Pub Date : 2024-01-24DOI: 10.1177/23977914231224487
Abdul Hamid Ganie, Basharat Ullah, Noreen, Nisar Ahmad Koka, U. Khan
This study analyzes the impact that the shape of nanoparticles has on the rate at which heat is transferred over an elastic sheet, which is one of the most important aspects of thermal management. It addresses the pressing demand for effective heat dissipation and insulation in a variety of industries, including energy systems and electronic devices, among others. The importance of this work rests in the fact that it has the potential to make conventional methods of heat transmission obsolete. By gaining an understanding of how the morphologies of nanoparticles affect their thermal properties, we may pave the way for the development of novel materials and applications, which will ultimately result in increased energy efficiency and high-performance technology. The originality by arguing that the study fills a knowledge gap on how different nanoparticle shapes influence heat transport in elastic sheets. The importance of this property for applications such as electronics and materials research should be emphasized. Within the scope of this study, a nanofluid composed of copper and water is utilized to investigate the movement of heat between the stretching sheets. This objective is supported by the utilization of the Hamilton Crosser Model as a tool. Platelets, cylinders, and blocks are some of the shapes and sizes of the nanoparticles that are utilized in this process. A magnetic field is applied, which changes the thermal properties of the nanofluids that are being used in the process of exchanging heat between two objects. This makes the process go more quickly. A similarity transformation is used to convert the governing equations into a collection of ordinary differential equations (ODEs). By using the shooting method, the boundary value problem can be converted into an initial value problem. This is achievable since the shooting technique is a shooting method. After that, a numerical solution is found for this issue using the RK-4 method. We give visual data that demonstrates how the flow pattern and temperature profile change as a result of a variety of different causes. Plots are provided for both the Nusselt number and the skin friction coefficient. As the inquiry goes on and the values of the key parameters are changed, one thing that happens consistently across all forms of nanoparticles is an increase in the velocity profile. This is a pattern. In addition, the nanofluid that is formed of platelet-shaped nanoparticles (which has a bigger value of shape factor) is shown to have the greatest temperature. This finding demonstrates a clear association between temperature and shape factor.
{"title":"Significance of nanoparticles shape for enhanced heat transfer over on elastic sheet","authors":"Abdul Hamid Ganie, Basharat Ullah, Noreen, Nisar Ahmad Koka, U. Khan","doi":"10.1177/23977914231224487","DOIUrl":"https://doi.org/10.1177/23977914231224487","url":null,"abstract":"This study analyzes the impact that the shape of nanoparticles has on the rate at which heat is transferred over an elastic sheet, which is one of the most important aspects of thermal management. It addresses the pressing demand for effective heat dissipation and insulation in a variety of industries, including energy systems and electronic devices, among others. The importance of this work rests in the fact that it has the potential to make conventional methods of heat transmission obsolete. By gaining an understanding of how the morphologies of nanoparticles affect their thermal properties, we may pave the way for the development of novel materials and applications, which will ultimately result in increased energy efficiency and high-performance technology. The originality by arguing that the study fills a knowledge gap on how different nanoparticle shapes influence heat transport in elastic sheets. The importance of this property for applications such as electronics and materials research should be emphasized. Within the scope of this study, a nanofluid composed of copper and water is utilized to investigate the movement of heat between the stretching sheets. This objective is supported by the utilization of the Hamilton Crosser Model as a tool. Platelets, cylinders, and blocks are some of the shapes and sizes of the nanoparticles that are utilized in this process. A magnetic field is applied, which changes the thermal properties of the nanofluids that are being used in the process of exchanging heat between two objects. This makes the process go more quickly. A similarity transformation is used to convert the governing equations into a collection of ordinary differential equations (ODEs). By using the shooting method, the boundary value problem can be converted into an initial value problem. This is achievable since the shooting technique is a shooting method. After that, a numerical solution is found for this issue using the RK-4 method. We give visual data that demonstrates how the flow pattern and temperature profile change as a result of a variety of different causes. Plots are provided for both the Nusselt number and the skin friction coefficient. As the inquiry goes on and the values of the key parameters are changed, one thing that happens consistently across all forms of nanoparticles is an increase in the velocity profile. This is a pattern. In addition, the nanofluid that is formed of platelet-shaped nanoparticles (which has a bigger value of shape factor) is shown to have the greatest temperature. This finding demonstrates a clear association between temperature and shape factor.