With technological developments, the prospect of a human-robot symbiotic society has emerged. A soccer game has characteristics similar to those expected in such a society. Soccer is a multiagent game in which the strategy employed depends on each agent’s position and actions. This paper discusses the results of the development of a learning system that uses a self-organizing map to select behaviors depending on the scenario (two-dimensional absolute coordinates of the agent, other agents, and the ball). The system can reproduce the action-selection algorithms of all the players on a certain team, and the robot can instantly select the next cooperative action from information obtained during the game. Thus, common-sense rules can be shared to learn an action-selection algorithm for a set of both human and robot agents.
{"title":"Behavior Learning System for Robot Soccer Using Neural Network","authors":"Moeko Tominaga, Yasunori Takemura, Kazuo Ishii","doi":"10.20965/jrm.2023.p1385","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1385","url":null,"abstract":"With technological developments, the prospect of a human-robot symbiotic society has emerged. A soccer game has characteristics similar to those expected in such a society. Soccer is a multiagent game in which the strategy employed depends on each agent’s position and actions. This paper discusses the results of the development of a learning system that uses a self-organizing map to select behaviors depending on the scenario (two-dimensional absolute coordinates of the agent, other agents, and the ball). The system can reproduce the action-selection algorithms of all the players on a certain team, and the robot can instantly select the next cooperative action from information obtained during the game. Thus, common-sense rules can be shared to learn an action-selection algorithm for a set of both human and robot agents.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA damage induced by the ultraviolet (UV) light, which affects adversely on genome stability, causes many kinds of diseases. Thus, a biochemical or biomechanical method in DNA damage protection is well required. In the present study, we investigated the effects of mechanical factors, such as deformation of cell nucleus using polydimethylsiloxane (PDMS)-based microfabricated array of micropillars, on UV radiation resistance of DNA in cultured cells. The epithelial-like cells spread normally in the spaces between micropillars and their nuclei showed remarkable deformation and appeared to be “trapped” mechanically on the array of pillars. We found that the UV radiation-induced DNA damage estimated by the fluorescent intensity of the phospho-histone γ-H2AX, was significantly inhibited with the nucleus deformation on the pillars. The result indicates that the inhibition of UV radiation-induced DNA damages might be resulted from structural change of DNA caused by the mechanical stress of the cell nucleus on the micropillars.
{"title":"Deformation and Trapping of Cell Nucleus Using Micropillar Substrates Possibly Affect UV Radiation Resistance of DNA","authors":"Kazuaki Nagayama, Chiaki Sagawa, Akiko Sato","doi":"10.20965/jrm.2023.p1158","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1158","url":null,"abstract":"DNA damage induced by the ultraviolet (UV) light, which affects adversely on genome stability, causes many kinds of diseases. Thus, a biochemical or biomechanical method in DNA damage protection is well required. In the present study, we investigated the effects of mechanical factors, such as deformation of cell nucleus using polydimethylsiloxane (PDMS)-based microfabricated array of micropillars, on UV radiation resistance of DNA in cultured cells. The epithelial-like cells spread normally in the spaces between micropillars and their nuclei showed remarkable deformation and appeared to be “trapped” mechanically on the array of pillars. We found that the UV radiation-induced DNA damage estimated by the fluorescent intensity of the phospho-histone γ-H2AX, was significantly inhibited with the nucleus deformation on the pillars. The result indicates that the inhibition of UV radiation-induced DNA damages might be resulted from structural change of DNA caused by the mechanical stress of the cell nucleus on the micropillars.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Snow removal work using construction equipment faces problems such as a shortage of skilled operators owing to the declining birthrate and aging population, work in dangerous areas, and accidents caused by a lack of concentration during long work hours. To improve the working environment, research and development of automation of construction equipment are actively conducted. Therefore, in this study, we aim to generate a driving path for wheel loaders for snow removal work in a work environment surrounded by obstacles, such as walls and fences. Furthermore, the proposed method considers the changing shape of the snow piles during the removal. We experimentally verified that snow removal could be performed using an actual wheel loader on the route generated by the proposed simulation.
