首页 > 最新文献

Optical Materials: X最新文献

英文 中文
Luminescence properties of ZnSe single crystals co-doped with Fe and Cr 掺杂铁和铬的 ZnSe 单晶的发光特性
Q2 Engineering Pub Date : 2025-02-01 DOI: 10.1016/j.omx.2024.100393
K. Lamonova , A. Prokhorov , M. Schmidbauer , A. Kwasniewski , Yu Kazarinov , M. Konuhova , A. Platonenko , Z. Remeš , K. Ridzoňová , M. Buryi
The luminescence properties of two co-doped ZnSe:(Cr, Fe) single crystals, grown by the Bridgman method, have been studied using photoluminescence techniques. Structural characterization by high-resolution X-ray diffraction (HR-XRD), electron paramagnetic resonance (EPR) and scanning electron microscopy (SEM) has revealed that the samples differ in terms of dopant concentration and intrinsic native defects. Analysis of the VIS and near-IR photoluminescence spectra, based on the modified crystal field theory and DFT calculations has shown that Fe and Cr exist in two charge states (+2/+3) and can be located in both tetrahedral and octahedral positions. In the blue light region, quantum dots (QDs) appear. These represent clusters of three Cr-containing octahedral complexes accompanied by Zn vacancies, anticipating the formation of spinel ZnCr2Se4 inclusions in the host chalcogenide ZnSe matrix.
利用光致发光技术研究了用Bridgman法生长的两种共掺杂ZnSe:(Cr, Fe)单晶的发光特性。通过高分辨率x射线衍射(HR-XRD)、电子顺磁共振(EPR)和扫描电镜(SEM)对样品进行了结构表征,发现样品在掺杂浓度和固有缺陷方面存在差异。基于修正晶体场理论和DFT计算的可见光和近红外光致发光光谱分析表明,Fe和Cr存在两种电荷态(+2/+3),可以定位在四面体和八面体位置。在蓝光区域,量子点(QDs)出现。这代表了三个含cr的八面体配合物簇,伴随着Zn空位,预示着在宿主硫系ZnSe基体中形成尖晶石ZnCr2Se4包裹体。
{"title":"Luminescence properties of ZnSe single crystals co-doped with Fe and Cr","authors":"K. Lamonova ,&nbsp;A. Prokhorov ,&nbsp;M. Schmidbauer ,&nbsp;A. Kwasniewski ,&nbsp;Yu Kazarinov ,&nbsp;M. Konuhova ,&nbsp;A. Platonenko ,&nbsp;Z. Remeš ,&nbsp;K. Ridzoňová ,&nbsp;M. Buryi","doi":"10.1016/j.omx.2024.100393","DOIUrl":"10.1016/j.omx.2024.100393","url":null,"abstract":"<div><div>The luminescence properties of two co-doped ZnSe:(Cr, Fe) single crystals, grown by the Bridgman method, have been studied using photoluminescence techniques. Structural characterization by high-resolution X-ray diffraction (HR-XRD), electron paramagnetic resonance (EPR) and scanning electron microscopy (SEM) has revealed that the samples differ in terms of dopant concentration and intrinsic native defects. Analysis of the VIS and near-IR photoluminescence spectra, based on the modified crystal field theory and DFT calculations has shown that Fe and Cr exist in two charge states (+2/+3) and can be located in both tetrahedral and octahedral positions. In the blue light region, quantum dots (QDs) appear. These represent clusters of three Cr-containing octahedral complexes accompanied by Zn vacancies, anticipating the formation of spinel ZnCr<sub>2</sub>Se<sub>4</sub> inclusions in the host chalcogenide ZnSe matrix.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100393"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phototransferred thermoluminescence of rose quartz: Measurement and analysis 玫瑰石英的光转移热致发光:测量和分析
Q2 Engineering Pub Date : 2025-02-01 DOI: 10.1016/j.omx.2024.100391
M.L. Chithambo , I.A. Ferreira , N.M. Trindade
Phototransferred thermoluminescence (PTTL) of rose quartz induced by 470 nm blue-, 525 nm green- and 405 nm UV-light is reported. Although its conventional TL glow curve measured at 1 °C s−1 during heating to 500 °C has five peaks (labelled I–V), only peaks I-IV are reproduced under phototransfer. All four peaks re-appear owing to phototransfer by 405 nm illumination whereas only peaks I-II are regenerated by 470 nm and 525 nm light. The dependence of PTTL intensity on duration of illumination for peaks I and II is analysed using phenomenological and kinetics models as systems of acceptor and donors with the number of the latter determined by experiment. The intensity of PTTL induced from deep electron traps increases with temperature of illumination with an activation energy of thermal assistance of 0.20 ± 0.01 eV irrespective of the illumination wavelength but decreases at elevated temperatures with an activation energy of thermal quenching whose value depends on the illumination wavelength. The extent to which electron traps affect the PTTL as acceptors or donors has also been studied.
