Hamdam Gaminian, Behzad Ahvazi, J. J. Vidmar, Usukuma Ekuere, Sharon Regan
There has been a growing interest in recycling and upcycling different waste streams due to concerns for environmental protection. This has prompted the desire to develop circular economies and optimize the utilization of bioresources for different industrial sectors. Turning agricultural and forestry waste streams into high-performance materials is a promising and meaningful strategy for creating value-added materials. Lignocellulose fibres from plants are emerging as a potential candidate for eco-friendly feedstock in the textile industry. Nonwoven fabric is one of the most innovative and promising categories for the textile industry since it currently utilizes about 66% synthetic materials. In the upcoming wave of nonwoven products, we can expect an increased utilization of natural and renewable materials, particularly with a focus on incorporating lignocellulosic materials as both binders and fibre components. The introduction of low-cost fibres from waste residue materials to produce high-performance nonwoven fabrics represents a shift towards more environmentally sustainable paradigms in various applications and they represent ecological and inexpensive alternatives to conventional petroleum-derived materials. Here, we review potential technologies for using agricultural waste fibres in nonwoven products.
{"title":"Revolutionizing Sustainable Nonwoven Fabrics: The Potential Use of Agricultural Waste and Natural Fibres for Nonwoven Fabric","authors":"Hamdam Gaminian, Behzad Ahvazi, J. J. Vidmar, Usukuma Ekuere, Sharon Regan","doi":"10.3390/biomass4020018","DOIUrl":"https://doi.org/10.3390/biomass4020018","url":null,"abstract":"There has been a growing interest in recycling and upcycling different waste streams due to concerns for environmental protection. This has prompted the desire to develop circular economies and optimize the utilization of bioresources for different industrial sectors. Turning agricultural and forestry waste streams into high-performance materials is a promising and meaningful strategy for creating value-added materials. Lignocellulose fibres from plants are emerging as a potential candidate for eco-friendly feedstock in the textile industry. Nonwoven fabric is one of the most innovative and promising categories for the textile industry since it currently utilizes about 66% synthetic materials. In the upcoming wave of nonwoven products, we can expect an increased utilization of natural and renewable materials, particularly with a focus on incorporating lignocellulosic materials as both binders and fibre components. The introduction of low-cost fibres from waste residue materials to produce high-performance nonwoven fabrics represents a shift towards more environmentally sustainable paradigms in various applications and they represent ecological and inexpensive alternatives to conventional petroleum-derived materials. Here, we review potential technologies for using agricultural waste fibres in nonwoven products.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"142 6‐7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141007098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinícius Mateus Salvatori Cheute, T. M. Uber, Luís Felipe Oliva dos Santos, Emanueli Backes, Marina Proença Dantas, A. Contato, Rafael Castoldi, C. G. D. de Souza, R. Corrêa, A. Bracht, R. Peralta
Substantial amounts of organo-pollutants, often persistent and toxic, are generated globally each year, posing a threat to soil, water, groundwater, and air. The pollutants encompass a wide range of substances from various sources, which include solid as well as liquid ones, such as landfill leachates and wastewaters. The compounds include paper and pulp mill byproducts, pharmaceuticals, diverse types of plastics, hydrocarbons, pigments, and dyes, as well as pesticides and insecticides. Fungal bioremediation stands out as a promising technology that uses the metabolic potential of fungi to eliminate or mitigate the impact of pollutants. Notably, species of the genus Pycnoporus exhibit significant capabilities for degrading a broad spectrum of toxic molecules. This degradation is facilitated by released ligninolytic enzymes, especially laccase, and cellular enzymes pertaining to the cytochrome P450 monooxygenase system. The laccase, which is overproduced by the genus Pycnoporus, is quite remarkable for its high redox potential. The objective of this review is to highlight the proficiency of the Pycnoporus genus in the degradation of pollutants in submerged and solid-state fermentation. Recent studies conducted over the past decade consistently highlight the Pycnoporus genus as a robust contender in the realm of white biotechnology.