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":"15 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140497093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1177/23977914231225019
Z. Hussain, Muhammad Ayaz, Saeed Islam
Energy efficiency is the highest need of present times to meet the challenges of global energy demands. Nanofluids have proved to possess dynamic thermal characteristics in many experimental and theoretical studies during recent years. Nowadays, a variety of nanomaterials are accessible, and among these alloys of aluminum, AA7072 and AA7075 are important due to their unique functional characteristics. These alloys are widely used in the engineering of aircraft, spacecraft, buildings, and so on. Aiming to highlight the importance of nanofluids, this article analyses the heat and mass transfer for magnetohydrodynamic hybrid nanofluid flow on a stretching sheet of gyrotactic microorganisms. Additionally, the impacts of chemical reactions, activation energy, Peclet number, thermophoresis, Lewis number, Brownian motion, and thermal radiation are also studied. The governing equations from Partial differential equations into Ordinary differential equations are transformed with the support of resemblance transformations, and the solution is obtained with HAM techniques. The numerical findings are presented in figures and tabular form with the Mathematica program. The obtained results are explained from a physical point of view in detail. An assessment between the proposed and current model is described under specific flow parameter assumptions to validate the analysis. It is revealed that the outcomes are consistent with previous findings. The numbers of engineering importance like skin friction and heat transfer rate are explained for practical relevance. The impacts of nanoparticle loading show interesting results. It is perceived that an escalating trend is noted in the nanoparticle temperature through thermal radiation and thermophoretic parameters.
要应对全球能源需求的挑战,提高能源效率是当今时代的最高需求。近年来,许多实验和理论研究证明,纳米流体具有动态热特性。如今,人们可以获得各种纳米材料,其中 AA7072 和 AA7075 铝合金因其独特的功能特性而备受关注。这些合金被广泛应用于飞机、航天器、建筑等工程领域。为了突出纳米流体的重要性,本文分析了陀螺仪微生物拉伸片上的磁流体混合纳米流体流动的传热和传质。此外,还研究了化学反应、活化能、佩克莱特数、热泳、路易斯数、布朗运动和热辐射的影响。在相似变换的支持下,将控制方程从偏微分方程转换为常微分方程,并利用 HAM 技术求解。数值研究结果通过 Mathematica 程序以图表形式呈现。从物理角度详细解释了获得的结果。为验证分析结果,还描述了在特定流量参数假设条件下对建议模型和当前模型进行的评估。结果显示与之前的研究结果一致。对表皮摩擦和热传导率等重要的工程数据进行了解释,使其具有实际意义。纳米粒子负载的影响显示了有趣的结果。研究发现,通过热辐射和热传导参数,纳米粒子温度呈上升趋势。
{"title":"Effects of thermophoresis and Brownian motion on radiative MHD hybrid nanofluid flow over a stretching sheet with convective boundary conditions: A homotopic approach","authors":"Z. Hussain, Muhammad Ayaz, Saeed Islam","doi":"10.1177/23977914231225019","DOIUrl":"https://doi.org/10.1177/23977914231225019","url":null,"abstract":"Energy efficiency is the highest need of present times to meet the challenges of global energy demands. Nanofluids have proved to possess dynamic thermal characteristics in many experimental and theoretical studies during recent years. Nowadays, a variety of nanomaterials are accessible, and among these alloys of aluminum, AA7072 and AA7075 are important due to their unique functional characteristics. These alloys are widely used in the engineering of aircraft, spacecraft, buildings, and so on. Aiming to highlight the importance of nanofluids, this article analyses the heat and mass transfer for magnetohydrodynamic hybrid nanofluid flow on a stretching sheet of gyrotactic microorganisms. Additionally, the impacts of chemical reactions, activation energy, Peclet number, thermophoresis, Lewis number, Brownian motion, and thermal radiation are also studied. The governing equations from Partial differential equations into Ordinary differential equations are transformed with the support of resemblance transformations, and the solution is obtained with HAM techniques. The numerical findings are presented in figures and tabular form with the Mathematica program. The obtained results are explained from a physical point of view in detail. An assessment between the proposed and current model is described under specific flow parameter assumptions to validate the analysis. It is revealed that the outcomes are consistent with previous findings. The numbers of engineering importance like skin friction and heat transfer rate are explained for practical relevance. The impacts of nanoparticle loading show interesting results. It is perceived that an escalating trend is noted in the nanoparticle temperature through thermal radiation and thermophoretic parameters.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1177/23977914231224485
