Pub Date : 2022-12-19DOI: 10.37819/nanofab.007.254
N. Devi, S. Siwal
MXenes have captivated investigators in methodical and technical areas towards different implementations, such as energy storage appliances, supercapacitors (SCs) and elastic batteries. The utilization of pristine MXenes and their nanomaterial in multiple types of SCs is cumulative due to their outstanding automatic, physicochemical, optical, electric, and electrochemical effects. Due to their exceptional electric performance, better mechanical strength, different practical clusters, and ample interlayer space, MXene-based nanomaterials (NMs) have demonstrated binding energy-storage capacity. In this review article, we have shown the timelines and progress in the synthesis methods over time and applications of MXene-based nanomaterials (NMs) in supercapacitors (SC). Lastly, we have concluded the theme with the future outlook in this field.
{"title":"MXene-based nanomaterials for supercapacitor applications: New pathways for the future","authors":"N. Devi, S. Siwal","doi":"10.37819/nanofab.007.254","DOIUrl":"https://doi.org/10.37819/nanofab.007.254","url":null,"abstract":"MXenes have captivated investigators in methodical and technical areas towards different implementations, such as energy storage appliances, supercapacitors (SCs) and elastic batteries. The utilization of pristine MXenes and their nanomaterial in multiple types of SCs is cumulative due to their outstanding automatic, physicochemical, optical, electric, and electrochemical effects. Due to their exceptional electric performance, better mechanical strength, different practical clusters, and ample interlayer space, MXene-based nanomaterials (NMs) have demonstrated binding energy-storage capacity. In this review article, we have shown the timelines and progress in the synthesis methods over time and applications of MXene-based nanomaterials (NMs) in supercapacitors (SC). Lastly, we have concluded the theme with the future outlook in this field.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49015688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-19DOI: 10.37819/nanofab.007.253
S. Bala, Minaxi Sharma, K. Dashora, S. Siddiqui, Deepti Diwan, M. Tripathi
The global energy crisis affects all of us. With a growing global population and finite fossil fuel supplies, we must find new energy sources. Alternative energy sources must be prioritized. Biofuels like biodiesel, biohydrogen, biomethanol, and bioethanol have come a long way in recent decades. These alternative fuels are from low-cost, renewable sources like algal, microbial, and plant biomass. Several governments, including India, are improving their renewable energy production capabilities. The main obstacles to rapid biofuel adoption are time and cost. For biofuel to truly become a viable alternative to fossil fuels, nanotechnology has recently provided the much-needed impetus. Nanomaterials' unique structural behavior, such as small size (nanoscale size), has increased their use in biofuel production. It improves efficiency and reduces the time required to convert waste into biofuels. This review addresses the latest information on various types of nanoparticles, and challenges faced and the future prospects of emerging applications of nanoparticles in biofuel production.