报告了玫瑰石英在 470 nm 蓝光、525 nm 绿光和 405 nm 紫外光诱导下的光转移热致发光(PTL)。虽然在加热至 500 °C 期间以 1 °C s-1 的速度测量的传统 TL 辉光曲线有五个峰值(标记为 I-V),但只有峰值 I-IV 在光转移作用下得以重现。在 405 nm 的光照下,所有四个峰都会重新出现,而在 470 nm 和 525 nm 的光照下,只有 I-II 峰会重新出现。利用现象学和动力学模型分析了峰 I 和峰 II 的 PTTL 强度与光照时间的关系,将其作为受体和供体系统,后者的数量由实验确定。深电子陷阱诱导的 PTTL 强度随光照温度的升高而增加,热助活化能为 0.20 ± 0.01 eV,与光照波长无关,但在高温下会降低,热淬活化能的值取决于光照波长。此外,还研究了电子陷阱作为受体或供体对 PTTL 的影响程度。
{"title":"Phototransferred thermoluminescence of rose quartz: Measurement and analysis","authors":"M.L. Chithambo ,&nbsp;I.A. Ferreira ,&nbsp;N.M. Trindade","doi":"10.1016/j.omx.2024.100391","DOIUrl":"10.1016/j.omx.2024.100391","url":null,"abstract":"<div><div>Phototransferred thermoluminescence (PTTL) of rose quartz induced by 470 nm blue-, 525 nm green- and 405 nm UV-light is reported. Although its conventional TL glow curve measured at 1 °C s<sup>−1</sup> during heating to 500 °C has five peaks (labelled I–V), only peaks I-IV are reproduced under phototransfer. All four peaks re-appear owing to phototransfer by 405 nm illumination whereas only peaks I-II are regenerated by 470 nm and 525 nm light. The dependence of PTTL intensity on duration of illumination for peaks I and II is analysed using phenomenological and kinetics models as systems of acceptor and donors with the number of the latter determined by experiment. The intensity of PTTL induced from deep electron traps increases with temperature of illumination with an activation energy of thermal assistance of 0.20 ± 0.01 eV irrespective of the illumination wavelength but decreases at elevated temperatures with an activation energy of thermal quenching whose value depends on the illumination wavelength. The extent to which electron traps affect the PTTL as acceptors or donors has also been studied.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100391"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of defect formation mechanisms in Li2ZrO3/MgLi2ZrO4 ceramics using EPR spectroscopy 用EPR光谱研究Li2ZrO3/MgLi2ZrO4陶瓷缺陷形成机制
Q2 Engineering Pub Date : 2025-02-01 DOI: 10.1016/j.omx.2024.100396
Dmitriy I. Shlimas , Ainagul A. Khametova , Artem L. Kozlovskiy , Maxim V. Zdorovets
The article presents the results of experimental studies of the effect of the stabilizing MgO dopant using the electron spin resonance (ESP) method on enhancement of the stability of Li2ZrO3 ceramics to defect formation processes and accumulation of radiolysis products in the near-surface layer in the case of high-dose irradiation with protons simulating the hydrogenation effects characteristic of processes associated with tritium production. During the conducted studies, it was established that the addition of the stabilizing MgO dopant results in formation of inclusions in the form of the tetragonal MgLi2ZrO4 phase, which leads to an increase in the resistance of the near-surface layers to destructive damage due to the accumulation of structural damage (oxygen vacancies and point defects), as well as products of the physicochemical processes of radiolysis, characteristic of high irradiation fluence values. It was found that in the case of unmodified Li2ZrO3 ceramics, the formation of HC2 – centers is observed at a fluence of 1016 proton/cm2, while for two-phase ceramics, the formation of HC2 – centers is observed at higher fluences, while the intensity of the bands is significantly less than in the case of single-phase unmodified ceramics. The difference in the nature of changes in the intensities of singlet bands responsible for the presence of vacancy defects in the damaged layer, as well as HC2 – centers for single-phase and two-phase ceramics is a direct confirmation of the inhibition of structural degradation mechanisms in two-phase ceramics.