M. H. Dzulkifli, R. A. Majid, Mohd Yazid Yahya
Despite the superior enhancement it could impose, incorporation of montmorllonite (MMT) nanoclay in polymer-matrix composites is still limited due to miscibility issues with its host matrix; which could be alleviated with surface-modification of the nanoclay. In this paper, diamino methylpentane-modified montmorillonite (DAMP-MMT) nanoclay was incorporated into a bio-based polyurethane (PU) foam at different weight loadings. Characterization tests were then carried out to investigate the influence of included organoclay on the mechanical properties, thermal stability, foam morphology, and foaming kinetics. MMT modification effect could clearly be observed with exfoliated microstructure at lower loadings, compared to pristine clay at similar loading. Presence of organic modifier tethered on the surface of nanoclay was found to act as catalyst which induced accelerated curing, affecting cellular size and structure of foam, which in return cascades into influencing mechanical and thermal properties of the foam. Compressive strength improved with addition of 1 wt.% clay, and deteriorated beyond this point; believed due to clay agglomeration at higher clay loadings. However, thermal stability showed improvement parallel with its clay content, believed owed to additional bonds formed between amine -NH2 from organoclay and – NCO from diisocyanates. Incorporation of organoclays in rigid bio-based PU foam shows great potential in moderate load-bearing applications while upholding “green chemistry” practice.
{"title":"Synthesis and characterization of rigid water-blown, palm oil-based polyurethane/organically-modified clay nanocomposite foam","authors":"M. H. Dzulkifli, R. A. Majid, Mohd Yazid Yahya","doi":"10.1177/23977914231224485","DOIUrl":"https://doi.org/10.1177/23977914231224485","url":null,"abstract":"Despite the superior enhancement it could impose, incorporation of montmorllonite (MMT) nanoclay in polymer-matrix composites is still limited due to miscibility issues with its host matrix; which could be alleviated with surface-modification of the nanoclay. In this paper, diamino methylpentane-modified montmorillonite (DAMP-MMT) nanoclay was incorporated into a bio-based polyurethane (PU) foam at different weight loadings. Characterization tests were then carried out to investigate the influence of included organoclay on the mechanical properties, thermal stability, foam morphology, and foaming kinetics. MMT modification effect could clearly be observed with exfoliated microstructure at lower loadings, compared to pristine clay at similar loading. Presence of organic modifier tethered on the surface of nanoclay was found to act as catalyst which induced accelerated curing, affecting cellular size and structure of foam, which in return cascades into influencing mechanical and thermal properties of the foam. Compressive strength improved with addition of 1 wt.% clay, and deteriorated beyond this point; believed due to clay agglomeration at higher clay loadings. However, thermal stability showed improvement parallel with its clay content, believed owed to additional bonds formed between amine -NH2 from organoclay and – NCO from diisocyanates. Incorporation of organoclays in rigid bio-based PU foam shows great potential in moderate load-bearing applications while upholding “green chemistry” practice.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":"10 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140509785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1177/23977914231224054
Gaurav Arora
Microwave irradiation has emerged as a versatile and efficient method for synthesizing polymer nanocomposites, offering advantages such as selectivity, speed, and effectiveness in heating materials. This study explores the blending of low-density polyethylene (LDPE) and polypropylene (PP) with carbon nanotubes (CNTs) using microwave processing. The nanocomposites were characterized for their mechanical properties through tensile and fracture toughness tests. Results indicate that LDPE/CNT blended with PP/CNT pellets exhibited improved Young’s modulus and fracture toughness, while LDPE/CNT blended with PP/CNT powder showed enhanced stiffness and fracture toughness. The critical stress intensity factor ( KIC) increased with higher proportions of PP in both cases, signifying improved crack resistance. XRD and SEM analyses confirmed enhanced crystallinity and proper bonding between polymers and CNTs. Overall, this study demonstrates the potential of microwave processing in producing nanocomposites with enhanced mechanical properties, offering a promising avenue for engineering applications.
