This study employs the Epanet software simulation model to comprehensively model the water distribution system in the burgeoning city of Guelma. The modelling endeavours encompass hydraulic dynamics and water quality assessments. Various hydraulic scenarios, including pressure variations due to aging pipes, were simulated. Assuming a 50% leakage rate, the model highlighted pressure deficiencies at certain network junctures. Moreover, it elucidated that older pipes, characterised by higher roughness coefficients denoted by lower ‘CHW’ values, exacerbate head loss, thus diminishing water pressure. Notably, the study underscores that increasing pipe roughness with age precipitates markedly low-pressure zones, particularly evident during peak demand periods. Consequently, pressure deficits in specific network segments are implicated in the degradation of water quality.
{"title":"Impact of aging infrastructure on water pressure and quality: Guelma water network simulation","authors":"Kherouf Mazouz, R. Mansouri, M. Dorbani","doi":"10.2166/aqua.2024.070","DOIUrl":"https://doi.org/10.2166/aqua.2024.070","url":null,"abstract":"\u0000 \u0000 This study employs the Epanet software simulation model to comprehensively model the water distribution system in the burgeoning city of Guelma. The modelling endeavours encompass hydraulic dynamics and water quality assessments. Various hydraulic scenarios, including pressure variations due to aging pipes, were simulated. Assuming a 50% leakage rate, the model highlighted pressure deficiencies at certain network junctures. Moreover, it elucidated that older pipes, characterised by higher roughness coefficients denoted by lower ‘CHW’ values, exacerbate head loss, thus diminishing water pressure. Notably, the study underscores that increasing pipe roughness with age precipitates markedly low-pressure zones, particularly evident during peak demand periods. Consequently, pressure deficits in specific network segments are implicated in the degradation of water quality.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"54 35","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miaomiao Ye, Lei Song, Peng Chen, Kexin Li, Kai Zheng, Tuqiao Zhang, Xiaowei Liu
The S(IV)–Fe(II)/PM pretreatment has demonstrated preliminary potential as an effective ultrafiltration (UF) pretreatment technology. However, a comprehensive understanding of its impact on UF membrane fouling control and the dynamic evolution of membrane fouling during prolonged operation is still lacking. In this study, a relatively prolonged fouling experiment was conducted. Results revealed that the S(IV)–Fe(II)/PM pretreatment exhibited superior performance over Al(III) coagulation pretreatment in mitigating the transmembrane pressure difference and addressing both reversible and irreversible membrane fouling. The application of a cluster analysis method to classify membrane fouling evolution stages further confirmed that S(IV)–Fe(II)/PM pretreatment effectively decelerated the rate of membrane fouling evolution. The surface cake layer of UF membranes pretreated with S(IV)–Fe(II)/PM exhibited greater looseness and smoothness. It also showed better results than Al(III) coagulation pretreatment in reducing the accumulation of organic foulants, controlling the Si content and reducing the total microorganisms and live microorganisms in the UF feed water. Variance Partitioning Analysis indicated that the combined contribution of organic, inorganic, and biological foulants was the most significant for UF membranes after S(IV)–Fe(II)/PM pretreatment (50.4%) and UF membranes after Al(III) coagulation pretreatment (70.2%). These findings underscore the efficacy of S(IV)–Fe(II)/PM pretreatment in controlling UF membrane fouling under prolonged operation.