文章介绍了使用电子自旋共振(ESP)方法对稳定氧化镁掺杂剂对增强 Li2ZrO3 陶瓷缺陷形成过程稳定性和近表面层放射性分解产物积累的影响进行实验研究的结果,该实验模拟了与氚生产相关的过程所特有的氢化效应。在研究过程中发现,添加稳定掺杂剂氧化镁会形成四方 MgLi2ZrO4 相形式的夹杂物,从而提高近表层的抗破坏性,这是由于结构损伤(氧空位和点缺陷)以及高辐照通量值所特有的放射性物理化学过程产物的积累造成的。研究发现,对于未改性的 Li2ZrO3 陶瓷,在 1016 质子/平方厘米的辐照度下可观察到 HC2 - 中心的形成,而对于两相陶瓷,在更高的辐照度下可观察到 HC2 - 中心的形成,但带的强度明显低于单相未改性陶瓷。单相陶瓷和双相陶瓷的单线带强度变化性质不同,单线带是受损层中存在空位缺陷的原因,而双相陶瓷的单线带强度变化性质不同,这直接证实了双相陶瓷的结构降解机制受到抑制。
{"title":"Study of defect formation mechanisms in Li2ZrO3/MgLi2ZrO4 ceramics using EPR spectroscopy","authors":"Dmitriy I. Shlimas ,&nbsp;Ainagul A. Khametova ,&nbsp;Artem L. Kozlovskiy ,&nbsp;Maxim V. Zdorovets","doi":"10.1016/j.omx.2024.100396","DOIUrl":"10.1016/j.omx.2024.100396","url":null,"abstract":"<div><div>The article presents the results of experimental studies of the effect of the stabilizing MgO dopant using the electron spin resonance (ESP) method on enhancement of the stability of Li<sub>2</sub>ZrO<sub>3</sub> ceramics to defect formation processes and accumulation of radiolysis products in the near-surface layer in the case of high-dose irradiation with protons simulating the hydrogenation effects characteristic of processes associated with tritium production. During the conducted studies, it was established that the addition of the stabilizing MgO dopant results in formation of inclusions in the form of the tetragonal MgLi<sub>2</sub>ZrO<sub>4</sub> phase, which leads to an increase in the resistance of the near-surface layers to destructive damage due to the accumulation of structural damage (oxygen vacancies and point defects), as well as products of the physicochemical processes of radiolysis, characteristic of high irradiation fluence values. It was found that in the case of unmodified Li<sub>2</sub>ZrO<sub>3</sub> ceramics, the formation of HC<sub>2</sub> – centers is observed at a fluence of 10<sup>16</sup> proton/cm<sup>2</sup>, while for two-phase ceramics, the formation of HC<sub>2</sub> – centers is observed at higher fluences, while the intensity of the bands is significantly less than in the case of single-phase unmodified ceramics. The difference in the nature of changes in the intensities of singlet bands responsible for the presence of vacancy defects in the damaged layer, as well as HC<sub>2</sub> – centers for single-phase and two-phase ceramics is a direct confirmation of the inhibition of structural degradation mechanisms in two-phase ceramics.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100396"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of the conduction band of BaCl2 on the thermal quenching of the Tm2+ 4f125d1→4f13 and 4f13→4f13 luminescence in orthorhombic BaCl2:Tm2+/3+ BaCl2导带对正晶BaCl2:Tm2+/3+中Tm2+ 4f125d1→4f13和4f13→4f13发光热猝灭的影响
Q2 Engineering Pub Date : 2025-02-01 DOI: 10.1016/j.omx.2024.100389
M.P. Plokker, H.T. Hintzen
The positioning of the Tm2+ 4f125d1 and 4f13 energy levels as relative to the conduction band of the orthorhombic BaCl2 host lattice has been determined. Therefore, the energies of the Tm2+ 4f125d1-and excited 4f13-level were retrieved, as relative to the Tm2+ 4f13 ground state. In addition, the energy for exciton creation in the orthorhombic BaCl2 host lattice was established, from which the bandgap energy was determined. This value was found to correspond quite well to known literature values. Furthermore, the Tm3+-Cl- charge transfer transition was determined, from which the energy difference between the Tm2+ 4f13 ground state and the top of the BaCl2 valence band was deduced. A host referred binding energy scheme deduced for BaCl2:Tm2+ then showed that the lowest energy Tm2+ 4f125d1-levels are positioned 0.3–0.5 eV below the BaCl2 conduction band. Room temperature photo-excitation into this level will then most likely result in thermal ionization effects that have an impact on the Tm2+ 4f125d1→4f13 and 4f13→4f13 luminescence and corresponding quantum yield.
确定了Tm2+ 4f125d1和4f13能级相对于正交BaCl2主晶格导带的位置。因此,Tm2+ 4f125d1和激发态4f13能级的能量相对于Tm2+ 4f13基态得到。此外,我们还建立了正交BaCl2主晶格中激子产生的能量,并由此确定了带隙能量。我们发现这个值与已知的文献值相当吻合。测定了Tm3+- cl -的电荷转移跃迁,并由此推导出了Tm2+ 4f13基态与BaCl2价带顶端之间的能差。然后推导出BaCl2:Tm2+的主参考结合能方案,表明最低能量Tm2+ 4f125d1能级位于BaCl2导带以下0.3-0.5 eV。室温光激发到这个能级后,很可能会产生热电离效应,影响Tm2+ 4f125d1→4f13和4f13→4f13的发光和相应的量子产率。