{"title":"Biotransformation of Pollutants by Pycnoporus spp. in Submerged and Solid-State Fermentation: Mechanisms, Achievements, and Perspectives","authors":"Vinícius Mateus Salvatori Cheute, T. M. Uber, Luís Felipe Oliva dos Santos, Emanueli Backes, Marina Proença Dantas, A. Contato, Rafael Castoldi, C. G. D. de Souza, R. Corrêa, A. Bracht, R. Peralta","doi":"10.3390/biomass4020015","DOIUrl":"https://doi.org/10.3390/biomass4020015","url":null,"abstract":"Substantial amounts of organo-pollutants, often persistent and toxic, are generated globally each year, posing a threat to soil, water, groundwater, and air. The pollutants encompass a wide range of substances from various sources, which include solid as well as liquid ones, such as landfill leachates and wastewaters. The compounds include paper and pulp mill byproducts, pharmaceuticals, diverse types of plastics, hydrocarbons, pigments, and dyes, as well as pesticides and insecticides. Fungal bioremediation stands out as a promising technology that uses the metabolic potential of fungi to eliminate or mitigate the impact of pollutants. Notably, species of the genus Pycnoporus exhibit significant capabilities for degrading a broad spectrum of toxic molecules. This degradation is facilitated by released ligninolytic enzymes, especially laccase, and cellular enzymes pertaining to the cytochrome P450 monooxygenase system. The laccase, which is overproduced by the genus Pycnoporus, is quite remarkable for its high redox potential. The objective of this review is to highlight the proficiency of the Pycnoporus genus in the degradation of pollutants in submerged and solid-state fermentation. Recent studies conducted over the past decade consistently highlight the Pycnoporus genus as a robust contender in the realm of white biotechnology.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"23 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140695460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microalgae-based renewable energy, industrial chemicals, and food have received great attention during the last decade. This review article highlights the versatility of algal biomass as a feedstock for producing various commodities and high-value products, including aromatic hydrocarbons and lipids within biorefinery systems. Lipid content and the composition of algal biomass cultivated in various media, specifically in wastewater streams generated at agricultural and industrial production facilities, are reviewed. Technical and chemical aspects of algal biomass conversion via thermochemical techniques including pyrolysis, hydrothermal liquefaction, and hydrothermal carbonization are discussed. The properties of the final products are reviewed based on the conversion process employed. Studies published within the last 5 years are reviewed. The importance of further research on inexpensive and more effective catalysts and the development of downstream processes to upgrade crude products obtained from thermal conversion processes is emphasized. This review concludes with an in-depth discussion of the opportunities and challenges involved in algal biomass-based bioproduct manufacturing and commercialization.