{"title":"Demonstration of Snow Removal Work by Wheel Loader in an Environment Surrounded by Obstacles","authors":"Hiroto Murayama, Tomohito Kawabe, Masahiro Inagawa, Keiichi Yoshizawa, Munehiro Ishibashi, Toshinobu Takei, Keiji Nagatani","doi":"10.20965/jrm.2023.p1251","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1251","url":null,"abstract":"Snow removal work using construction equipment faces problems such as a shortage of skilled operators owing to the declining birthrate and aging population, work in dangerous areas, and accidents caused by a lack of concentration during long work hours. To improve the working environment, research and development of automation of construction equipment are actively conducted. Therefore, in this study, we aim to generate a driving path for wheel loaders for snow removal work in a work environment surrounded by obstacles, such as walls and fences. Furthermore, the proposed method considers the changing shape of the snow piles during the removal. We experimentally verified that snow removal could be performed using an actual wheel loader on the route generated by the proposed simulation.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135568007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A wearable biosensor was specifically engineered to measure uric acid, a biomarker present at wound sites. This biosensor, fabricated as a disposable and wearable device, was seamlessly integrated onto a polyethylene terephthalate (PET) substrate by utilizing carbon and silver conductive paste as the electrodes. The enzyme uricase was immobilized onto the working electrode by utilizing chitosan, a biocompatible material, to create this biosensor. Notably, the uric acid biosensor fabricated with chitosan showcased exceptional performance metrics, including remarkable output current values and impeccable stability. These findings suggest the prospective utilization of chitosan-based uric acid biosensors for the accurate measurement of uric acid on human skin in future applications.
{"title":"Wearable Biosensor Utilizing Chitosan Biopolymer for Uric Acid Monitoring","authors":"Mizuki Sato, Tatsuya Kamiyama, Kenta Iitani, Kazuyoshi Yano, Kohji Mitsubayashi, Takahiro Arakawa","doi":"10.20965/jrm.2023.p1131","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1131","url":null,"abstract":"A wearable biosensor was specifically engineered to measure uric acid, a biomarker present at wound sites. This biosensor, fabricated as a disposable and wearable device, was seamlessly integrated onto a polyethylene terephthalate (PET) substrate by utilizing carbon and silver conductive paste as the electrodes. The enzyme uricase was immobilized onto the working electrode by utilizing chitosan, a biocompatible material, to create this biosensor. Notably, the uric acid biosensor fabricated with chitosan showcased exceptional performance metrics, including remarkable output current values and impeccable stability. These findings suggest the prospective utilization of chitosan-based uric acid biosensors for the accurate measurement of uric acid on human skin in future applications.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A household disaster map is required as a countermeasure against earthquakes, particularly in crowded, cluttered indoor spaces where evacuation is difficult. Therefore, the visualization of areas that are likely to hamper evacuation is important. This study focused on cleaning robots, which generate environmental recognition maps to control their movement. We proposed a system that detects obstacles impeding evacuation for households using an environmental recognition map generated by a cleaning robot. The map generation algorithm was based on image processing and stochastic virtual pass analysis based on a pseudo cleaning-robot model. Image processing involving the binarization process was conducted to identify the interior and exterior areas of a room. Stochastic virtual pass analysis was performed to track the coordinates (i.e., virtual pass of the robot model) inside the room. Furthermore, the proposed system was tested in a laboratory, and the application of the changing-layout design simulation was considered.
{"title":"Household Disaster Map Generation and Changing-Layout Design Simulation Using the Environmental Recognition Map of Cleaning Robots","authors":"Soichiro Takata, Akari Kimura, Riki Tanahashi","doi":"10.20965/jrm.2023.p1243","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1243","url":null,"abstract":"A household disaster map is required as a countermeasure against earthquakes, particularly in crowded, cluttered indoor spaces where evacuation is difficult. Therefore, the visualization of areas that are likely to hamper evacuation is important. This study focused on cleaning robots, which generate environmental recognition maps to control their movement. We proposed a system that detects obstacles impeding evacuation for households using an environmental recognition map generated by a cleaning robot. The map generation algorithm was based on image processing and stochastic virtual pass analysis based on a pseudo cleaning-robot model. Image processing involving the binarization process was conducted to identify the interior and exterior areas of a room. Stochastic virtual pass analysis was performed to track the coordinates (i.e., virtual pass of the robot model) inside the room. Furthermore, the proposed system was tested in a laboratory, and the application of the changing-layout design simulation was considered.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we developed a system for selective self-assembly of millimeter-scale components differentiated by adhesive patterns. This was achieved by designing concentric circular patterns having different radii but the same total length of peripheries. Small polymer sheets having solder adhesive patterns in these designs were simply attached to the millimeter-scale components to be assembled in a stirring container. This strategy was effective in avoiding an overlap between different patterns and enforcing the selective bonds between identical patterns among three types of components. Finally, the selective assembly of a functional structure (i.e., poly(N-isopropylacrylamide) gel actuator) was demonstrated.