{"title":"Dynamic evolution of ultrafiltration membrane fouling affected by S(IV)–Fe(II)-activated permanganate pretreatment during a long-term operation","authors":"Miaomiao Ye, Lei Song, Peng Chen, Kexin Li, Kai Zheng, Tuqiao Zhang, Xiaowei Liu","doi":"10.2166/aqua.2024.331","DOIUrl":"https://doi.org/10.2166/aqua.2024.331","url":null,"abstract":"\u0000 \u0000 The S(IV)–Fe(II)/PM pretreatment has demonstrated preliminary potential as an effective ultrafiltration (UF) pretreatment technology. However, a comprehensive understanding of its impact on UF membrane fouling control and the dynamic evolution of membrane fouling during prolonged operation is still lacking. In this study, a relatively prolonged fouling experiment was conducted. Results revealed that the S(IV)–Fe(II)/PM pretreatment exhibited superior performance over Al(III) coagulation pretreatment in mitigating the transmembrane pressure difference and addressing both reversible and irreversible membrane fouling. The application of a cluster analysis method to classify membrane fouling evolution stages further confirmed that S(IV)–Fe(II)/PM pretreatment effectively decelerated the rate of membrane fouling evolution. The surface cake layer of UF membranes pretreated with S(IV)–Fe(II)/PM exhibited greater looseness and smoothness. It also showed better results than Al(III) coagulation pretreatment in reducing the accumulation of organic foulants, controlling the Si content and reducing the total microorganisms and live microorganisms in the UF feed water. Variance Partitioning Analysis indicated that the combined contribution of organic, inorganic, and biological foulants was the most significant for UF membranes after S(IV)–Fe(II)/PM pretreatment (50.4%) and UF membranes after Al(III) coagulation pretreatment (70.2%). These findings underscore the efficacy of S(IV)–Fe(II)/PM pretreatment in controlling UF membrane fouling under prolonged operation.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"2 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140654697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ludovica Palma, F. Hatam, Armando Di Nardo, Michèle Prévost
Water distribution networks play a crucial role in delivering safe water to communities. However, their extensive reach and complex structure make them susceptible to contamination. The development of efficient contamination warning systems (CWSs) can enable the monitoring and control of abnormal events. In an efficient CWS, several key aspects must be addressed: identifying potential contaminations that can occur, determining the most effective water parameters to monitor, and defining where these parameters can be strategically monitored. In the present study, literature articles will be analyzed to explore different parameters for detecting anomalies, assess the information they provide, and highlight the benefits of combining various parameters. Moreover, attention will be given to the definition of sensor placement, emphasizing the lack of attention in the literature for defining sensors’ detection thresholds. Finally, the study will emphasize that ensuring human safety requires not only prompt intrusion detection but also the implementation of corrective and preventive actions capable of mitigating contaminant spread through WDNs.
{"title":"Contaminations in water distribution systems: A critical review of detection and response methods","authors":"Ludovica Palma, F. Hatam, Armando Di Nardo, Michèle Prévost","doi":"10.2166/aqua.2024.125","DOIUrl":"https://doi.org/10.2166/aqua.2024.125","url":null,"abstract":"\u0000 \u0000 Water distribution networks play a crucial role in delivering safe water to communities. However, their extensive reach and complex structure make them susceptible to contamination. The development of efficient contamination warning systems (CWSs) can enable the monitoring and control of abnormal events. In an efficient CWS, several key aspects must be addressed: identifying potential contaminations that can occur, determining the most effective water parameters to monitor, and defining where these parameters can be strategically monitored. In the present study, literature articles will be analyzed to explore different parameters for detecting anomalies, assess the information they provide, and highlight the benefits of combining various parameters. Moreover, attention will be given to the definition of sensor placement, emphasizing the lack of attention in the literature for defining sensors’ detection thresholds. Finally, the study will emphasize that ensuring human safety requires not only prompt intrusion detection but also the implementation of corrective and preventive actions capable of mitigating contaminant spread through WDNs.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"50 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fareena Fatima, Muhammad Kaleem Sarwar, F. U. Haq, Ali Raza
Hydraulic jump is used to dissipate excessive flow energy in stilling basin to control erosion on downstream side. The literature review revealed that the convergence of the side walls in a USBR type II stilling basin has enhanced energy dissipation by stabilizing the hydraulic jump. Taking this into account, a Computational Fluid Dynamics (CFD) model was created using CFD code to analyze the hydraulic efficiency of a USBR type III stilling basin with varying degrees of side wall convergence. Additionally, alterations were made to the standard Impact Blocks geometry to evaluate their effect on energy dissipation. The side walls of stilling basin were converged from 0.5° to 2.5° (with an increment of 0.50). Study results indicated an increase in hydraulic jump efficiency from 1.6 to 14.5% due to increase in wall convergence. Modified Friction Blocks also enhanced the energy dissipation up to 2%. Post-jump Froude number values were found in acceptable range of 0.6 to 0.78. The optimal hydraulic performance of stilling basin was noted when wall convergence angle of 2.5° was used along with modified Friction Blocks. Hydraulic performance of modified stilling basin may be investigated during gated operation of the model.