{"title":"The influence of the conduction band of BaCl2 on the thermal quenching of the Tm2+ 4f125d1→4f13 and 4f13→4f13 luminescence in orthorhombic BaCl2:Tm2+/3+","authors":"M.P. Plokker,&nbsp;H.T. Hintzen","doi":"10.1016/j.omx.2024.100389","DOIUrl":"10.1016/j.omx.2024.100389","url":null,"abstract":"<div><div>The positioning of the Tm<sup>2+</sup> 4f<sup>12</sup>5d<sup>1</sup> and 4f<sup>13</sup> energy levels as relative to the conduction band of the orthorhombic BaCl<sub>2</sub> host lattice has been determined. Therefore, the energies of the Tm<sup>2+</sup> 4f<sup>12</sup>5d<sup>1</sup>-and excited 4f<sup>13</sup>-level were retrieved, as relative to the Tm<sup>2+</sup> 4f<sup>13</sup> ground state. In addition, the energy for exciton creation in the orthorhombic BaCl<sub>2</sub> host lattice was established, from which the bandgap energy was determined. This value was found to correspond quite well to known literature values. Furthermore, the Tm<sup>3+</sup>-Cl<sup>-</sup> charge transfer transition was determined, from which the energy difference between the Tm<sup>2+</sup> 4f<sup>13</sup> ground state and the top of the BaCl<sub>2</sub> valence band was deduced. A host referred binding energy scheme deduced for BaCl<sub>2</sub>:Tm<sup>2+</sup> then showed that the lowest energy Tm<sup>2+</sup> 4f<sup>12</sup>5d<sup>1</sup>-levels are positioned 0.3–0.5 eV below the BaCl<sub>2</sub> conduction band. Room temperature photo-excitation into this level will then most likely result in thermal ionization effects that have an impact on the Tm<sup>2+</sup> 4f<sup>12</sup>5d<sup>1</sup>→4f<sup>13</sup> and 4f<sup>13</sup>→4f<sup>13</sup> luminescence and corresponding quantum yield.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100389"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143181703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface to the special issue after ESTE 2023 conference ESTE 2023会议后特刊序
Q2 Engineering Pub Date : 2024-12-01 DOI: 10.1016/j.omx.2024.100379
Dariusz Hreniak , Mariusz Stefański , Wiesław Stręk , Rober Tomala , Eugeniusz Zych
{"title":"Preface to the special issue after ESTE 2023 conference","authors":"Dariusz Hreniak ,&nbsp;Mariusz Stefański ,&nbsp;Wiesław Stręk ,&nbsp;Rober Tomala ,&nbsp;Eugeniusz Zych","doi":"10.1016/j.omx.2024.100379","DOIUrl":"10.1016/j.omx.2024.100379","url":null,"abstract":"","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"24 ","pages":"Article 100379"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescence of copper-doped α-quartz crystal after oxygen treatment 氧处理后掺铜 α-石英晶体的发光特性
Q2 Engineering Pub Date : 2024-11-23 DOI: 10.1016/j.omx.2024.100381
A. Trukhin
Treatment of copper-doped natural α-quartz in oxygen atmosphere at 1200 °C leads to changes in luminescence properties. The luminescence center of AlO4-Cu+ is modified. The intensity is low in the annealed sample and increases after X-ray irradiation at 293 K. Annealing of the irradiated sample leads to a strong peak of thermally stimulated luminescence (TSL) at ∼500 K. Its spectral composition is mainly due to the AlO4-Cu+ center. Irradiation of the sample treated with oxygen at 77 K gives a new TSL peak at ∼180 K and a peak at 244 K existing in the untreated sample. Both peaks were attributed to Cuo centers released from different sites and recombined with a hole in AlO4 having additional oxygen. The introduction of copper ions into quartz removes alkali metal ions and eliminates the corresponding luminescence, but after treatment in oxygen, luminescence with similar parameters is restored at low temperatures. In this case, only the glow of the AlO4-Cu+ center is observed in the recombination luminescence (TSL and afterglow). Therefore, modification of the AlO4-Cu + center with oxygen imparts to this center properties similar to the complex center AlO4 (K, Na or Li ion) with monovalent aluminum ions, although the alkali ions are replaced by copper ions. The oxygen-treated sample exhibits an increased efficiency of energy transfer by excitons to the luminescence center, measured as excitation spectra in the region of fundamental absorption of silicon dioxide. The X-ray excitation of the self-trapped exciton luminescence does not depend on oxygen treatment. Also, the spectra of intrinsic optical reflection and Raman scattering do not change compared to the untreated sample. The obtained result is interpreted as a modification of the defect by high-temperature treatment in oxygen.
在 1200 °C 氧气环境中处理掺铜天然 α-石英会导致发光特性发生变化。AlO4-Cu+ 的发光中心发生了变化。退火样品的发光强度较低,而在 293 K 的 X 射线辐照下,发光强度会增加。辐照样品退火后,在 ∼500 K 处会出现一个强烈的热激发发光(TSL)峰。在 77 K 下用氧气辐照处理过的样品,会在 ∼180 K 处出现一个新的 TSL 峰,而未经处理的样品则会在 244 K 处出现一个峰。这两个峰都是由于 Cuo 中心从不同位置释放出来,并与 AlO4 中含有额外氧的空穴重新结合。在石英中引入铜离子会移除碱金属离子并消除相应的发光,但在氧气中处理后,低温下会恢复具有类似参数的发光。在这种情况下,在重组发光(TSL 和余辉)中只能观察到 AlO4-Cu+ 中心的辉光。因此,氧对 AlO4-Cu+ 中心的修饰赋予了该中心类似于带有单价铝离子的复合中心 AlO4-(K、Na 或 Li 离子)的特性,尽管碱离子被铜离子取代了。经过氧处理的样品显示,激子向发光中心转移能量的效率有所提高。自俘获激子发光的 X 射线激发与氧处理无关。此外,与未处理的样品相比,本征光学反射和拉曼散射的光谱也没有变化。这一结果被解释为在氧气中进行高温处理后,缺陷发生了改变。