{"title":"Algae: Nature’s Renewable Resource for Fuels and Chemicals","authors":"Sourabh Chakraborty, N. Dunford","doi":"10.3390/biomass4020016","DOIUrl":"https://doi.org/10.3390/biomass4020016","url":null,"abstract":"Microalgae-based renewable energy, industrial chemicals, and food have received great attention during the last decade. This review article highlights the versatility of algal biomass as a feedstock for producing various commodities and high-value products, including aromatic hydrocarbons and lipids within biorefinery systems. Lipid content and the composition of algal biomass cultivated in various media, specifically in wastewater streams generated at agricultural and industrial production facilities, are reviewed. Technical and chemical aspects of algal biomass conversion via thermochemical techniques including pyrolysis, hydrothermal liquefaction, and hydrothermal carbonization are discussed. The properties of the final products are reviewed based on the conversion process employed. Studies published within the last 5 years are reviewed. The importance of further research on inexpensive and more effective catalysts and the development of downstream processes to upgrade crude products obtained from thermal conversion processes is emphasized. This review concludes with an in-depth discussion of the opportunities and challenges involved in algal biomass-based bioproduct manufacturing and commercialization.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140695820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hisham Ahmed, Rasaq S. Abolore, S. Jaiswal, Amit K. Jaiswal
With growing concern over environmental sustainability and dwindling fossil resources, it is crucial to prioritise the development of alternative feedstocks to replace fossil resources. Spent coffee grounds (SCGs) are an environmental burden with an estimated six million tons being generated on a wet basis annually, globally. SCGs are rich in cellulose, lignin, protein, lipids, polyphenols and other bioactive compounds which are important raw materials for use in industries including pharmaceuticals and cosmetics. Furthermore, the energy sector has the potential to capitalize on the high calorific value of SCGs for biofuel and biogas production, offering a sustainable alternative to fossil fuels. SCGs are readily available, abundant, and cheap, however, SCGs are currently underutilized, and a significant amount are dumped into landfills. This review explores the potential of SCGs as a source of a value-added compound through various conversion technologies employed in the valorisation of SCGs into biochar, biofuel, and important chemical building blocks. The state-of-the-art, current knowledge, future research to stimulate the creation of sustainable products, and the challenges and economic feasibility of exploring SCGs in a biorefinery context are presented.
{"title":"Toward Circular Economy: Potentials of Spent Coffee Grounds in Bioproducts and Chemical Production","authors":"Hisham Ahmed, Rasaq S. Abolore, S. Jaiswal, Amit K. Jaiswal","doi":"10.3390/biomass4020014","DOIUrl":"https://doi.org/10.3390/biomass4020014","url":null,"abstract":"With growing concern over environmental sustainability and dwindling fossil resources, it is crucial to prioritise the development of alternative feedstocks to replace fossil resources. Spent coffee grounds (SCGs) are an environmental burden with an estimated six million tons being generated on a wet basis annually, globally. SCGs are rich in cellulose, lignin, protein, lipids, polyphenols and other bioactive compounds which are important raw materials for use in industries including pharmaceuticals and cosmetics. Furthermore, the energy sector has the potential to capitalize on the high calorific value of SCGs for biofuel and biogas production, offering a sustainable alternative to fossil fuels. SCGs are readily available, abundant, and cheap, however, SCGs are currently underutilized, and a significant amount are dumped into landfills. This review explores the potential of SCGs as a source of a value-added compound through various conversion technologies employed in the valorisation of SCGs into biochar, biofuel, and important chemical building blocks. The state-of-the-art, current knowledge, future research to stimulate the creation of sustainable products, and the challenges and economic feasibility of exploring SCGs in a biorefinery context are presented.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"22 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140711518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The characterization of compost compositions on the basis of sewage sludge and structural materials (straw, sawdust, bark) composting is described. A comparison of the methods most often used for composting and characterization of structural materials is also presented. Sewage sludge and structural materials were mixed in different ratios and composted in piles (laboratory scale) for 3 months. During this time, the composting process was controlled using standard methods. The bioavailability of some xenobiotics in an agriculture experiment (using beans) was also investigated.
