiß","doi":"10.1016/j.spa.2024.104385","DOIUrl":"https://doi.org/10.1016/j.spa.2024.104385","url":null,"abstract":"<div><p>For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator, derived in Altmeyer and Reiß (2021) for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104385"},"PeriodicalIF":1.4,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924000917/pdfft?md5=e30a3d4bb5bf98f143d7018ebba94816&pid=1-s2.0-S0304414924000917-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes 关于马尔可夫可加过程和马尔可夫调制广义奥恩斯坦-乌伦贝克过程的积分矩
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-09 DOI: 10.1016/j.spa.2024.104382
Anita Behme, Paolo Di Tella, Apostolos Sideris

We establish sufficient conditions for the existence, and derive explicit formulas for the κ’th moments, κ1, of Markov modulated generalized Ornstein–Uhlenbeck processes as well as their stationary distributions. In particular, the running mean, the autocovariance function, and integer moments of the stationary distribution are derived in terms of the characteristics of the driving Markov additive process.

Our derivations rely on new general results on moments of Markov additive processes and (multidimensional) integrals with respect to Markov additive processes.

我们为马尔可夫调制广义奥恩斯坦-乌伦贝克过程的κ'th矩κ≥1及其静态分布建立了存在的充分条件,并推导出明确的公式。我们的推导依赖于关于马尔可夫加过程矩和(多维)马尔可夫加过程积分的新的一般结果。
{"title":"On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes","authors":"Anita Behme,&nbsp;Paolo Di Tella,&nbsp;Apostolos Sideris","doi":"10.1016/j.spa.2024.104382","DOIUrl":"https://doi.org/10.1016/j.spa.2024.104382","url":null,"abstract":"<div><p>We establish sufficient conditions for the existence, and derive explicit formulas for the <span><math><mi>κ</mi></math></span>’th moments, <span><math><mrow><mi>κ</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, of Markov modulated generalized Ornstein–Uhlenbeck processes as well as their stationary distributions. In particular, the running mean, the autocovariance function, and integer moments of the stationary distribution are derived in terms of the characteristics of the driving Markov additive process.</p><p>Our derivations rely on new general results on moments of Markov additive processes and (multidimensional) integrals with respect to Markov additive processes.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104382"},"PeriodicalIF":1.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924000887/pdfft?md5=a4aad3e554a4842b41e2a355c4134f09&pid=1-s2.0-S0304414924000887-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140948127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The d-dimensional bootstrap percolation models with axial neighbourhoods 具有轴向邻域的 d 维引导渗流模型
IF 1.4 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-09 DOI: 10.1016/j.spa.2024.104383
Daniel Blanquicett
<div><p>Fix positive integers <span><math><mrow><mi>d</mi><mo>,</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span>. For large <span><math><mi>L</mi></math></span>, each site of <span><math><mrow><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> can be at state 0 or 1 (infected), and its neighbourhood consists of the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> nearest neighbours in the <span><math><mrow><mo>±</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>-directions for each <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></mrow></mrow></math></span>. The state will evolve in discrete time as follows: At time 0, vertices are independently 1 with some probability <span><math><mi>p</mi></math></span>. We infect any vertex <span><math><mrow><mi>v</mi><mo>∈</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> at state 0 already having <span><math><mi>r</mi></math></span> infected neighbours, and infected sites remain infected forever.</p><p>In this paper we study the critical length for percolation, defined by <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>L</mi><mo>∈</mo><mi>N</mi><mo>:</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mtext>is eventually infected</mtext><mo>)</mo></mrow><mo>≥</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. We determine the <span><math><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-times iterated logarithm of <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> u
固定正整数 d,r 和 a1≤a2≤⋯≤ad.对于大 L,{1,...,L}d⊂Zd 的每个点都可能处于状态 0 或 1(被感染),其邻域由每个 k∈{1,2,...d} 的 ±ek 方向上的 ak 个近邻组成。状态在离散时间内的演化过程如下:在本文中,我们研究了渗滤的临界长度,定义为 Lc(Nra1,...ad,p)=min{L∈N:Pp({1,...,L}最终被感染)≥1/2}。对于所有 d 元组(a1,...,ad)和所有 r∈{a2+⋯+ad+1,...,a1+a2+⋯+ad},我们确定 Lc(Nra1,...,ad,p)的(d-1)次迭代对数,直到一个常数因子。我们猜想,我们可以把为所有 d≥3 和所有 r∈{ad+1,...,a1+a2+⋯+ad} 确定阈值的问题,简化为只为所有 d≥3 和 r∈{ad+1,...,ad-1+ad} 确定阈值的问题。
{"title":"The d-dimensional bootstrap percolation models with axial neighbourhoods","authors":"Daniel Blanquicett","doi":"10.1016/j.spa.2024.104383","DOIUrl":"https://doi.org/10.1016/j.spa.2024.104383","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Fix positive integers &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. For large &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, each site of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; can be at state 0 or 1 (infected), and its neighbourhood consists of the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; nearest neighbours in the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-directions for each &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The state will evolve in discrete time as follows: At time 0, vertices are independently 1 with some probability &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. We infect any vertex &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; at state 0 already having &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; infected neighbours, and infected sites remain infected forever.&lt;/p&gt;&lt;p&gt;In this paper we study the critical length for percolation, defined by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;min&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mtext&gt;is eventually infected&lt;/mtext&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We determine the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-times iterated logarithm of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; u","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104383"},"PeriodicalIF":1.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140948125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stochastic Processes and their Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1