{"title":"Luminescence of copper-doped α-quartz crystal after oxygen treatment","authors":"A. Trukhin","doi":"10.1016/j.omx.2024.100381","DOIUrl":"10.1016/j.omx.2024.100381","url":null,"abstract":"<div><div>Treatment of copper-doped natural α-quartz in oxygen atmosphere at 1200 °C leads to changes in luminescence properties. The luminescence center of AlO<sub>4</sub><sup>−</sup>-Cu<sup>+</sup> is modified. The intensity is low in the annealed sample and increases after X-ray irradiation at 293 K. Annealing of the irradiated sample leads to a strong peak of thermally stimulated luminescence (TSL) at ∼500 K. Its spectral composition is mainly due to the AlO<sub>4</sub><sup>−</sup>-Cu<sup>+</sup> center. Irradiation of the sample treated with oxygen at 77 K gives a new TSL peak at ∼180 K and a peak at 244 K existing in the untreated sample. Both peaks were attributed to Cu<sup>o</sup> centers released from different sites and recombined with a hole in AlO<sub>4</sub> having additional oxygen. The introduction of copper ions into quartz removes alkali metal ions and eliminates the corresponding luminescence, but after treatment in oxygen, luminescence with similar parameters is restored at low temperatures. In this case, only the glow of the AlO<sub>4</sub><sup>−</sup>-Cu<sup>+</sup> center is observed in the recombination luminescence (TSL and afterglow). Therefore, modification of the AlO<sub>4</sub><sup>−</sup>-Cu <sup>+</sup> center with oxygen imparts to this center properties similar to the complex center AlO<sub>4</sub><sup>−</sup> (K, Na or Li ion) with monovalent aluminum ions, although the alkali ions are replaced by copper ions. The oxygen-treated sample exhibits an increased efficiency of energy transfer by excitons to the luminescence center, measured as excitation spectra in the region of fundamental absorption of silicon dioxide. The X-ray excitation of the self-trapped exciton luminescence does not depend on oxygen treatment. Also, the spectra of intrinsic optical reflection and Raman scattering do not change compared to the untreated sample. The obtained result is interpreted as a modification of the defect by high-temperature treatment in oxygen.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100381"},"PeriodicalIF":0.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of temperature factor during heavy ion irradiation on structural disordering of SiC ceramics 重离子辐照时的温度因素对碳化硅陶瓷结构紊乱的影响
Q2 Engineering Pub Date : 2024-11-23 DOI: 10.1016/j.omx.2024.100383
Kymbat M. Tynyshbayeva , Artem L. Kozlovskiy
The paper presents the results of the influence of heavy ion irradiation on the formation of anisotropic distortions of the crystal structure and electron density distribution in SiC ceramics. The assessment of the change in the properties of the damaged layer was carried out using Raman spectroscopy methods, and using data on structural changes obtained using the X-ray diffraction method. The observed alterations in the spectral modes E1(TO), E2(TO) and A1(LO) depending on the irradiation temperature indicate an anisotropic distortion of the structure, which has a clearly expressed dependence on the irradiation temperature, as well as the type of ions used for irradiation. The assessment results of changes in the electron density distribution contingent upon the irradiation temperature for both types of ion irradiation showed a direct correlation between the irradiation temperature growth and the electron density anisotropic distortion caused by the deformation of chemical bonds. In turn, the combination of the effects of thermal heating and ionization processes causes deformation distortion of chemical bonds, which is most pronounced at high irradiation temperatures, for which thermal expansion of the crystal lattice and accelerated diffusion of vacancy defects play a key role in disordering.
本文介绍了重离子辐照对碳化硅陶瓷晶体结构和电子密度分布形成各向异性畸变的影响结果。利用拉曼光谱方法和 X 射线衍射方法获得的结构变化数据,对受损层的性质变化进行了评估。观察到的光谱模式 E1(TO)、E2(TO) 和 A1(LO)的变化取决于辐照温度,这表明结构发生了各向异性的畸变,这种畸变与辐照温度以及辐照所用离子的类型有明显的关系。对两种离子辐照的电子密度分布随辐照温度变化的评估结果表明,辐照温度增长与化学键变形导致的电子密度各向异性畸变之间存在直接关联。反过来,热加热和电离过程的综合效应也会导致化学键的变形畸变,这种畸变在高辐照温度下最为明显,因为晶格的热膨胀和空位缺陷的加速扩散在无序化过程中起着关键作用。