{"title":"Patterning-Based Self-Assembly of Specific and Functional Structures","authors":"Taichi Kokubu, Tatsuya Hikida, Hiroaki Suzuki","doi":"10.20965/jrm.2023.p1219","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1219","url":null,"abstract":"In this study, we developed a system for selective self-assembly of millimeter-scale components differentiated by adhesive patterns. This was achieved by designing concentric circular patterns having different radii but the same total length of peripheries. Small polymer sheets having solder adhesive patterns in these designs were simply attached to the millimeter-scale components to be assembled in a stirring container. This strategy was effective in avoiding an overlap between different patterns and enforcing the selective bonds between identical patterns among three types of components. Finally, the selective assembly of a functional structure (i.e., poly(N-isopropylacrylamide) gel actuator) was demonstrated.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In orthodontics, various forms of mechanical stimulation induce opposing bone metabolism mechanisms. Bone resorption and bone formation occur in areas of compressive and tensile force action, respectively. The mechanism that causes such a difference in bone metabolism is still unclear. In this study, we investigated the difference in the osteoblastic calcium signaling response between compression and stretching mechanical stimuli. We applied two types of mechanical stimuli to osteoblast-like MC3T3-E1 cells: first microneedle direct indentation onto the cell as compression stimuli, and second stretching stimuli by using originally developed cell stretching MEMS device. Cells were treated with thapsigargin and calcium-free medium to investigate the source of the calcium ion. The results demonstrated variations in the osteoblastic calcium signaling response between the compression and stretching stimuli. The magnitude of an increase in the intracellular calcium ion concentration is much higher in the compression stimuli-applied cell group. Treatment of calcium-free medium nearly suppressed the calcium signaling response to both types of mechanical stimulation. Thapsigargin treatment induced an increase in the magnitude of calcium signaling response to the compression stimuli, while suppressed the slow and sustained increase in the calcium ion concentration in the stretching stimuli-applied cell group. These findings demonstrate the difference in the characteristics of osteoblastic calcium signaling response between compression and stretching mechanical stimuli.
{"title":"Difference in the Osteoblastic Calcium Signaling Response Between Compression and Stretching Mechanical Stimuli","authors":"Katsuya Sato, Tasuku Nakahara, Kazuyuki Minami","doi":"10.20965/jrm.2023.p1135","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1135","url":null,"abstract":"In orthodontics, various forms of mechanical stimulation induce opposing bone metabolism mechanisms. Bone resorption and bone formation occur in areas of compressive and tensile force action, respectively. The mechanism that causes such a difference in bone metabolism is still unclear. In this study, we investigated the difference in the osteoblastic calcium signaling response between compression and stretching mechanical stimuli. We applied two types of mechanical stimuli to osteoblast-like MC3T3-E1 cells: first microneedle direct indentation onto the cell as compression stimuli, and second stretching stimuli by using originally developed cell stretching MEMS device. Cells were treated with thapsigargin and calcium-free medium to investigate the source of the calcium ion. The results demonstrated variations in the osteoblastic calcium signaling response between the compression and stretching stimuli. The magnitude of an increase in the intracellular calcium ion concentration is much higher in the compression stimuli-applied cell group. Treatment of calcium-free medium nearly suppressed the calcium signaling response to both types of mechanical stimulation. Thapsigargin treatment induced an increase in the magnitude of calcium signaling response to the compression stimuli, while suppressed the slow and sustained increase in the calcium ion concentration in the stretching stimuli-applied cell group. These findings demonstrate the difference in the characteristics of osteoblastic calcium signaling response between compression and stretching mechanical stimuli.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135568015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we propose a novel algorithm for estimating road surface shapes and object heights using a fisheye stereo camera. Environmental recognition is an important task for advanced driver-assistance systems. However, previous studies have only achieved narrow measurement ranges owing to sensor restrictions. Moreover, the previous approaches cannot be used in environments where the slope changes because they assume inflexible constraints on the road surfaces. We use a fisheye stereo camera capable of measuring wide and dense 3D information and design a novel algorithm by focusing on the degree of division in a disparity image to overcome these defects. Experiments show that our method can detect an object in various environments, including those with inclined road surfaces.