{"title":"Nanomaterials based sustainable bioenergy production systems: Current trends and future prospects","authors":"S. Bala, Minaxi Sharma, K. Dashora, S. Siddiqui, Deepti Diwan, M. Tripathi","doi":"10.37819/nanofab.007.253","DOIUrl":"https://doi.org/10.37819/nanofab.007.253","url":null,"abstract":"The global energy crisis affects all of us. With a growing global population and finite fossil fuel supplies, we must find new energy sources. Alternative energy sources must be prioritized. Biofuels like biodiesel, biohydrogen, biomethanol, and bioethanol have come a long way in recent decades. These alternative fuels are from low-cost, renewable sources like algal, microbial, and plant biomass. Several governments, including India, are improving their renewable energy production capabilities. The main obstacles to rapid biofuel adoption are time and cost. For biofuel to truly become a viable alternative to fossil fuels, nanotechnology has recently provided the much-needed impetus. Nanomaterials' unique structural behavior, such as small size (nanoscale size), has increased their use in biofuel production. It improves efficiency and reduces the time required to convert waste into biofuels. This review addresses the latest information on various types of nanoparticles, and challenges faced and the future prospects of emerging applications of nanoparticles in biofuel production.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44993610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-12DOI: 10.37819/nanofab.007.255
Samy Madboul
Creating new bio-based sustainable polymeric materials with similar or better performance than the petroleum-based counterparts has recently received considerable attention. It will have a significant positive impact on the environment and the sustainable polymer industry. This review article shows a relatively new method based on simultaneous in-situ polymerization and compatibilization of bio-based plant oil and biodegradable thermoplastic polymer to prepare semi-interpenetrating polymer networks (SINs) with unusual nano-scale morphology and interconnected porous structure will be summarized. The SINs were synthesized via cationic polymerization of tung oil in a homogenous solution of poly(ε-caprolactone) as a biodegradable, semi-crystalline, and biocompatible thermoplastic polymer. The degrees of miscibility, nanostructure morphology, and crystallinity was found to be composition-dependent. This relatively new blending method created a two-phase nanoscale morphology as small as 100 nm for blends with PCL contents of 20 and 30 wt.%. For higher PCL contents (e.g., 50 wt.% PCL blend), a co-continuous, interconnected microscale two-phase morphology was detected. The microporous structure of the SINs was also changed as a function of composition. For example, the interconnectivity and pore size was considerably decreased with increasing PCL content. Furthermore, a considerable decrease in the crystallization kinetics of PCL was observed as the PCL content is higher than or equal to 30 wt.%. While on the other hand, the crystallization kinetics accelerated significantly for 50 wt.%. This novel, low-cost strategy for preparing bio-based SINs with nanoscale morphology and interconnected three-dimensional cluster structures and desired properties should be widely used for creating new polymer systems.
{"title":"Bio-based semi-interpenetrating networks with nanoscale morphology and interconnected microporous structure","authors":"Samy Madboul","doi":"10.37819/nanofab.007.255","DOIUrl":"https://doi.org/10.37819/nanofab.007.255","url":null,"abstract":"Creating new bio-based sustainable polymeric materials with similar or better performance than the petroleum-based counterparts has recently received considerable attention. It will have a significant positive impact on the environment and the sustainable polymer industry. This review article shows a relatively new method based on simultaneous in-situ polymerization and compatibilization of bio-based plant oil and biodegradable thermoplastic polymer to prepare semi-interpenetrating polymer networks (SINs) with unusual nano-scale morphology and interconnected porous structure will be summarized. The SINs were synthesized via cationic polymerization of tung oil in a homogenous solution of poly(ε-caprolactone) as a biodegradable, semi-crystalline, and biocompatible thermoplastic polymer. The degrees of miscibility, nanostructure morphology, and crystallinity was found to be composition-dependent. This relatively new blending method created a two-phase nanoscale morphology as small as 100 nm for blends with PCL contents of 20 and 30 wt.%. For higher PCL contents (e.g., 50 wt.% PCL blend), a co-continuous, interconnected microscale two-phase morphology was detected. The microporous structure of the SINs was also changed as a function of composition. For example, the interconnectivity and pore size was considerably decreased with increasing PCL content. Furthermore, a considerable decrease in the crystallization kinetics of PCL was observed as the PCL content is higher than or equal to 30 wt.%. While on the other hand, the crystallization kinetics accelerated significantly for 50 wt.%. This novel, low-cost strategy for preparing bio-based SINs with nanoscale morphology and interconnected three-dimensional cluster structures and desired properties should be widely used for creating new polymer systems.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47469951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-05DOI: 10.37819/nanofab.007.250
R. Forrest, E. Lazar, S. Goel, Jonathan J. Bean
There are several methods in which grain boundaries can be made for modelling, but most produce planar (flat) grains. In this study, we investigated the difference in materials properties between polycrystalline systems comprised of planar grain and curved grain boundaries. Several structural and mechanical properties for both systems were determined. For systems with curved grain boundaries, it was found that the elastic moduli are all larger in magnitude, the excess volumes are comparable, and the plastic properties are smaller. In addition, a grain tracking algorithm was used to determine the differences in the numbers of triple junctions detected between polycrystalline systems with planar and curved grain boundaries. This can be theoretically determined and compared to a simple model system. We find that planar systems of grain boundaries possess significantly more triple junctions than systems of curved grain boundaries by a factor of two. There are also systematic differences between the two types of a system when they undergo grain growth, when there is an anomalous close-packed hexagonal phase which grows in the system of planar grain boundaries.