{"title":"The effect of temperature factor during heavy ion irradiation on structural disordering of SiC ceramics","authors":"Kymbat M. Tynyshbayeva ,&nbsp;Artem L. Kozlovskiy","doi":"10.1016/j.omx.2024.100383","DOIUrl":"10.1016/j.omx.2024.100383","url":null,"abstract":"<div><div>The paper presents the results of the influence of heavy ion irradiation on the formation of anisotropic distortions of the crystal structure and electron density distribution in SiC ceramics. The assessment of the change in the properties of the damaged layer was carried out using Raman spectroscopy methods, and using data on structural changes obtained using the X-ray diffraction method. The observed alterations in the spectral modes E<sub>1</sub>(TO), E<sub>2</sub>(TO) and A<sub>1</sub>(LO) depending on the irradiation temperature indicate an anisotropic distortion of the structure, which has a clearly expressed dependence on the irradiation temperature, as well as the type of ions used for irradiation. The assessment results of changes in the electron density distribution contingent upon the irradiation temperature for both types of ion irradiation showed a direct correlation between the irradiation temperature growth and the electron density anisotropic distortion caused by the deformation of chemical bonds. In turn, the combination of the effects of thermal heating and ionization processes causes deformation distortion of chemical bonds, which is most pronounced at high irradiation temperatures, for which thermal expansion of the crystal lattice and accelerated diffusion of vacancy defects play a key role in disordering.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100383"},"PeriodicalIF":0.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and optical properties of LaSrGaO4:RE3+ (RE = Sm, Eu, Ho) single crystals via optical float zone method 通过光学浮区法合成 LaSrGaO4:RE3+(RE = Sm、Eu、Ho)单晶体及其光学特性
Q2 Engineering Pub Date : 2024-11-21 DOI: 10.1016/j.omx.2024.100380
Hasan Yilmaz , Masahiko Isobe , Oliver Clemens , Markus Suta , Pascal Puphal
The advancement of synthesis of materials with luminescence properties of lanthanoid ions in various single crystalline host compounds with low phonon energies has facilitated the optimization of numerous materials to meet the specific optical properties required for diverse applications such as new energy resource exploration, light-emitting diodes (LEDs), quantum dot displays, laser technology, sensors, telecommunications, medical diagnostics and more. Enhanced analyses of the luminescence mechanism of lanthanoid ions in various host compounds, which have captivated researchers for many years and culminated in the development of innovative materials for optical applications. To obtain a deeper understanding of the luminescence mechanism of Sm3+, Eu3+, and Ho3+ ions incorporated into the Ruddlesden-Popper-type host compounds (La1-xREx)SrGaO4 (RE = Sm, Eu, Ho and x = 0; 0.05; 0.10) high quality single crystals with homogenous activator distribution grown by the optical floating zone (OFZ) method were examined systematically. X-ray diffraction (XRD) characterization shows that the compound crystallizes in a tetragonal crystal system with the space group I4/mmm (no. 139) with homogenous distribution of the dopants shown via backscattered electron (BSE) imaging. Photoluminescence studies at both 77 K and 298 K reveal that the incorporated lanthanoid ions brightly emit and even show unusual transitions due to the low cutoff phonon energy of the host compound that limits non-radiative loss pathways. Together with a high physical density of ∼6.4 g/cm3, these phosphors could be conceptualized as interesting candidates for X-ray imaging phosphors aiming at high light yields.
在具有低声子能量的各种单晶宿主化合物中合成具有镧系离子发光特性的材料方面取得的进展,促进了众多材料的优化,以满足新能源勘探、发光二极管(LED)、量子点显示器、激光技术、传感器、电信、医疗诊断等不同应用所需的特定光学特性。加强分析镧系元素离子在各种宿主化合物中的发光机理,多年来一直吸引着研究人员,并最终开发出用于光学应用的创新材料。为了更深入地了解加入 Ruddlesden-Popper 型宿主化合物 (La1-xREx)SrGaO4 (RE = Sm、Eu、Ho,x = 0;0.05;0.10)中的 Sm3+、Eu3+ 和 Ho3+ 离子的发光机理,我们对通过光学浮动区 (OFZ) 方法生长的具有均匀活化剂分布的高质量单晶进行了系统研究。X 射线衍射(XRD)表征表明,该化合物在空间群为 I4/mmm(编号 139)的四方晶系中结晶,并通过背散射电子(BSE)成像显示出掺杂剂的均匀分布。在 77 K 和 298 K 两种温度下进行的光致发光研究表明,由于主化合物的低截止声子能量限制了非辐射损失途径,掺入的镧系离子会发出明亮的光,甚至会出现不寻常的转变。这些荧光粉的物理密度高达 6.4 克/立方厘米,因此可被视为具有高光产率的 X 射线成像荧光粉的理想候选材料。
{"title":"Synthesis and optical properties of LaSrGaO4:RE3+ (RE = Sm, Eu, Ho) single crystals via optical float zone method","authors":"Hasan Yilmaz ,&nbsp;Masahiko Isobe ,&nbsp;Oliver Clemens ,&nbsp;Markus Suta ,&nbsp;Pascal Puphal","doi":"10.1016/j.omx.2024.100380","DOIUrl":"10.1016/j.omx.2024.100380","url":null,"abstract":"<div><div>The advancement of synthesis of materials with luminescence properties of lanthanoid ions in various single crystalline host compounds with low phonon energies has facilitated the optimization of numerous materials to meet the specific optical properties required for diverse applications such as new energy resource exploration, light-emitting diodes (LEDs), quantum dot displays, laser technology, sensors, telecommunications, medical diagnostics and more. Enhanced analyses of the