{"title":"Experimental analysis of blended nanocomposites processed using compression molded microwave process","authors":"Gaurav Arora","doi":"10.1177/23977914231224054","DOIUrl":"https://doi.org/10.1177/23977914231224054","url":null,"abstract":"Microwave irradiation has emerged as a versatile and efficient method for synthesizing polymer nanocomposites, offering advantages such as selectivity, speed, and effectiveness in heating materials. This study explores the blending of low-density polyethylene (LDPE) and polypropylene (PP) with carbon nanotubes (CNTs) using microwave processing. The nanocomposites were characterized for their mechanical properties through tensile and fracture toughness tests. Results indicate that LDPE/CNT blended with PP/CNT pellets exhibited improved Young’s modulus and fracture toughness, while LDPE/CNT blended with PP/CNT powder showed enhanced stiffness and fracture toughness. The critical stress intensity factor ( KIC) increased with higher proportions of PP in both cases, signifying improved crack resistance. XRD and SEM analyses confirmed enhanced crystallinity and proper bonding between polymers and CNTs. Overall, this study demonstrates the potential of microwave processing in producing nanocomposites with enhanced mechanical properties, offering a promising avenue for engineering applications.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140512020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1177/23977914231210798
Ammara Islam, Zafar Mahmood, U. Khan
The mixed convection double-diffusive MHD flow of boundary layer nanofluids above vertical region is designed. This flow is explained near stagnation point along with heat generation. Using Buongiorno’s model, the properties of Brownian motion, thermophoresis, and diffusion of regular and cross type are included. Using appropriate similarity transformations of the local similarity technique, non-linear unstable PDEs in governing model converted to non-linear ODEs, which were then evaluated numerically by the Keller-box method (KBM) using the computational software MATLAB 2021a. Graphical analysis of possessions of parameters on the boundary layers in profiles of velocity, solute concentration, temperature and nanoparticle concentration is illustrated. The statistics of the reduced Sherwood number and the reduced Nusselt number for solute and nanoparticles in cases of assisting flow and opposing flow are added as well to the results. The fastest rate of heat transfer is achieved in a scenario with a negligible thermophoresis effect. The thermophoresis parameter and the buoyancy parameter of the regular double diffusive appear to rise rather than decrease in the nanoparticles lowered Sherwood number, while the Brownian motion parameter rises. The temperature and layer thickness for heat generation have a quite opposite effect. When the computed numerical findings are compared to earlier published work, it is discovered to be in good percentage. The need for numerous industrial applications and improvements in the efficiency and energy consumption of systems, such as cooling and heating transportation, in water heaters, nuclear reactors, optical devices, turbines, aerodynamics, and electronics, have led to the establishment of this investigation.