{"title":"Study of Compost Based on Sewage Sludge and Different Structural Materials","authors":"Przemysław Kosobucki","doi":"10.3390/biomass4020013","DOIUrl":"https://doi.org/10.3390/biomass4020013","url":null,"abstract":"The characterization of compost compositions on the basis of sewage sludge and structural materials (straw, sawdust, bark) composting is described. A comparison of the methods most often used for composting and characterization of structural materials is also presented. Sewage sludge and structural materials were mixed in different ratios and composted in piles (laboratory scale) for 3 months. During this time, the composting process was controlled using standard methods. The bioavailability of some xenobiotics in an agriculture experiment (using beans) was also investigated.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"23 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140744903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heavy metal contamination in drinking water is a growing concern due to its severe health effects on humans. Among the many metals, lead (Pb), which is a toxic and harmful element, has the most widespread global distribution. Pb pollution is a major problem of water pollution in developing countries and nations. The most common sources of lead in drinking water are lead pipes, faucets, and plumbing fixtures. Adsorption is the most efficient method for metal removal, and activated carbon has been used widely in many applications as an effective adsorbent, but its high production costs have created the necessity for a low-cost alternative adsorbent. Biochar can be a cost-effective substitute for activated carbon in lead adsorption because of its porous structure, irregular surface, high surface-to-volume ratio, and presence of oxygenated functional groups. Extensive research has explored the remarkable potential of biochar in adsorbing Pb from water and wastewater through batch and column studies. Despite its efficacy in Pb removal, several challenges hinder the real application of biochar as an adsorbent. These challenges include variability in the adsorption capacity due to the diverse range of biomass feedstocks, production processes, pH dependence, potential desorption, or a leaching of Pb from the biochar back into the solution; the regeneration and reutilization of spent biochar; and a lack of studies on scalability issues for its application as an adsorbent. This manuscript aims to review the last ten years of research, highlighting the opportunities and engineering challenges associated with using biochar for Pb removal from water. Biochar production and activation methods, kinetics, adsorption isotherms, mechanisms, regeneration, and adsorption capacities with process conditions are discussed. The objective is to provide a comprehensive resource that can guide future researchers and practitioners in addressing engineering challenges.
{"title":"A Review on Biochar as an Adsorbent for Pb(II) Removal from Water","authors":"P. Kumkum, Sandeep Kumar","doi":"10.3390/biomass4020012","DOIUrl":"https://doi.org/10.3390/biomass4020012","url":null,"abstract":"Heavy metal contamination in drinking water is a growing concern due to its severe health effects on humans. Among the many metals, lead (Pb), which is a toxic and harmful element, has the most widespread global distribution. Pb pollution is a major problem of water pollution in developing countries and nations. The most common sources of lead in drinking water are lead pipes, faucets, and plumbing fixtures. Adsorption is the most efficient method for metal removal, and activated carbon has been used widely in many applications as an effective adsorbent, but its high production costs have created the necessity for a low-cost alternative adsorbent. Biochar can be a cost-effective substitute for activated carbon in lead adsorption because of its porous structure, irregular surface, high surface-to-volume ratio, and presence of oxygenated functional groups. Extensive research has explored the remarkable potential of biochar in adsorbing Pb from water and wastewater through batch and column studies. Despite its efficacy in Pb removal, several challenges hinder the real application of biochar as an adsorbent. These challenges include variability in the adsorption capacity due to the diverse range of biomass feedstocks, production processes, pH dependence, potential desorption, or a leaching of Pb from the biochar back into the solution; the regeneration and reutilization of spent biochar; and a lack of studies on scalability issues for its application as an adsorbent. This manuscript aims to review the last ten years of research, highlighting the opportunities and engineering challenges associated with using biochar for Pb removal from water. Biochar production and activation methods, kinetics, adsorption isotherms, mechanisms, regeneration, and adsorption capacities with process conditions are discussed. The objective is to provide a comprehensive resource that can guide future researchers and practitioners in addressing engineering challenges.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"20 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140753514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Filipe Kayodè Felisberto dos Santos, Ian-Gardel Carvalho Barcellos-Silva, Odilon Leite-Barbosa, Rayssa Ribeiro, Yasmin Cunha-Silva, V. Veiga-Junior
The current era witnesses a remarkable advancement in biomass utilization, guided by the principles of green chemistry and biorefinery and the comprehensive exploitation of plant-based raw materials. Predominantly, large-scale production methods have been pursued, akin to approaches in the oil industry, enabling the incorporation of novel products into energy and petrochemical markets. However, the viability of such systems on a small and medium scale is hindered by logistical challenges and the constraints of economies of scale. For small agricultural producers and food processing companies, the complete utilization of biomass transcends environmental responsibility, evolving into a strategy for survival through the diversification of by-products with enhanced value. The state of Rio de Janeiro in Brazil presents a range of population dynamics, geographical features, climate conditions, and agricultural production patterns that closely resemble those found in various tropical countries and agricultural regions worldwide. This region, sustaining a green belt supporting 17 million people, provides an apt case study for investigating chemical compounds with potential value among agro-industrial residues, which can motivate the creation of a lucrative biotechnological industry. Examples include naringenin and hesperidin from oranges and lemons, epi-gallo-catechin gallate from bananas, caffeic acids from coffee, and the bromelain enzyme from pineapples. This study addresses the challenges associated with developing biotechnological alternatives within the agroindustry, considering economic, technological, logistical, and market-related aspects. The insights from examining the Brazilian state of Rio de Janeiro will contribute to the broader discourse on sustainable biomass utilization and the creation of value-added by-products.