{"title":"CFD Simulation of hydraulic jump in the USBR type-III stilling basin with converged walls","authors":"Fareena Fatima, Muhammad Kaleem Sarwar, F. U. Haq, Ali Raza","doi":"10.2166/aqua.2024.317","DOIUrl":"https://doi.org/10.2166/aqua.2024.317","url":null,"abstract":"\u0000 Hydraulic jump is used to dissipate excessive flow energy in stilling basin to control erosion on downstream side. The literature review revealed that the convergence of the side walls in a USBR type II stilling basin has enhanced energy dissipation by stabilizing the hydraulic jump. Taking this into account, a Computational Fluid Dynamics (CFD) model was created using CFD code to analyze the hydraulic efficiency of a USBR type III stilling basin with varying degrees of side wall convergence. Additionally, alterations were made to the standard Impact Blocks geometry to evaluate their effect on energy dissipation. The side walls of stilling basin were converged from 0.5° to 2.5° (with an increment of 0.50). Study results indicated an increase in hydraulic jump efficiency from 1.6 to 14.5% due to increase in wall convergence. Modified Friction Blocks also enhanced the energy dissipation up to 2%. Post-jump Froude number values were found in acceptable range of 0.6 to 0.78. The optimal hydraulic performance of stilling basin was noted when wall convergence angle of 2.5° was used along with modified Friction Blocks. Hydraulic performance of modified stilling basin may be investigated during gated operation of the model.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"56 51","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140662080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frequent burst events in water distribution systems cause severe water loss and other environmental issues such as contamination and carbon emissions. The availability of massive monitored data has facilitated the development of data-driven burst detection methods. This paper proposes the flow subsequences clustering–reconstruction analysis method for burst detection in district metering areas (DMAs). The sliding window is used to create flow subsequence libraries for all time points of a day using a historical data set and thereafter the clustering–reconstruction analysis is conducted to obtain flow pattern libraries and reconstruction error subsequences. The threshold vector is determined by the detection matrix extracted from the reconstruction error subsequences at each time point. At the detection stage, the new flow subsequence is created and its reconstruction version is obtained based on the flow pattern library at the same time point. The new detection vector is extracted and compared with the threshold vector to identify bursts. The proposed method is applied to two real-world DMAs and its detection performance is demonstrated and compared with two previous methods. The proposed method is proven to be effective in detecting burst events with fewer false alarms.
{"title":"Burst detection in district metering areas using flow subsequences clustering–reconstruction analysis","authors":"Mengke Zhao, Haixing Liu, Gengyan Li, Chi Zhang","doi":"10.2166/aqua.2024.277","DOIUrl":"https://doi.org/10.2166/aqua.2024.277","url":null,"abstract":"\u0000 \u0000 Frequent burst events in water distribution systems cause severe water loss and other environmental issues such as contamination and carbon emissions. The availability of massive monitored data has facilitated the development of data-driven burst detection methods. This paper proposes the flow subsequences clustering–reconstruction analysis method for burst detection in district metering areas (DMAs). The sliding window is used to create flow subsequence libraries for all time points of a day using a historical data set and thereafter the clustering–reconstruction analysis is conducted to obtain flow pattern libraries and reconstruction error subsequences. The threshold vector is determined by the detection matrix extracted from the reconstruction error subsequences at each time point. At the detection stage, the new flow subsequence is created and its reconstruction version is obtained based on the flow pattern library at the same time point. The new detection vector is extracted and compared with the threshold vector to identify bursts. The proposed method is applied to two real-world DMAs and its detection performance is demonstrated and compared with two previous methods. The proposed method is proven to be effective in detecting burst events with fewer false alarms.