首页 > 最新文献

Network Science最新文献

英文 中文
Editors’ Note 编者注
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2022-03-01 DOI: 10.1017/nws.2022.8
Stanley Wasserman, Ulrik Brandes
Abstract We welcome our new editors and provide background on an unusual duo of articles in this issue.
摘要我们欢迎我们的新编辑,并提供本期两篇不同寻常的文章的背景。
{"title":"Editors’ Note","authors":"Stanley Wasserman, Ulrik Brandes","doi":"10.1017/nws.2022.8","DOIUrl":"https://doi.org/10.1017/nws.2022.8","url":null,"abstract":"Abstract We welcome our new editors and provide background on an unusual duo of articles in this issue.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"10 1","pages":"1 - 2"},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43648656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stochastic actor-oriented model is a theory as much as it is a method and must be subject to theory tests 随机因素导向模型既是一种方法,也是一种理论,必须经过理论检验
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2022-03-01 DOI: 10.1017/nws.2022.7
Philip Leifeld, S. Cranmer
a set of theoretical differences between the models and a proposed for model comparison based on out-of-sample prediction. the theoretical comparison or simulation framework. be using the processes, the of the to the and the impossibility of model comparison using dyadic prediction is by evidence, the discussion: Does the contain theory, and how can its inherent be
模型之间的一组理论差异和基于样本外预测的模型比较建议。理论比较或模拟框架。在使用过程中,对使用二元预测进行模型比较的不可能性是由证据,讨论:包含理论吗,它的内在如何
{"title":"The stochastic actor-oriented model is a theory as much as it is a method and must be subject to theory tests","authors":"Philip Leifeld, S. Cranmer","doi":"10.1017/nws.2022.7","DOIUrl":"https://doi.org/10.1017/nws.2022.7","url":null,"abstract":"a set of theoretical differences between the models and a proposed for model comparison based on out-of-sample prediction. the theoretical comparison or simulation framework. be using the processes, the of the to the and the impossibility of model comparison using dyadic prediction is by evidence, the discussion: Does the contain theory, and how can its inherent be","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"10 1","pages":"15 - 19"},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43466587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
NWS volume 10 issue 1 Cover and Front matter NWS第10卷第1期封面和封面
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2022-03-01 DOI: 10.1017/nws.2022.2
{"title":"NWS volume 10 issue 1 Cover and Front matter","authors":"","doi":"10.1017/nws.2022.2","DOIUrl":"https://doi.org/10.1017/nws.2022.2","url":null,"abstract":"","PeriodicalId":51827,"journal":{"name":"Network Science","volume":" ","pages":"f1 - f3"},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47544634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model – Corrigendum 时间指数随机图模型和面向随机参与者模型的理论和经验比较——勘误表
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2022-03-01 DOI: 10.1017/nws.2022.11
Philip Leifeld, S. Cranmer
Block, P., Hollway, J., Stadtfeld, C., Koskinen, J., & Snijders, T. (2022). Circular specifications and “predicting” with information from the future: Errors in the empirical SAOM–TERGM comparison of Leifeld & Cranmer. Network Science, 10(1). https://doi.org/10.1017/nws.2022.6 Leifeld, P., & Cranmer, S. (2019a). A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model. Network Science, 7(1), 20–51. https://doi.org/10.1017/nws.2018.26 Leifeld, P., & Cranmer, S. (2019b). Replication Data for: A Theoretical and Empirical Comparison of the Temporal Exponential Random Graph Model and the Stochastic Actor-Oriented Model, https://doi.org/10.7910/DVN/NEM2XU, Harvard Dataverse, V1. Leifeld, P., & Cranmer, S. (2022). The stochastic actor-oriented model is a theory as much as it is a method and must be subject to theory tests. Network Science, 10(1). https://doi.org/10.1017/nws.2022.7 Wasserman, S., & Brandes, U. (2022) Editors’ Note. Network Science, 10(1). https://doi.org/10.1017/nws.2022.8