{"title":"High Added-Value by-Products from Biomass: A Case Study Unveiling Opportunities for Strengthening the Agroindustry Value Chain","authors":"Filipe Kayodè Felisberto dos Santos, Ian-Gardel Carvalho Barcellos-Silva, Odilon Leite-Barbosa, Rayssa Ribeiro, Yasmin Cunha-Silva, V. Veiga-Junior","doi":"10.3390/biomass4020011","DOIUrl":"https://doi.org/10.3390/biomass4020011","url":null,"abstract":"The current era witnesses a remarkable advancement in biomass utilization, guided by the principles of green chemistry and biorefinery and the comprehensive exploitation of plant-based raw materials. Predominantly, large-scale production methods have been pursued, akin to approaches in the oil industry, enabling the incorporation of novel products into energy and petrochemical markets. However, the viability of such systems on a small and medium scale is hindered by logistical challenges and the constraints of economies of scale. For small agricultural producers and food processing companies, the complete utilization of biomass transcends environmental responsibility, evolving into a strategy for survival through the diversification of by-products with enhanced value. The state of Rio de Janeiro in Brazil presents a range of population dynamics, geographical features, climate conditions, and agricultural production patterns that closely resemble those found in various tropical countries and agricultural regions worldwide. This region, sustaining a green belt supporting 17 million people, provides an apt case study for investigating chemical compounds with potential value among agro-industrial residues, which can motivate the creation of a lucrative biotechnological industry. Examples include naringenin and hesperidin from oranges and lemons, epi-gallo-catechin gallate from bananas, caffeic acids from coffee, and the bromelain enzyme from pineapples. This study addresses the challenges associated with developing biotechnological alternatives within the agroindustry, considering economic, technological, logistical, and market-related aspects. The insights from examining the Brazilian state of Rio de Janeiro will contribute to the broader discourse on sustainable biomass utilization and the creation of value-added by-products.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"267 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140773359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dayana Nascimento Dari Dari, Isabelly Silveira Freitas, Francisco Izaias da Silva Aires, R. Melo, K. M. dos Santos, Patrick da Silva Sousa, Paulo Gonçalves de Sousa Junior, Antônio Luthierre Gama Cavalcante, F. S. Neto, Jessica Lopes da Silva, Érico Carlos de Castro, Valdilane Santos Alexandre, Ana M. da S. Lima, J. Serpa, Maria C. M. de Souza, J. C. S. D. Santos
Fermentation is an oxygen-free biological process that produces hydrogen, a clean, renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production, identify trends and contributors, and map the development of a field, providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analysis and a future perspective on fermentation for hydrogen production. By searching WoS, we evaluated and refined 62,087 articles to 4493 articles. This allowed us to identify the most important journals, countries, institutions, and authors in the field. In addition, the ten most cited articles and the dominant research areas were identified. A keyword analysis revealed five research clusters that illustrate where research is progressing. The outlook indicates that a deeper understanding of microbiology and support from energy policy will drive the development of hydrogen from fermentation.