{"title":"Quantifying the differences in properties between polycrystals containing planar and curved grain boundaries","authors":"R. Forrest, E. Lazar, S. Goel, Jonathan J. Bean","doi":"10.37819/nanofab.007.250","DOIUrl":"https://doi.org/10.37819/nanofab.007.250","url":null,"abstract":"There are several methods in which grain boundaries can be made for modelling, but most produce planar (flat) grains. In this study, we investigated the difference in materials properties between polycrystalline systems comprised of planar grain and curved grain boundaries. Several structural and mechanical properties for both systems were determined. For systems with curved grain boundaries, it was found that the elastic moduli are all larger in magnitude, the excess volumes are comparable, and the plastic properties are smaller. In addition, a grain tracking algorithm was used to determine the differences in the numbers of triple junctions detected between polycrystalline systems with planar and curved grain boundaries. This can be theoretically determined and compared to a simple model system. We find that planar systems of grain boundaries possess significantly more triple junctions than systems of curved grain boundaries by a factor of two. There are also systematic differences between the two types of a system when they undergo grain growth, when there is an anomalous close-packed hexagonal phase which grows in the system of planar grain boundaries.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49515441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-05DOI: 10.37819/nanofab.007.249
Komal Beniwal, Harjot Kaur, A. Saini, S. Siwal
Carbon-based porous materials are widely used as adsorbents due to their high adsorption capacity and unique properties such as large pore size, sizeable area-to-volume ratio, high thermal & electrical conductivity etc., to remove pollutant from water and thus helps in water remediation. Water contamination poses severe impacts on humans as well as on marine life. In this review, we studied porous carbon materials such as graphene, carbon nanotubes and activated carbon, including their synthesis, properties and wide applications in water remediation. Absorbent materials at different scales for these applications are auspicious for environmental remediation. This review also provides future endeavors of carbon porous materials towards sustainable techniques for an eco-friendly environment.
{"title":"Synthesis and applications of carbon porous nano-materials for environmental remediation","authors":"Komal Beniwal, Harjot Kaur, A. Saini, S. Siwal","doi":"10.37819/nanofab.007.249","DOIUrl":"https://doi.org/10.37819/nanofab.007.249","url":null,"abstract":"Carbon-based porous materials are widely used as adsorbents due to their high adsorption capacity and unique properties such as large pore size, sizeable area-to-volume ratio, high thermal & electrical conductivity etc., to remove pollutant from water and thus helps in water remediation. Water contamination poses severe impacts on humans as well as on marine life. In this review, we studied porous carbon materials such as graphene, carbon nanotubes and activated carbon, including their synthesis, properties and wide applications in water remediation. Absorbent materials at different scales for these applications are auspicious for environmental remediation. This review also provides future endeavors of carbon porous materials towards sustainable techniques for an eco-friendly environment.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48271347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-13DOI: 10.37819/nanofab.007.246
Pierre P. D. Kondiah, Sipho Mdanda, S. Makhathini, Thankhoe A. Rants’o, Y. Choonara
The purpose of this study was to synthesize duloxetine (DLX)- loaded Eudragit-Chitosan (Eud-CHT) nanoparticles enclosed in an oral gelatin capsule and to evaluate the potential to transport DLX to the blood-brain barrier (BBB)for improved neuro-availability. The utilization of Eudragit® with chitosan offers a pH-dependent controlled drug release. The physicochemical properties of the formulated DLX-loaded Eud-CHT nanosystem were confirmed using various characterization techniques. SEM confirmed the nanoparticle morphology and pore size distribution. The particle size was 100 ± 73,41 nm, with a polydispersity index (PDI) of 0,283 and zeta potential of 16±2,79 mV. Drug entrapment efficacy (DEE) of 72% was attained, and molecular modelling predicted an efficient and controllable drug delivery system. The release of DLX from the nanosystem was evaluated at pH1.2, pH 6.8 and pH 7.4. At a pH of 6.8, 40 % of DLX was released, with only 20 % at pH 1.2 and 35% at pH 7.4. This demonstrated DLX's pH-dependent release and the Eud-CHT nanosystem's shielding effect at gastric pH. In addition, HEK 293 neural cells confirmed the non-toxicity of the DLX-Eud-CHT nanosystem. In silico modelling revealed a DLX-Eud-CHT composite with an outer cationic surface attributable to the EUD moieties on nanoparticles for preferential cell recognition and uptake at the anionic cell interface. The combined trials and results from the synthesis of DLX-Eud-CHT nanoparticles showed that these nanoparticles could be utilized as a potentially invaluable formulation for oral drug delivery of duloxetine with improved neuro-availability.