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140686886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experimental investigations were conducted to analyze the effect of Reynolds numbers on turbulent flow properties in a nonuniform sand bed channel. Steady flow simulations were performed over the nonuniform sand bed channel, considering five Reynolds numbers within the range of 36500–53886. This article endeavors to delineate the influence of Reynolds number on turbulent flow properties through meticulous laboratory studies. Observations revealed that higher Reynolds numbers corresponded to increased longitudinal velocity. As the Reynolds number increases by 10 to 47%, various turbulent flow properties exhibit distinct trends. Specifically, the longitudinal velocity, longitudinal turbulent intensity, vertical turbulent intensity, turbulent kinetic energy, Reynolds shear stress, and Taylor scale show increases ranging from 5 to 30%, 15 to 25%, 15 to 20%, 25 to 60%, 20 to 40%, and 35 to 45%, respectively. Taylor scale analysis indicated higher magnitudes associated with higher Reynolds numbers. In-depth examinations of turbulent anisotropy, third-order moments of velocity fluctuations, kurtosis, turbulent kinetic energy production, and dissipation provided additional insights into flow behavior across different Reynolds numbers. This study contributes to a more comprehensive understanding of flow dynamics in nonuniform sand bed channels under varying Reynolds number conditions, bridging the gap between laboratory studies and real-world scenarios.
{"title":"Reynolds number effect on the parameters of turbulent flows over open channels","authors":"Pritam Kumar, Anurag Sharma","doi":"10.2166/aqua.2024.056","DOIUrl":"https://doi.org/10.2166/aqua.2024.056","url":null,"abstract":"\u0000 Experimental investigations were conducted to analyze the effect of Reynolds numbers on turbulent flow properties in a nonuniform sand bed channel. Steady flow simulations were performed over the nonuniform sand bed channel, considering five Reynolds numbers within the range of 36500–53886. This article endeavors to delineate the influence of Reynolds number on turbulent flow properties through meticulous laboratory studies. Observations revealed that higher Reynolds numbers corresponded to increased longitudinal velocity. As the Reynolds number increases by 10 to 47%, various turbulent flow properties exhibit distinct trends. Specifically, the longitudinal velocity, longitudinal turbulent intensity, vertical turbulent intensity, turbulent kinetic energy, Reynolds shear stress, and Taylor scale show increases ranging from 5 to 30%, 15 to 25%, 15 to 20%, 25 to 60%, 20 to 40%, and 35 to 45%, respectively. Taylor scale analysis indicated higher magnitudes associated with higher Reynolds numbers. In-depth examinations of turbulent anisotropy, third-order moments of velocity fluctuations, kurtosis, turbulent kinetic energy production, and dissipation provided additional insights into flow behavior across different Reynolds numbers. This study contributes to a more comprehensive understanding of flow dynamics in nonuniform sand bed channels under varying Reynolds number conditions, bridging the gap between laboratory studies and real-world scenarios.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"29 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140696888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mass transfer from a stagnant CO2 gas pocket to the flowing water in a horizontal pipe was investigated experimentally, considering the application of pH adjustment by injecting gaseous CO2 for raw water in water treatment industries. In the experiments, the variation of the CO2 gas pocket volume and the corresponding pH values of the pipe flow with time under different conditions were recorded. The mass transfer coefficient of the CO2 gas pocket in the pipe flow was then calculated. The results showed that the injection of gaseous CO2 into the pipe flow could effectively adjust the pH. The volume of the CO2 gas pocket decreased exponentially. Different from most studies on bubble mass transfer, it was found that the ambient CO2 concentration could not be neglected in this study due to the large volume of the gas pocket and the restricted space in the pipe. The mass transfer coefficient increased with the increasing ratio of the CO2 injection rate to the water flow rate and exhibited a sharp reduction as the volume of the CO2 gas pocket decreased by about 80%. The outcomes of this paper can contribute to a better understanding of gas bubble mass transfer in pipe flows.