{"title":"An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis","authors":"Dayana Nascimento Dari Dari, Isabelly Silveira Freitas, Francisco Izaias da Silva Aires, R. Melo, K. M. dos Santos, Patrick da Silva Sousa, Paulo Gonçalves de Sousa Junior, Antônio Luthierre Gama Cavalcante, F. S. Neto, Jessica Lopes da Silva, Érico Carlos de Castro, Valdilane Santos Alexandre, Ana M. da S. Lima, J. Serpa, Maria C. M. de Souza, J. C. S. D. Santos","doi":"10.3390/biomass4010007","DOIUrl":"https://doi.org/10.3390/biomass4010007","url":null,"abstract":"Fermentation is an oxygen-free biological process that produces hydrogen, a clean, renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production, identify trends and contributors, and map the development of a field, providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analysis and a future perspective on fermentation for hydrogen production. By searching WoS, we evaluated and refined 62,087 articles to 4493 articles. This allowed us to identify the most important journals, countries, institutions, and authors in the field. In addition, the ten most cited articles and the dominant research areas were identified. A keyword analysis revealed five research clusters that illustrate where research is progressing. The outlook indicates that a deeper understanding of microbiology and support from energy policy will drive the development of hydrogen from fermentation.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140091523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Athanasiadis, Theodoros G. Chatzimitakos, Martha Mantiniotou, Eleni Bozinou, S. Lalas
Each year, a substantial amount of food is discarded around the globe. A significant portion of this waste consists of by-products derived from Citrus fruits such as lemons. The purpose of this research is to examine the polyphenol extraction and the antioxidant ability of lemon peel using cloud point extraction (CPE), a sustainable approach. CPE was conducted using three steps with a 20% w/v concentration of Span 20 as the surfactant, which has a critical micellar concentration of 6.13 × 10−5 mol/L. The pH was set at 7 and a salt concentration of 20% was maintained at 45 °C for 20 min. The subsequent outcomes of the analysis were obtained: total polyphenol content (TPC): 526.32 mg gallic acid equivalents per liter; total flavonoid content (TFC): 90.22 mg rutin equivalents per liter; FRAP, DPPH, and hydrogen peroxide assays: 2.40, 2.68 and 1.03 mmol ascorbic acid equivalents per liter, respectively, and 168.63 mg/L ascorbic acid content. The quantification of the polyphenolic compounds through High-Performance Liquid Chromatography showed that the most abundant compounds in the lemon peels are eriocitrin (159.43 mg/L) and hesperidin (135.21 mg/L). The results indicate that the proposed CPE technique is successful in extracting antioxidant compounds from lemon peels. The generated extracts have the potential to be exploited as dietary additives to enhance human health and can also be utilized for nutraceuticals or pharmaceutical purposes.