luminescence mechanism of lanthanoid ions in various host compounds, which have captivated researchers for many years and culminated in the development of innovative materials for optical applications. To obtain a deeper understanding of the luminescence mechanism of Sm<sup>3+</sup>, Eu<sup>3+</sup>, and Ho<sup>3+</sup> ions incorporated into the Ruddlesden-Popper-type host compounds (La<sub>1-<em>x</em></sub><em>RE</em><sub><em>x</em></sub>)SrGaO<sub>4</sub> (<em>RE</em> = Sm, Eu, Ho and <em>x</em> = 0; 0.05; 0.10) high quality single crystals with homogenous activator distribution grown by the optical floating zone (OFZ) method were examined systematically. X-ray diffraction (XRD) characterization shows that the compound crystallizes in a tetragonal crystal system with the space group <em>I</em>4/<em>mmm</em> (no. 139) with homogenous distribution of the dopants shown via backscattered electron (BSE) imaging. Photoluminescence studies at both 77 K and 298 K reveal that the incorporated lanthanoid ions brightly emit and even show unusual transitions due to the low cutoff phonon energy of the host compound that limits non-radiative loss pathways. Together with a high physical density of ∼6.4 g/cm<sup>3</sup>, these phosphors could be conceptualized as interesting candidates for X-ray imaging phosphors aiming at high light yields.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100380"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical and EPR study of Mn4+ ions in different crystal environments in Mn, Li co-doped MgO 锰、锂共掺氧化镁中不同晶体环境下 Mn4+ 离子的光学和 EPR 研究
Q2 Engineering Pub Date : 2024-11-06 DOI: 10.1016/j.omx.2024.100378
L. Borkovska , K. Kozoriz , I. Vorona , O. Gudymenko , S. Ponomaryov , O. Melnichuk , V. Trachevskii , O. Chukova , L. Khomenkova
The influence of Li ion on the symmetry of Mn4+ center and its photoluminescence (PL) in MgO:0,01%Mn, 3 % Li ceramics is studied by the X-ray diffraction, electron paramagnetic resonance (EPR), PL and optical absorption methods. It is shown that Li co-doping stimulates conversion of Mn2+ on Mg site into Mn4+ and can decrease symmetry of Mn4+ in a case of their specific close arrangement in the crystal lattice. Two kinds of Mn4+ centers are identified in the EPR and PL spectra: cubic Mn4+ and tetragonal complex Mn4+-Li+. The parameters of corresponding EPR centers are estimated from the experimental spectra (gcub = 1.994, |A|cub = 70.9 × 104 cm−1; g1tetr = g2tetr = 1.994, g3tetr = 1.993, |A|tetr = 71 × 104 cm−1, |D|tetr = 220 × 104 cm−1). The PL lines observed in the low temperature PL spectra are assigned to the specific Mn4+ related centers using a complementary study of PL excitation spectra and temperature dependent PL spectra. The lines at 654 nm and 671 nm are ascribed to R-line of Mn4+ in a site of cubic symmetry and its phonon overtone, correspondingly, as well as the lines at 666 nm and 681 nm are attributed to R2 line of Mn4+ in site with tetragonal symmetry and to its phonon overtone, correspondingly. It is shown that in Mn doped MgO ceramics made without intentional Li co-doping, the cubic Mn4+ center can be present and contribute to the PL spectra.
通过 X 射线衍射、电子顺磁共振 (EPR)、PL 和光吸收方法研究了锂离子对 MgO:0.01%Mn, 3%Li 陶瓷中 Mn4+ 中心对称性及其光致发光 (PL) 的影响。研究表明,锂的共掺会刺激镁位点上的 Mn2+ 转化为 Mn4+,并在 Mn4+ 在晶格中紧密排列的情况下降低其对称性。在 EPR 和 PL 光谱中发现了两种 Mn4+ 中心:立方 Mn4+ 和四方复合 Mn4+-Li+。根据实验光谱估算出了相应的 EPR 中心参数(gcub = 1.994,|A|cub = 70.9 × 104 cm-1;g1tetr = g2tetr = 1.994,g3tetr = 1.993,|A|tetr = 71 × 104 cm-1,|D|tetr = 220 × 104 cm-1)。通过对聚光激发光谱和随温度变化的聚光光谱进行补充研究,将低温聚光光谱中观察到的聚光线归属于特定的 Mn4+ 相关中心。654 nm 和 671 nm 处的线分别归因于立方对称位点中 Mn4+ 的 R 线及其声子泛音,666 nm 和 681 nm 处的线分别归因于四方对称位点中 Mn4+ 的 R2 线及其声子泛音。结果表明,在掺锰的氧化镁陶瓷中,如果没有刻意掺入锂,立方的 Mn4+ 中心就会存在,并对聚光光谱做出贡献。
{"title":"Optical and EPR study of Mn4+ ions in different crystal environments in Mn, Li co-doped MgO","authors":"L. Borkovska ,&nbsp;K. Kozoriz ,&nbsp;I. Vorona ,&nbsp;O. Gudymenko ,&nbsp;S. Ponomaryov ,&nbsp;O. Melnichuk ,&nbsp;V. Trachevskii ,&nbsp;O. Chukova ,&nbsp;L. Khomenkova","doi":"10.1016/j.omx.2024.100378","DOIUrl":"10.1016/j.omx.2024.100378","url":null,"abstract":"<div><div>The influence of Li ion on the symmetry of Mn<sup>4+</sup> center and its photoluminescence (PL) in MgO:0,01%Mn, 3 % Li ceramics is studied by the X-ray diffraction, electron paramagnetic resonance (EPR), PL and optical absorption methods. It is shown that Li co-doping stimulates conversion of Mn<sup>2+</sup> on Mg site into Mn<sup>4+</sup> and can decrease symmetry of Mn<sup>4+</sup> in a case of their specific close arrangement in the crystal lattice. Two kinds of Mn<sup>4+</sup> centers are identified in the EPR and