{"title":"Estimation of Road Surface Plane and Object Height Focusing on the Division Scale in Disparity Image Using Fisheye Stereo Camera","authors":"Tomoyu Sakuda, Hikaru Chikugo, Kento Arai, Sarthak Pathak, Kazunori Umeda","doi":"10.20965/jrm.2023.p1354","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1354","url":null,"abstract":"In this paper, we propose a novel algorithm for estimating road surface shapes and object heights using a fisheye stereo camera. Environmental recognition is an important task for advanced driver-assistance systems. However, previous studies have only achieved narrow measurement ranges owing to sensor restrictions. Moreover, the previous approaches cannot be used in environments where the slope changes because they assume inflexible constraints on the road surfaces. We use a fisheye stereo camera capable of measuring wide and dense 3D information and design a novel algorithm by focusing on the degree of division in a disparity image to overcome these defects. Experiments show that our method can detect an object in various environments, including those with inclined road surfaces.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultrasound (US) imaging is beneficial for kidney diagnosis; however, it involves sophisticated tasks that must be performed by physicians to obtain the target image. We propose a target-image search strategy combining visual servoing and deep learning-based image evaluation for robotic kidney US imaging. The search strategy is designed by mimicking physicians’ motion axis of the US probe. By controlling the position of the US probe along each of the motion axes while evaluating the obtained US images based on an anatomical feature extraction method via instance segmentation with YOLACT++, we are able to search for an optimal target image. The proposed approach was validated through phantom studies. The results showed that the proposed approach could find the target kidney images with error rates of 2.88±1.76 mm and 2.75±3.36°. Thus, the proposed method enables the accurate identification of the target image, which highlights its potential for application in autonomous kidney US imaging.
{"title":"Image Search Strategy via Visual Servoing for Robotic Kidney Ultrasound Imaging","authors":"Takumi Fujibayashi, Norihiro Koizumi, Yu Nishiyama, Jiayi Zhou, Hiroyuki Tsukihara, Kiyoshi Yoshinaka, Ryosuke Tsumura","doi":"10.20965/jrm.2023.p1281","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1281","url":null,"abstract":"Ultrasound (US) imaging is beneficial for kidney diagnosis; however, it involves sophisticated tasks that must be performed by physicians to obtain the target image. We propose a target-image search strategy combining visual servoing and deep learning-based image evaluation for robotic kidney US imaging. The search strategy is designed by mimicking physicians’ motion axis of the US probe. By controlling the position of the US probe along each of the motion axes while evaluating the obtained US images based on an anatomical feature extraction method via instance segmentation with YOLACT++, we are able to search for an optimal target image. The proposed approach was validated through phantom studies. The results showed that the proposed approach could find the target kidney images with error rates of 2.88±1.76 mm and 2.75±3.36°. Thus, the proposed method enables the accurate identification of the target image, which highlights its potential for application in autonomous kidney US imaging.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we propose the design and implementation of spherical magnetic joint (SMJ)-based gait generation for the inverted locomotion of multi-legged robots. A spherical permanent magnet was selected to generate a consistent attractive force, enabling the robot to perform inverted locomotion under steel structures. Additionally, the robot’s foot tip was designed as a balljoint mechanism, providing flexibility in foot placement at any angle between the tip and surface. We also introduced an adjustable sleeve mechanism to detach the foot tip during locomotion by creating a fulcrum during the tilt and pull steps. This mechanism effectively reduced the reaction force based on the sleeve diameter. The experimental results showed a 46% decrease in the present load when using the adjustable sleeve mechanism compared to direct pulling. For inverted locomotion, a quadruped robot and a hexapod robot, which represent the predominant type of multi-legged robots, were constructed. We integrated the SMJ and adjustable sleeve into both robots, enabling them to perform inverted locomotion with various gaits such as crawling, trotting, square, and tripod gaits. Our analysis examined the characteristics of each gait in terms of velocity and stability, thereby confirming the versatility of the proposed SMJ, which can be applied to different types of legged robots.
{"title":"Generation of Inverted Locomotion Gait for Multi-Legged Robots Using a Spherical Magnetic Joint and Adjustable Sleeve","authors":"Harn Sison, Photchara Ratsamee, Manabu Higashida, Yuki Uranishi, Haruo Takemura","doi":"10.20965/jrm.2023.p1227","DOIUrl":"https://doi.org/10.20965/jrm.2023.p1227","url":null,"abstract":"In this paper, we propose the design and implementation of spherical magnetic joint (SMJ)-based gait generation for the inverted locomotion of multi-legged robots. A spherical permanent magnet was selected to generate a consistent attractive force, enabling the robot to perform inverted locomotion under steel structures. Additionally, the robot’s foot tip was designed as a balljoint mechanism, providing flexibility in foot placement at any angle between the tip and surface. We also introduced an adjustable sleeve mechanism to detach the foot tip during locomotion by creating a fulcrum during the tilt and pull steps. This mechanism effectively reduced the reaction force based on the sleeve diameter. The experimental results showed a 46% decrease in the present load when using the adjustable sleeve mechanism compared to direct pulling. For inverted locomotion, a quadruped robot and a hexapod robot, which represent the predominant type of multi-legged robots, were constructed. We integrated the SMJ and adjustable sleeve into both robots, enabling them to perform inverted locomotion with various gaits such as crawling, trotting, square, and tripod gaits. Our analysis examined the characteristics of each gait in terms of velocity and stability, thereby confirming the versatility of the proposed SMJ, which can be applied to different types of legged robots.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135568005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}