{"title":"Exploring the Antioxidant Properties of Citrus limon (Lemon) Peel Ultrasound Extract after the Cloud Point Extraction Method","authors":"V. Athanasiadis, Theodoros G. Chatzimitakos, Martha Mantiniotou, Eleni Bozinou, S. Lalas","doi":"10.3390/biomass4010010","DOIUrl":"https://doi.org/10.3390/biomass4010010","url":null,"abstract":"Each year, a substantial amount of food is discarded around the globe. A significant portion of this waste consists of by-products derived from Citrus fruits such as lemons. The purpose of this research is to examine the polyphenol extraction and the antioxidant ability of lemon peel using cloud point extraction (CPE), a sustainable approach. CPE was conducted using three steps with a 20% w/v concentration of Span 20 as the surfactant, which has a critical micellar concentration of 6.13 × 10−5 mol/L. The pH was set at 7 and a salt concentration of 20% was maintained at 45 °C for 20 min. The subsequent outcomes of the analysis were obtained: total polyphenol content (TPC): 526.32 mg gallic acid equivalents per liter; total flavonoid content (TFC): 90.22 mg rutin equivalents per liter; FRAP, DPPH, and hydrogen peroxide assays: 2.40, 2.68 and 1.03 mmol ascorbic acid equivalents per liter, respectively, and 168.63 mg/L ascorbic acid content. The quantification of the polyphenolic compounds through High-Performance Liquid Chromatography showed that the most abundant compounds in the lemon peels are eriocitrin (159.43 mg/L) and hesperidin (135.21 mg/L). The results indicate that the proposed CPE technique is successful in extracting antioxidant compounds from lemon peels. The generated extracts have the potential to be exploited as dietary additives to enhance human health and can also be utilized for nutraceuticals or pharmaceutical purposes.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"85 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140086624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Dar, Rongrong Xie, H. Zabed, Shehbaz Ali, Daochen Zhu, Jianzhong Sun
The hunt for renewable and alternative fuels has driven research towards the biological conversion of lignocellulosic biomass (LCB) into biofuels, including bioethanol and biohydrogen. Among the natural biomass utilization systems (NBUS), termites represent a unique and easy-to-access model system to study host–microbe interactions towards lignocellulose bioconversion/valorization. Termites have gained significant interest due to their highly efficient lignocellulolytic systems. The wood-feeding termites apply a unique and stepwise process for the hydrolysis of lignin, hemicellulose, and cellulose via biocatalytic processes; therefore, mimicking their digestive metabolism and physiochemical gut environments might lay the foundation for an innovative design of nature-inspired biotechnology. This review highlights the gut system of termites, particularly the wood-feeding species, as a unique model for future biorefinery. The gut system of termites is a treasure-trove for prospecting novel microbial species, including protists, bacteria, and fungi, having higher biocatalytic efficiencies and biotechnological potentials. The significance of potential bacteria and fungi for harnessing the enzymes appropriate for lignocellulosic biorefinery is also discussed. Termite digestomes are rich sources of lignocellulases and related enzymes that could be utilized in various industrial processes and biomass-related applications. Consideration of the host and symbiont as a single functioning unit will be one of the most crucial strategies to expedite developments in termite-modeled biotechnology in the future.
{"title":"Termite Microbial Symbiosis as a Model for Innovative Design of Lignocellulosic Future Biorefinery: Current Paradigms and Future Perspectives","authors":"M. Dar, Rongrong Xie, H. Zabed, Shehbaz Ali, Daochen Zhu, Jianzhong Sun","doi":"10.3390/biomass4010009","DOIUrl":"https://doi.org/10.3390/biomass4010009","url":null,"abstract":"The hunt for renewable and alternative fuels has driven research towards the biological conversion of lignocellulosic biomass (LCB) into biofuels, including bioethanol and biohydrogen. Among the natural biomass utilization systems (NBUS), termites represent a unique and easy-to-access model system to study host–microbe interactions towards lignocellulose bioconversion/valorization. Termites have gained significant interest due to their highly efficient lignocellulolytic systems. The wood-feeding termites apply a unique and stepwise process for the hydrolysis of lignin, hemicellulose, and cellulose via biocatalytic processes; therefore, mimicking their digestive metabolism and physiochemical gut environments might lay the foundation for an innovative design of nature-inspired biotechnology. This review highlights the gut system of termites, particularly the wood-feeding species, as a unique model for future biorefinery. The gut system of termites is a treasure-trove for prospecting novel microbial species, including protists, bacteria, and fungi, having higher biocatalytic efficiencies and biotechnological potentials. The significance of potential bacteria and fungi for harnessing the enzymes appropriate for lignocellulosic biorefinery is also discussed. Termite digestomes are rich sources of lignocellulases and related enzymes that could be utilized in various industrial processes and biomass-related applications. Consideration of the host and symbiont as a single functioning unit will be one of the most crucial strategies to expedite developments in termite-modeled biotechnology in the future.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":"124 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140090674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}