Block,P.、Hollway,J.、Stadtfeld,C.、Koskinen,J.和Snijders,T.(2022)。循环规范和未来信息的“预测”:Leifeld&Cranmer的经验SAOM–TERGM比较中的错误。网络科学,10(1)。https://doi.org/10.1017/nws.2022.6Leifeld,P.和Cranmer,S.(2019a)。时间指数随机图模型和面向随机参与者模型的理论和实证比较。网络科学,7(1),20-51。https://doi.org/10.1017/nws.2018.26Leifeld,P.和Cranmer,S.(2019b)。复制数据:时间指数随机图模型和面向随机参与者模型的理论和经验比较,https://doi.org/10.7910/DVN/NEM2XU,Harvard Dataverse,V1。Leifeld,P.和Cranmer,S.(2022)。随机行动者导向模型既是一种理论,也是一种方法,必须经过理论检验。网络科学,10(1)。https://doi.org/10.1017/nws.2022.7Wasserman,S.和Brandes,U.(2022)编者按。网络科学,10(1)。https://doi.org/10.1017/nws.2022.8
{"title":"A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model – Corrigendum","authors":"Philip Leifeld, S. Cranmer","doi":"10.1017/nws.2022.11","DOIUrl":"https://doi.org/10.1017/nws.2022.11","url":null,"abstract":"Block, P., Hollway, J., Stadtfeld, C., Koskinen, J., & Snijders, T. (2022). Circular specifications and “predicting” with information from the future: Errors in the empirical SAOM–TERGM comparison of Leifeld & Cranmer. Network Science, 10(1). https://doi.org/10.1017/nws.2022.6 Leifeld, P., & Cranmer, S. (2019a). A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model. Network Science, 7(1), 20–51. https://doi.org/10.1017/nws.2018.26 Leifeld, P., & Cranmer, S. (2019b). Replication Data for: A Theoretical and Empirical Comparison of the Temporal Exponential Random Graph Model and the Stochastic Actor-Oriented Model, https://doi.org/10.7910/DVN/NEM2XU, Harvard Dataverse, V1. Leifeld, P., & Cranmer, S. (2022). The stochastic actor-oriented model is a theory as much as it is a method and must be subject to theory tests. Network Science, 10(1). https://doi.org/10.1017/nws.2022.7 Wasserman, S., & Brandes, U. (2022) Editors’ Note. Network Science, 10(1). https://doi.org/10.1017/nws.2022.8","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"10 1","pages":"111 - 111"},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44610212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large very dense subgraphs in a stream of edges 边流中的大而密集的子图
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2022-01-25 DOI: 10.1017/nws.2021.17
Claire Mathieu, Michel de Rougemont

We study the detection and the reconstruction of a large very dense subgraph in a social graph with n nodes and m edges given as a stream of edges, when the graph follows a power law degree distribution, in the regime when $m=O(n. log n)$. A subgraph S is very dense if it has $Omega(|S|^2)$ edges. We uniformly sample the edges with a Reservoir of size $k=O(sqrt{n}.log n)$. Our detection algorithm checks whether the Reservoir has a giant component. We show that if the graph contains a very dense subgraph of size $Omega(sqrt{n})$, then the detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost surely correct. We define a new model of random graphs which follow a power law degree distribution and have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct a good approximation of the very dense subgraph with high probability. We generalize these results to dynamic graphs defined by sliding windows in a stream of edges.