{"title":"Development of a Eudragit-Chitosan Nanosystem for the pH-Dependent Transport of Duloxetine to the Brain: Synthesis, Characterization and In Silico Modeling Analysis","authors":"Pierre P. D. Kondiah, Sipho Mdanda, S. Makhathini, Thankhoe A. Rants’o, Y. Choonara","doi":"10.37819/nanofab.007.246","DOIUrl":"https://doi.org/10.37819/nanofab.007.246","url":null,"abstract":"The purpose of this study was to synthesize duloxetine (DLX)- loaded Eudragit-Chitosan (Eud-CHT) nanoparticles enclosed in an oral gelatin capsule and to evaluate the potential to transport DLX to the blood-brain barrier (BBB)for improved neuro-availability. The utilization of Eudragit® with chitosan offers a pH-dependent controlled drug release. The physicochemical properties of the formulated DLX-loaded Eud-CHT nanosystem were confirmed using various characterization techniques. SEM confirmed the nanoparticle morphology and pore size distribution. The particle size was 100 ± 73,41 nm, with a polydispersity index (PDI) of 0,283 and zeta potential of 16±2,79 mV. Drug entrapment efficacy (DEE) of 72% was attained, and molecular modelling predicted an efficient and controllable drug delivery system. The release of DLX from the nanosystem was evaluated at pH1.2, pH 6.8 and pH 7.4. At a pH of 6.8, 40 % of DLX was released, with only 20 % at pH 1.2 and 35% at pH 7.4. This demonstrated DLX's pH-dependent release and the Eud-CHT nanosystem's shielding effect at gastric pH. In addition, HEK 293 neural cells confirmed the non-toxicity of the DLX-Eud-CHT nanosystem. In silico modelling revealed a DLX-Eud-CHT composite with an outer cationic surface attributable to the EUD moieties on nanoparticles for preferential cell recognition and uptake at the anionic cell interface. The combined trials and results from the synthesis of DLX-Eud-CHT nanoparticles showed that these nanoparticles could be utilized as a potentially invaluable formulation for oral drug delivery of duloxetine with improved neuro-availability.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":"47 9","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41302768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-11DOI: 10.37819/nanofab.007.227
Ali Mollaie Ghanat Alnooj, Melika Ghobadi, Mohammad Mousavi-Khattat, Dina Zohrabi, M. Sekhavati, A. Zarrabi
Recently, therapeutic applications of modified magnetic nanoparticles have attracted the attention of many researchers. The reason is the ability to develop nano drugs as cancer treatment agents. For this purpose, these particles must have a tiny size, intrinsic magnetic properties, imaging effectiveness, the ability to target the drug, and high drug absorption. Although studies have been performed on the anti-cancer properties of curcumin/nanoparticles, no comprehensive research has been performed to evaluate its anti-cancer and the normal cell toxicity of this drug system for breast cancer treatment. This study designed a curcumin-loaded MNPs (MNPs@CUR) formulation to accomplish these unique features. Using the diffusion process, chemical precipitation was used to make MNPs, which were then loaded with curcumin (CUR). Transmission electron microscopy (TEM) was used to study the morphology and size of MNP-CUR. The fabricated MNPs had spherical shapes with an average length of 23.22 nm. The presence of curcumin on the surface of MNPs was approved using Fourier transform infrared (FTIR) analysis. The X-ray diffraction (XRD) diffractogram confirmed the face cubic center (fcc) character of MNPs. After 24 hours of incubation with 4t1 breast cancer cells, MNPs@CUR anticancer effects were evaluated. MNPs@CUR displayed a concentration-dependent preference for applying anticancer effects on 4t1cells (IC50=108 µg/ml). Separated in vivo anti-tumor studies of coated/naked nanoparticles and curcumin also demonstrated that MNPs@CUR eliminated tumor mass. The cytotoxicity and genotoxicity against normal peripheral blood mononuclear cells (PBMC) were also measured by 2,5-diphenyl-2H-tetrazolium bromide (MTT) electrophoresis DNA digestion methods respectively for MNPs@CUR and naked MNPs. Cytotoxicity was demonstrated at high concentrations of MNP@CUR (991 µg/ml), while naked nanoparticles showed approximately no toxicity and neither had genotoxicity.