{"title":"Significance of mixed convective double diffusive MHD stagnation point flow of nanofluid over a vertical surface with heat generation","authors":"Ammara Islam, Zafar Mahmood, U. Khan","doi":"10.1177/23977914231210798","DOIUrl":"https://doi.org/10.1177/23977914231210798","url":null,"abstract":"The mixed convection double-diffusive MHD flow of boundary layer nanofluids above vertical region is designed. This flow is explained near stagnation point along with heat generation. Using Buongiorno’s model, the properties of Brownian motion, thermophoresis, and diffusion of regular and cross type are included. Using appropriate similarity transformations of the local similarity technique, non-linear unstable PDEs in governing model converted to non-linear ODEs, which were then evaluated numerically by the Keller-box method (KBM) using the computational software MATLAB 2021a. Graphical analysis of possessions of parameters on the boundary layers in profiles of velocity, solute concentration, temperature and nanoparticle concentration is illustrated. The statistics of the reduced Sherwood number and the reduced Nusselt number for solute and nanoparticles in cases of assisting flow and opposing flow are added as well to the results. The fastest rate of heat transfer is achieved in a scenario with a negligible thermophoresis effect. The thermophoresis parameter and the buoyancy parameter of the regular double diffusive appear to rise rather than decrease in the nanoparticles lowered Sherwood number, while the Brownian motion parameter rises. The temperature and layer thickness for heat generation have a quite opposite effect. When the computed numerical findings are compared to earlier published work, it is discovered to be in good percentage. The need for numerous industrial applications and improvements in the efficiency and energy consumption of systems, such as cooling and heating transportation, in water heaters, nuclear reactors, optical devices, turbines, aerodynamics, and electronics, have led to the establishment of this investigation.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":"16 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140514042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1177/23977914231214865
S. Panda, G. Pradhan, D. Nayak, P. K. Pattnaik, S. Mishra
In the current scenario, this investigation deal with the illustration of the advanced heat source properties influenced by exponential distribution for the inclusion of activation energy in the flow of viscous conducting fluid over an expanding surface. The flow through porous matrix is also characterized by the heat dissipation formulated due to viscous, Joule, and Darcy effects. Due to the consideration of the transverse magnetic field, and porous matrix, the effect of Joule and Darcy dissipations cannot be neglected. However, the novelty arises for the investigation that characterizes its key role to optimize the transport properties in numerous industrial application that be governed by the external heat source, which is beneficial for the better shape of the product and size of the manufacturing products. The dimensionless form of the proposed model associated with various flow properties is solved numerically employing shooting based “ Runge-Kutta fourth-order.” The illustration of the features of the various components associated in the present profiles is deployed graphically and the numerical computation of shear rate vis-a-vis other rate coefficients are presented in the tabular form. Finally, the important outcomes of the study deployed as; the velocity profile augments with the increasing thermal buoyancy as well as the ratio of the volumetric coefficient and the enhanced Lewis number combined with the reaction coefficient augments the solutal rate.
{"title":"Illustration of activation energy and exponential heat source on the conducting viscous fluid through an expanding surface","authors":"S. Panda, G. Pradhan, D. Nayak, P. K. Pattnaik, S. Mishra","doi":"10.1177/23977914231214865","DOIUrl":"https://doi.org/10.1177/23977914231214865","url":null,"abstract":"In the current scenario, this investigation deal with the illustration of the advanced heat source properties influenced by exponential distribution for the inclusion of activation energy in the flow of viscous conducting fluid over an expanding surface. The flow through porous matrix is also characterized by the heat dissipation formulated due to viscous, Joule, and Darcy effects. Due to the consideration of the transverse magnetic field, and porous matrix, the effect of Joule and Darcy dissipations cannot be neglected. However, the novelty arises for the investigation that characterizes its key role to optimize the transport properties in numerous industrial application that be governed by the external heat source, which is beneficial for the better shape of the product and size of the manufacturing products. The dimensionless form of the proposed model associated with various flow properties is solved numerically employing shooting based “ Runge-Kutta fourth-order.” The illustration of the features of the various components associated in the present profiles is deployed graphically and the numerical computation of shear rate vis-a-vis other rate coefficients are presented in the tabular form. Finally, the important outcomes of the study deployed as; the velocity profile augments with the increasing thermal buoyancy as well as the ratio of the volumetric coefficient and the enhanced Lewis number combined with the reaction coefficient augments the solutal rate.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140513933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}