我们研究了一个具有n个节点和m条边的社会图中一个非常密集的大子图的检测和重建,当图遵循幂律度分布时,在$m=O(n. log n)$的状态下。如果子图S有$Omega(|S|^2)$条边,它就是非常密集的。我们用大小为$k=O(sqrt{n}.log n)$的储层对边缘进行均匀采样。我们的检测算法检查水库是否有一个巨大的组件。我们证明,如果图包含一个大小为$Omega(sqrt{n})$的非常密集的子图,那么检测算法几乎肯定是正确的。另一方面,遵循幂律度分布的随机图几乎肯定没有非常密集的大子图,检测算法几乎肯定是正确的。我们定义了一种新的随机图模型,它遵循幂律度分布,并且具有很大的非常密集的子图。然后,我们证明了在这类随机图上,我们可以以高概率重建非常密集子图的良好近似值。我们将这些结果推广到由边流中的滑动窗口定义的动态图。
{"title":"Large very dense subgraphs in a stream of edges","authors":"Claire Mathieu, Michel de Rougemont","doi":"10.1017/nws.2021.17","DOIUrl":"https://doi.org/10.1017/nws.2021.17","url":null,"abstract":"<p>We study the detection and the reconstruction of a large very dense subgraph in a social graph with <span>n</span> nodes and <span>m</span> edges given as a stream of edges, when the graph follows a power law degree distribution, in the regime when <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220125124825863-0283:S2050124221000175:S2050124221000175_inline1.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$m=O(n. log n)$\u0000</span></span>\u0000</span>\u0000</span>. A subgraph <span>S</span> is very dense if it has <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220125124825863-0283:S2050124221000175:S2050124221000175_inline2.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$Omega(|S|^2)$\u0000</span></span>\u0000</span>\u0000</span> edges. We uniformly sample the edges with a Reservoir of size <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220125124825863-0283:S2050124221000175:S2050124221000175_inline3.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$k=O(sqrt{n}.log n)$\u0000</span></span>\u0000</span>\u0000</span>. Our detection algorithm checks whether the Reservoir has a giant component. We show that if the graph contains a very dense subgraph of size <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220125124825863-0283:S2050124221000175:S2050124221000175_inline4.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$Omega(sqrt{n})$\u0000</span></span>\u0000</span>\u0000</span>, then the detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost surely correct. We define a new model of random graphs which follow a power law degree distribution and have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct a good approximation of the very dense subgraph with high probability. We generalize these results to dynamic graphs defined by sliding windows in a stream of edges.</p>","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"40 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138524499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NWS volume 9 issue 4 Cover and Front matter NWS第9卷第4期封面和封面
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2021-12-01 DOI: 10.1017/nws.2022.3
{"title":"NWS volume 9 issue 4 Cover and Front matter","authors":"","doi":"10.1017/nws.2022.3","DOIUrl":"https://doi.org/10.1017/nws.2022.3","url":null,"abstract":"","PeriodicalId":51827,"journal":{"name":"Network Science","volume":" ","pages":"f1 - f3"},"PeriodicalIF":1.7,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49560428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NWS volume 9 issue 4 Cover and Back matter NWS第9卷第4期封面和封底
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2021-12-01 DOI: 10.1017/nws.2022.4
{"title":"NWS volume 9 issue 4 Cover and Back matter","authors":"","doi":"10.1017/nws.2022.4","DOIUrl":"https://doi.org/10.1017/nws.2022.4","url":null,"abstract":"","PeriodicalId":51827,"journal":{"name":"Network Science","volume":" ","pages":"b1 - b2"},"PeriodicalIF":1.7,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49573107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a generalized notion of discrete time for modeling temporal networks 对离散时间的广义概念建模的时间网络
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2021-12-01 DOI: 10.1017/nws.2021.20
Konstantin Kueffner, Mark Strembeck
Abstract Many real-world networks, including social networks and computer networks for example, are temporal networks. This means that the vertices and edges change over time. However, most approaches for modeling and analyzing temporal networks do not explicitly discuss the underlying notion of time. In this paper, we therefore introduce a generalized notion of discrete time for modeling temporal networks. Our approach also allows for considering nondeterministic time and incomplete data, two issues that are often found when analyzing datasets extracted from online social networks, for example. In order to demonstrate the consequences of our generalized notion of time, we also discuss the implications for the computation of (shortest) temporal paths in temporal networks. In addition, we implemented an R-package that provides programming support for all concepts discussed in this paper. The R-package is publicly available for download.