{"title":"Cytotoxicity of curcumin-loaded magnetic nanoparticles against normal and cancer cells as a breast cancer drug delivery system","authors":"Ali Mollaie Ghanat Alnooj, Melika Ghobadi, Mohammad Mousavi-Khattat, Dina Zohrabi, M. Sekhavati, A. Zarrabi","doi":"10.37819/nanofab.007.227","DOIUrl":"https://doi.org/10.37819/nanofab.007.227","url":null,"abstract":"Recently, therapeutic applications of modified magnetic nanoparticles have attracted the attention of many researchers. The reason is the ability to develop nano drugs as cancer treatment agents. For this purpose, these particles must have a tiny size, intrinsic magnetic properties, imaging effectiveness, the ability to target the drug, and high drug absorption. Although studies have been performed on the anti-cancer properties of curcumin/nanoparticles, no comprehensive research has been performed to evaluate its anti-cancer and the normal cell toxicity of this drug system for breast cancer treatment. This study designed a curcumin-loaded MNPs (MNPs@CUR) formulation to accomplish these unique features. Using the diffusion process, chemical precipitation was used to make MNPs, which were then loaded with curcumin (CUR). Transmission electron microscopy (TEM) was used to study the morphology and size of MNP-CUR. The fabricated MNPs had spherical shapes with an average length of 23.22 nm. The presence of curcumin on the surface of MNPs was approved using Fourier transform infrared (FTIR) analysis. The X-ray diffraction (XRD) diffractogram confirmed the face cubic center (fcc) character of MNPs. After 24 hours of incubation with 4t1 breast cancer cells, MNPs@CUR anticancer effects were evaluated. MNPs@CUR displayed a concentration-dependent preference for applying anticancer effects on 4t1cells (IC50=108 µg/ml). Separated in vivo anti-tumor studies of coated/naked nanoparticles and curcumin also demonstrated that MNPs@CUR eliminated tumor mass. The cytotoxicity and genotoxicity against normal peripheral blood mononuclear cells (PBMC) were also measured by 2,5-diphenyl-2H-tetrazolium bromide (MTT) electrophoresis DNA digestion methods respectively for MNPs@CUR and naked MNPs. Cytotoxicity was demonstrated at high concentrations of MNP@CUR (991 µg/ml), while naked nanoparticles showed approximately no toxicity and neither had genotoxicity.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42553017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-13DOI: 10.37819/nanofab.007.225
Dilek Kazıcı, M. Alagöz, E. Savan
The binding ability of the drug on its interaction with the protein will also significantly affect the apparent volume of distribution of the drugs and, in many cases the rate of elimination of the drugs. The interactions of proteins and other molecules are a fascinating topic applied to surface technologies and sensors. Therefore, it is aimed to determine the NBTCand to elucidate its interaction with Bovine Serum Albumin (BSA) by electrochemical and in silico studies in this paper. The reduction in BSA oxidation signals measured by differential pulse voltammetry upon incubation with different NBTC concentrations indicated that NBTC was bound to BSA. In addition, in silico (molecular modeling and molecular dynamics) studies have been conducted on the interactions of NBTC with proteins in plasma. As a result of the in silico studies investigated the interactions of NBTC with serum albumin, its binding affinity, and the dynamic process in the binding state. In silico studies showed that NBTC binds to BSA with high affinity (with -7.986 kcal/mol docking score), and this binding was stable (with a 3.0 average RMSD value). Eventually, the results of the electrochemical and modeling studies were perfectly matched.