{"title":"Mass transfer of CO2 gas pocket in the horizontal pipe flow","authors":"Linjiang Guo, Lei Fang, Pengcheng Li, Yiyi Ma","doi":"10.2166/aqua.2024.326","DOIUrl":"https://doi.org/10.2166/aqua.2024.326","url":null,"abstract":"\u0000 The mass transfer from a stagnant CO2 gas pocket to the flowing water in a horizontal pipe was investigated experimentally, considering the application of pH adjustment by injecting gaseous CO2 for raw water in water treatment industries. In the experiments, the variation of the CO2 gas pocket volume and the corresponding pH values of the pipe flow with time under different conditions were recorded. The mass transfer coefficient of the CO2 gas pocket in the pipe flow was then calculated. The results showed that the injection of gaseous CO2 into the pipe flow could effectively adjust the pH. The volume of the CO2 gas pocket decreased exponentially. Different from most studies on bubble mass transfer, it was found that the ambient CO2 concentration could not be neglected in this study due to the large volume of the gas pocket and the restricted space in the pipe. The mass transfer coefficient increased with the increasing ratio of the CO2 injection rate to the water flow rate and exhibited a sharp reduction as the volume of the CO2 gas pocket decreased by about 80%. The outcomes of this paper can contribute to a better understanding of gas bubble mass transfer in pipe flows.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140699033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents the usefulness of the water quality index (WQI) based on Fuzzy (F)-analytic hierarchy process (AHP), multi-criteria decision-making technique, namely, weighted sum approach (WSA) and machine learning models such as Borda scoring algorithm (BSA) for its evaluation and were further applied to the datasets on water quality (WQ) of the Mahanadi River (Odisha), generated during 5 years (2018–2023) of monitoring at 19 different sites for 20 parameters. The results render two parameters, namely coliform and TKN, exceeding the WHO standards. The results revealed that 52.63% of surface water samples are excellent in terms of drinking WQ, 26.32% of the samples are categorized under medium, and rest 21.05% are grouped under poor/very poor/unsuitable in terms of the F-AHP WQI. According to the results of WSA, 10 samples (52.63%) are low polluted zones, 6 samples (31.58%) are medium-polluted zones, and around 15.79% (3 samples) are highly polluted. The graphic representations obtained by BSA underline that the calculated value ranged between 15 and 256, stating in a zone of good to poor WQ. The best WQ was observed in T-(1), (5), (14), (15), (16), (17), and (18) because there were no changes in land use.
{"title":"Evaluation of prospective surface water potential zones and their suitability for drinking purposes in Mahanadi River Basin, Odisha (India)","authors":"Abhijeet Das","doi":"10.2166/aqua.2024.111","DOIUrl":"https://doi.org/10.2166/aqua.2024.111","url":null,"abstract":"\u0000 \u0000 This study presents the usefulness of the water quality index (WQI) based on Fuzzy (F)-analytic hierarchy process (AHP), multi-criteria decision-making technique, namely, weighted sum approach (WSA) and machine learning models such as Borda scoring algorithm (BSA) for its evaluation and were further applied to the datasets on water quality (WQ) of the Mahanadi River (Odisha), generated during 5 years (2018–2023) of monitoring at 19 different sites for 20 parameters. The results render two parameters, namely coliform and TKN, exceeding the WHO standards. The results revealed that 52.63% of surface water samples are excellent in terms of drinking WQ, 26.32% of the samples are categorized under medium, and rest 21.05% are grouped under poor/very poor/unsuitable in terms of the F-AHP WQI. According to the results of WSA, 10 samples (52.63%) are low polluted zones, 6 samples (31.58%) are medium-polluted zones, and around 15.79% (3 samples) are highly polluted. The graphic representations obtained by BSA underline that the calculated value ranged between 15 and 256, stating in a zone of good to poor WQ. The best WQ was observed in T-(1), (5), (14), (15), (16), (17), and (18) because there were no changes in land use.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"19 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140700928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The provision of an efficient water supply service (WSS) is crucial for the well-being of citizens and the sustainability of cities. This study aims to evaluate the performance of WSS using the results of a household survey and the ranking of performance indicators (PIs) by the analytic hierarchy process method. The methodology developed was tested for the case of the city of Taoura (Algeria). A survey was carried out among 340 residents of the city. The survey results showed that the majority of respondents (70%) were relatively dissatisfied with the quantity of water provided and 67% of households surveyed rated the quality of service as poor. Then, the performance was evaluated according to 5 decision criteria and 20 PIs. The results of the evaluation of the relative weights of the criteria are as follows: the ‘Financial and economic’ criterion plays the most important role, with a relative weight of 38.61%, followed by the ‘Operational’ criterion (24.7%) and the criterion ‘Physics’ (17.32%). The methodology used in this study can be a reliable tool for evaluating the performance of WSS in developing countries.