许多现实世界的网络,包括社会网络和计算机网络,都是时间网络。这意味着顶点和边会随时间变化。然而,大多数建模和分析时间网络的方法并没有明确地讨论潜在的时间概念。因此,在本文中,我们引入离散时间的广义概念来建模时间网络。我们的方法还允许考虑不确定性时间和不完整数据,这两个问题在分析在线社交网络中提取的数据集时经常发现。为了证明我们广义时间概念的结果,我们还讨论了在时间网络中计算(最短)时间路径的含义。此外,我们实现了一个r包,为本文中讨论的所有概念提供编程支持。r包可以公开下载。
{"title":"Toward a generalized notion of discrete time for modeling temporal networks","authors":"Konstantin Kueffner, Mark Strembeck","doi":"10.1017/nws.2021.20","DOIUrl":"https://doi.org/10.1017/nws.2021.20","url":null,"abstract":"Abstract Many real-world networks, including social networks and computer networks for example, are temporal networks. This means that the vertices and edges change over time. However, most approaches for modeling and analyzing temporal networks do not explicitly discuss the underlying notion of time. In this paper, we therefore introduce a generalized notion of discrete time for modeling temporal networks. Our approach also allows for considering nondeterministic time and incomplete data, two issues that are often found when analyzing datasets extracted from online social networks, for example. In order to demonstrate the consequences of our generalized notion of time, we also discuss the implications for the computation of (shortest) temporal paths in temporal networks. In addition, we implemented an R-package that provides programming support for all concepts discussed in this paper. The R-package is publicly available for download.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"9 1","pages":"443 - 477"},"PeriodicalIF":1.7,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43885061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-purposed unsupervised framework for comparing embeddings of undirected and directed graphs 一个用于比较无向图和有向图嵌入的多用途无监督框架
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2021-11-30 DOI: 10.1017/nws.2022.27
Bogumil Kami'nski, Ł. Kraiński, P. Prałat, F. Théberge
Abstract Graph embedding is a transformation of nodes of a network into a set of vectors. A good embedding should capture the underlying graph topology and structure, node-to-node relationship, and other relevant information about the graph, its subgraphs, and nodes themselves. If these objectives are achieved, an embedding is a meaningful, understandable, and often compressed representation of a network. Unfortunately, selecting the best embedding is a challenging task and very often requires domain experts. In this paper, we extend the framework for evaluating graph embeddings that was recently introduced in [15]. Now, the framework assigns two scores, local and global, to each embedding that measure the quality of an evaluated embedding for tasks that require good representation of local and, respectively, global properties of the network. The best embedding, if needed, can be selected in an unsupervised way, or the framework can identify a few embeddings that are worth further investigation. The framework is flexible and scalable and can deal with undirected/directed and weighted/unweighted graphs.
摘要图嵌入是将网络的节点转换为一组向量。一个好的嵌入应该捕获底层的图拓扑和结构、节点到节点的关系以及关于图、其子图和节点本身的其他相关信息。如果实现了这些目标,嵌入就是一种有意义的、可理解的、通常是压缩的网络表示。不幸的是,选择最佳嵌入是一项具有挑战性的任务,通常需要领域专家。在本文中,我们扩展了最近在[15]中引入的用于评估图嵌入的框架。现在,该框架为每个嵌入分配两个分数,即局部和全局分数,这两个分数衡量了需要良好表示网络的局部和全局属性的任务的评估嵌入的质量。如果需要,可以以无监督的方式选择最佳嵌入,或者框架可以确定一些值得进一步研究的嵌入。该框架具有灵活性和可扩展性,可以处理无向图/有向图和加权图/未加权图。
{"title":"A multi-purposed unsupervised framework for comparing embeddings of undirected and directed graphs","authors":"Bogumil Kami'nski, Ł. Kraiński, P. Prałat, F. Théberge","doi":"10.1017/nws.2022.27","DOIUrl":"https://doi.org/10.1017/nws.2022.27","url":null,"abstract":"Abstract Graph embedding is a transformation of nodes of a network into a set of vectors. A good embedding should capture the underlying graph topology and structure, node-to-node relationship, and other relevant information about the graph, its subgraphs, and nodes themselves. If these objectives are achieved, an embedding is a meaningful, understandable, and often compressed representation of a network. Unfortunately, selecting the best embedding is a challenging task and very often requires domain experts. In this paper, we extend the framework for evaluating graph embeddings that was recently introduced in [15]. Now, the framework assigns two scores, local and global, to each embedding that measure the quality of an evaluated embedding for tasks that require good representation of local and, respectively, global properties of the network. The best embedding, if needed, can be selected in an unsupervised way, or the framework can identify a few embeddings that are worth further investigation. The framework is flexible and scalable and can deal with undirected/directed and weighted/unweighted graphs.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"10 1","pages":"323 - 346"},"PeriodicalIF":1.7,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45004872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
NWS volume 9 issue S1 Cover and Front matter 美国国家气象局第9卷第S1期封面和封面
IF 1.7 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Pub Date : 2021-10-01 DOI: 10.1017/nws.2021.13
{"title":"NWS volume 9 issue S1 Cover and Front matter","authors":"","doi":"10.1017/nws.2021.13","DOIUrl":"https://doi.org/10.1017/nws.2021.13","url":null,"abstract":"","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"9 1","pages":"f1 - f3"},"PeriodicalIF":1.7,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45151151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1