{"title":"Electrochemical and in Silico Investigations of the Interaction between Nitro Blue Tetrazolium Chloride and Bovine Serum Albumin","authors":"Dilek Kazıcı, M. Alagöz, E. Savan","doi":"10.37819/nanofab.007.225","DOIUrl":"https://doi.org/10.37819/nanofab.007.225","url":null,"abstract":"The binding ability of the drug on its interaction with the protein will also significantly affect the apparent volume of distribution of the drugs and, in many cases the rate of elimination of the drugs. The interactions of proteins and other molecules are a fascinating topic applied to surface technologies and sensors. Therefore, it is aimed to determine the NBTCand to elucidate its interaction with Bovine Serum Albumin (BSA) by electrochemical and in silico studies in this paper. The reduction in BSA oxidation signals measured by differential pulse voltammetry upon incubation with different NBTC concentrations indicated that NBTC was bound to BSA. In addition, in silico (molecular modeling and molecular dynamics) studies have been conducted on the interactions of NBTC with proteins in plasma. As a result of the in silico studies investigated the interactions of NBTC with serum albumin, its binding affinity, and the dynamic process in the binding state. In silico studies showed that NBTC binds to BSA with high affinity (with -7.986 kcal/mol docking score), and this binding was stable (with a 3.0 average RMSD value). Eventually, the results of the electrochemical and modeling studies were perfectly matched.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44546902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-11DOI: 10.37819/nanofab.007.226
S. Yadav, Sunita Punia, H. R. Sharma, Asha Gupta
The economic development of any nation leads to the depletion of its natural resources, and water is one of them. Water pollution caused by various industries like food, leather, and textile etc. causes severe impacts on the environment and humans. To ensure water availability to the whole world, contaminated water released from industries, mainly fabric, must be treated and reused. The conventional techniques alone are not enough to treat textile effluent completely. This is why nanotechnology should be combined with these traditional techniques. Nanotechnology includes engineered nanoparticles for the alteration and detoxification of contaminants. Compared to nanoparticles produced from conventional techniques, biogenic nanoparticles are environmentally friendly and cost-efficient. Microbes such as Rhodotorula mucilaginosa, Hypocrealixii, Bacillus species, Pseudomonas aeuginosa etc., are used to fabricate nanoparticles. Among various microbes, bacteria are considered a bio-factory for the fabrication of nanoparticles. Different researchers reported an average dye removal efficiency of biogenic nanoparticles between 87% and 92%. When nanoparticles are applied to actual textile waste water rather than synthetic dye, waste water gives good results through the adsorption process. In this review, various methods for dye degradation are explained, but the focus is on the biological treatment of textile waste water in combination with nanotechnology.