{"title":"Performance indicators and analytic hierarchy process to evaluate water supply services management in Algeria","authors":"S. Boukhari, D. Mrad, S. Dairi","doi":"10.2166/aqua.2024.040","DOIUrl":"https://doi.org/10.2166/aqua.2024.040","url":null,"abstract":"\u0000 \u0000 The provision of an efficient water supply service (WSS) is crucial for the well-being of citizens and the sustainability of cities. This study aims to evaluate the performance of WSS using the results of a household survey and the ranking of performance indicators (PIs) by the analytic hierarchy process method. The methodology developed was tested for the case of the city of Taoura (Algeria). A survey was carried out among 340 residents of the city. The survey results showed that the majority of respondents (70%) were relatively dissatisfied with the quantity of water provided and 67% of households surveyed rated the quality of service as poor. Then, the performance was evaluated according to 5 decision criteria and 20 PIs. The results of the evaluation of the relative weights of the criteria are as follows: the ‘Financial and economic’ criterion plays the most important role, with a relative weight of 38.61%, followed by the ‘Operational’ criterion (24.7%) and the criterion ‘Physics’ (17.32%). The methodology used in this study can be a reliable tool for evaluating the performance of WSS in developing countries.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"34 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140729023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the pollution of the air and water environment and the problem of forgery, it is difficult to identify the oil painting. The reason is that air pollution and water pollution can lead to moisture, mold, and even water stains on the picture, which will seriously damage the integrity and color performance of the picture. At the same time, chemicals in the water may also have a corrosive effect on the oil painting, further destroying the color and detail of the picture. The problem of relying entirely on the conventional experience of experts is too subjective. Some controversial works are difficult to convince people with rational identification evidence, so it is necessary to explore a scientific and effective and quantify the authenticity of the oil painting identification method. Based on this, This paper constructs an oil painting authenticity identification method based on multi-feature fusion based on the artistic style analysis and feature extraction of oil painting shape, color and texture. The recognition accuracy of the proposed method is compared with that of the existing neural network. The results show that the recognition rate of the proposed model is 73.0%, which is the best performance.
{"title":"Oil painting color image enhancement recognition method based on artificial intelligence: applications of an AI model in environmental research","authors":"Eyain Yao, Marvin White","doi":"10.2166/aqua.2024.042","DOIUrl":"https://doi.org/10.2166/aqua.2024.042","url":null,"abstract":"\u0000 Due to the pollution of the air and water environment and the problem of forgery, it is difficult to identify the oil painting. The reason is that air pollution and water pollution can lead to moisture, mold, and even water stains on the picture, which will seriously damage the integrity and color performance of the picture. At the same time, chemicals in the water may also have a corrosive effect on the oil painting, further destroying the color and detail of the picture. The problem of relying entirely on the conventional experience of experts is too subjective. Some controversial works are difficult to convince people with rational identification evidence, so it is necessary to explore a scientific and effective and quantify the authenticity of the oil painting identification method. Based on this, This paper constructs an oil painting authenticity identification method based on multi-feature fusion based on the artistic style analysis and feature extraction of oil painting shape, color and texture. The recognition accuracy of the proposed method is compared with that of the existing neural network. The results show that the recognition rate of the proposed model is 73.0%, which is the best performance.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"239 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140730501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}