PL spectra: cubic Mn<sup>4+</sup> and tetragonal complex Mn<sup>4+</sup>-Li<sup>+</sup>. The parameters of corresponding EPR centers are estimated from the experimental spectra (g<sub>cub</sub> = 1.994, |A|<sub>cub</sub> = 70.9 × 10<sup>4</sup> cm<sup>−1</sup>; g<sub>1tetr</sub> = g<sub>2tetr</sub> = 1.994, g<sub>3tetr</sub> = 1.993, |A|<sub>tetr</sub> = 71 × 10<sup>4</sup> cm<sup>−1</sup>, |D|<sub>tetr</sub> = 220 × 10<sup>4</sup> cm<sup>−1</sup>). The PL lines observed in the low temperature PL spectra are assigned to the specific Mn<sup>4+</sup> related centers using a complementary study of PL excitation spectra and temperature dependent PL spectra. The lines at 654 nm and 671 nm are ascribed to R-line of Mn<sup>4+</sup> in a site of cubic symmetry and its phonon overtone, correspondingly, as well as the lines at 666 nm and 681 nm are attributed to R2 line of Mn<sup>4+</sup> in site with tetragonal symmetry and to its phonon overtone, correspondingly. It is shown that in Mn doped MgO ceramics made without intentional Li co-doping, the cubic Mn<sup>4+</sup> center can be present and contribute to the PL spectra.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"24 ","pages":"Article 100378"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of spectroscopic properties in the YXO4 compounds (where X = V5+, P5+, As5+) doped with Eu3+ ions 掺杂 Eu3+ 离子的 YXO4 化合物(其中 X = V5+、P5+、As5+)的光谱特性变化
Q2 Engineering Pub Date : 2024-10-29 DOI: 10.1016/j.omx.2024.100377
Adam Watras , Marta Kardach , Katarzyna Szyszka , Paulina Sobierajska , Aleksandra Bartkowiak , Rafal J. Wiglusz
In the present work, a co-precipitation method was employed to prepare nanosized YXO4 (X = V5+, P5+, As5+) doped with Eu3+ ions. The raw nanomaterials have been thermally treated in temperature range between 300 and 1100 °C for 3h. The XRD analysis demonstrated that the powders were single-phase with high crystallite dispersion. The studies focused on investigating the systematic relationship between crystallographic parameters and spectroscopic properties. The average size of the obtained materials was 30 nm for YVO4, 35 nm for YPO4, and 20 nm for YAsO4, respectively.
Moreover, the emission and excitation spectra, although typical for Eu3+ ions, demonstrated some degree of variability with calcination temperatures and doping concentration. Thermal luminescence quenching was typical for YPO4 and YAsO4 samples, while for the YVO4 samples, the intensity of emission increased, reaching its maximum at 725 K. To explain this phenomenon, excitation spectra in function of temperature were measured.
本研究采用共沉淀法制备了掺杂 Eu3+ 离子的纳米级 YXO4(X = V5+、P5+、As5+)。原始纳米材料在 300 至 1100 °C 的温度范围内经过 3 小时的热处理。XRD 分析表明,这些粉末是单相的,具有较高的晶体分散性。研究的重点是调查晶体学参数与光谱特性之间的系统关系。所得材料的平均粒度分别为:YVO4 30 nm、YPO4 35 nm 和 YAsO4 20 nm。此外,发射光谱和激发光谱虽然是 Eu3+ 离子的典型光谱,但随着煅烧温度和掺杂浓度的不同而呈现出一定程度的变化。对于 YPO4 和 YAsO4 样品来说,热淬灭是典型的发光现象,而对于 YVO4 样品来说,发射强度增加,在 725 K 时达到最大值。
{"title":"Modulation of spectroscopic properties in the YXO4 compounds (where X = V5+, P5+, As5+) doped with Eu3+ ions","authors":"Adam Watras ,&nbsp;Marta Kardach ,&nbsp;Katarzyna Szyszka ,&nbsp;Paulina Sobierajska ,&nbsp;Aleksandra Bartkowiak ,&nbsp;Rafal J. Wiglusz","doi":"10.1016/j.omx.2024.100377","DOIUrl":"10.1016/j.omx.2024.100377","url":null,"abstract":"<div><div>In the present work, a co-precipitation method was employed to prepare nanosized YXO<sub>4</sub> (X = V<sup>5+</sup>, P<sup>5+</sup>, As<sup>5+</sup>) doped with Eu<sup>3+</sup> ions. The raw nanomaterials have been thermally treated in temperature range between 300 and 1100 °C for 3h. The XRD analysis demonstrated that the powders were single-phase with high crystallite dispersion. The studies focused on investigating the systematic relationship between crystallographic parameters and spectroscopic properties. The average size of the obtained materials was 30 nm for YVO4, 35 nm for YPO<sub>4</sub>, and 20 nm for YAsO<sub>4</sub>, respectively.</div><div>Moreover, the emission and excitation spectra, although typical for Eu<sup>3+</sup> ions, demonstrated some degree of variability with calcination temperatures and doping concentration. Thermal luminescence quenching was typical for YPO<sub>4</sub> and YAsO<sub>4</sub> samples, while for the YVO<sub>4</sub> samples, the intensity of emission increased, reaching its maximum at 725 K. To explain this phenomenon, excitation spectra in function of temperature were measured.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"24 ","pages":"Article 100377"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Optical Materials: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1