{"title":"Nano-remediation for the decolourisation of textile effluents: A review","authors":"S. Yadav, Sunita Punia, H. R. Sharma, Asha Gupta","doi":"10.37819/nanofab.007.226","DOIUrl":"https://doi.org/10.37819/nanofab.007.226","url":null,"abstract":"The economic development of any nation leads to the depletion of its natural resources, and water is one of them. Water pollution caused by various industries like food, leather, and textile etc. causes severe impacts on the environment and humans. To ensure water availability to the whole world, contaminated water released from industries, mainly fabric, must be treated and reused. The conventional techniques alone are not enough to treat textile effluent completely. This is why nanotechnology should be combined with these traditional techniques. Nanotechnology includes engineered nanoparticles for the alteration and detoxification of contaminants. Compared to nanoparticles produced from conventional techniques, biogenic nanoparticles are environmentally friendly and cost-efficient. Microbes such as Rhodotorula mucilaginosa, Hypocrealixii, Bacillus species, Pseudomonas aeuginosa etc., are used to fabricate nanoparticles. Among various microbes, bacteria are considered a bio-factory for the fabrication of nanoparticles. Different researchers reported an average dye removal efficiency of biogenic nanoparticles between 87% and 92%. When nanoparticles are applied to actual textile waste water rather than synthetic dye, waste water gives good results through the adsorption process. In this review, various methods for dye degradation are explained, but the focus is on the biological treatment of textile waste water in combination with nanotechnology.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43803693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-29DOI: 10.37819/nanofab.007.224
F. Emre
In this study, a series TiO2-doped–polydimethylsiloxane composite (PDMS-TiO2) were synthesized at constant amount of PDMS and different amount of TiO2 particles. For this purpose, TiO2 structures were synthesized by the hydrothermal method. Morphology and chemical structure of the obtained TiO2 particles were investigated by scanning electron microscope (SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. Prepared particles were directly dispersed in PDMS wax with melted. The obtained composite structures were examined structurally by SEM, FTIR, and XRD spectroscopy techniques. The intense peaks at 13° and 16.5° visible in the XRD spectrum confirm the desired composite structure. For the pure PDMS structure, 0,523 and 1,740 KeV was observed for O2 and Si in the EDX spectrum. Peaks at 0.452 (Ka) and 4.510 KeV (Kβ) were observed for the composite structures. Then, the thermal properties of the composite structures obtained were investigated by DSC analysis. The study of the specific heat capacity of obtained products is attained by using a DSC. Depending on the amount of doped TiO2 particles, the specific heat capacity value increased significantly in PDMS-TiO2 composite structures. Specific heat capacity study' of TiO2- polydimethylsiloxane composites is original and opened a new area about PDMS.
{"title":"Investigation of Physicochemical Properties Properties and Specific Heat Capacity of Tio2 Doped- Polydimethylsiloxane Composites","authors":"F. Emre","doi":"10.37819/nanofab.007.224","DOIUrl":"https://doi.org/10.37819/nanofab.007.224","url":null,"abstract":"In this study, a series TiO2-doped–polydimethylsiloxane composite (PDMS-TiO2) were synthesized at constant amount of PDMS and different amount of TiO2 particles. For this purpose, TiO2 structures were synthesized by the hydrothermal method. Morphology and chemical structure of the obtained TiO2 particles were investigated by scanning electron microscope (SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. Prepared particles were directly dispersed in PDMS wax with melted. The obtained composite structures were examined structurally by SEM, FTIR, and XRD spectroscopy techniques. The intense peaks at 13° and 16.5° visible in the XRD spectrum confirm the desired composite structure. For the pure PDMS structure, 0,523 and 1,740 KeV was observed for O2 and Si in the EDX spectrum. Peaks at 0.452 (Ka) and 4.510 KeV (Kβ) were observed for the composite structures. Then, the thermal properties of the composite structures obtained were investigated by DSC analysis. The study of the specific heat capacity of obtained products is attained by using a DSC. Depending on the amount of doped TiO2 particles, the specific heat capacity value increased significantly in PDMS-TiO2 composite structures. Specific heat capacity study' of TiO2- polydimethylsiloxane composites is original and opened a new area about PDMS.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45311893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}