While we know that adolescents tend to befriend peers who share their race and gender, it is unclear whether patterns of homophily vary according to the strength, intimacy, or connectedness of these relationships. By applying valued exponential random graph models to a sample of 153 adolescent friendship networks, I test whether tendencies towards same-race and same-gender friendships differ for strong versus weak relational ties. In nondiverse, primarily white networks, weak ties are more likely to connect same-race peers, while racial homophily is not associated with the formation of stronger friendships. As racial diversity increases, however, strong ties become more likely to connect same-race peers, while weaker bonds are less apt to be defined by racial homophily. Gender homophily defines the patterns of all friendship ties, but these tendencies are more pronounced for weaker connections. My results highlight the empirical value of considering tie strength when examining social processes in adolescent networks.
Even within well-studied organisms, many genes lack useful functional annotations. One way to generate such functional information is to infer biological relationships between genes or proteins, using a network of gene coexpression data that includes functional annotations. Signed distance correlation has proved useful for the construction of unweighted gene coexpression networks. However, transforming correlation values into unweighted networks may lead to a loss of important biological information related to the intensity of the correlation. Here we introduce a principled method to construct weighted gene coexpression networks using signed distance correlation. These networks contain weighted edges only between those pairs of genes whose correlation value is higher than a given threshold. We analyse data from different organisms and find that networks generated with our method based on signed distance correlation are more stable and capture more biological information compared to networks obtained from Pearson correlation. Moreover, we show that signed distance correlation networks capture more biological information than unweighted networks based on the same metric. While we use biological data sets to illustrate the method, the approach is general and can be used to construct networks in other domains. Code and data are available on https://github.com/javier-pardodiaz/sdcorGCN.