首页 > 最新文献

Water Research X最新文献

英文 中文
Release of contaminants from polymer surfaces under condition of organized fluid flows 有组织流体流动条件下聚合物表面污染物的释放
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-03 DOI: 10.1016/j.wroa.2024.100248

The use of polymers for water storage or distribution is closely monitored, especially with regard to the possible contamination with substances coming from the material's surfaces. Different standards are practiced across countries according to type of applied materials and such test methods are prevalently based on constant temperature conditions. However, these polymers systems could be located in diverse environment which does not necessarily provide constant conditions. Experimental findings show that exposure of liquid inside polymeric materials to specific temperature gradients, and consequently to emerging organized flows, can result in an accelerated leaching of undesirable substances from the solid surface. In presented work model steady-state and organized flow conditions are used to compare release of contaminates from polyethylene by measuring of surface tension, UV–Vis spectroscopy, FTIR, scanning electron microscopy and elemental analysis of polymer surfaces and water leachates. The pilot study shows that convective flow generated via temperature gradient significantly affects contaminant release in comparison to a steady state and mixing flow conditions.

对用于储水或输水的聚合物进行密切监控,特别是在材料表面可能产生的物质污染方面。各国根据应用材料的类型实行不同的标准,这些测试方法主要基于恒温条件。然而,这些聚合物系统可能处于不同的环境中,不一定能提供恒定的条件。实验结果表明,高分子材料内部的液体暴露在特定的温度梯度下,进而出现有组织的流动,会加速固体表面不良物质的沥滤。在本研究中,通过测量表面张力、紫外可见光谱、傅立叶变换红外光谱、扫描电子显微镜以及聚合物表面和水浸出物的元素分析,使用稳态和有组织流动条件模型来比较污染物从聚乙烯中的释放情况。试验研究表明,与稳态和混合流条件相比,通过温度梯度产生的对流对污染物的释放有很大影响。
{"title":"Release of contaminants from polymer surfaces under condition of organized fluid flows","authors":"","doi":"10.1016/j.wroa.2024.100248","DOIUrl":"10.1016/j.wroa.2024.100248","url":null,"abstract":"<div><p>The use of polymers for water storage or distribution is closely monitored, especially with regard to the possible contamination with substances coming from the material's surfaces. Different standards are practiced across countries according to type of applied materials and such test methods are prevalently based on constant temperature conditions. However, these polymers systems could be located in diverse environment which does not necessarily provide constant conditions. Experimental findings show that exposure of liquid inside polymeric materials to specific temperature gradients, and consequently to emerging organized flows, can result in an accelerated leaching of undesirable substances from the solid surface. In presented work model steady-state and organized flow conditions are used to compare release of contaminates from polyethylene by measuring of surface tension, UV–Vis spectroscopy, FTIR, scanning electron microscopy and elemental analysis of polymer surfaces and water leachates. The pilot study shows that convective flow generated via temperature gradient significantly affects contaminant release in comparison to a steady state and mixing flow conditions.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000380/pdfft?md5=509de9eab7440517f2bb9894b5a8766a&pid=1-s2.0-S2589914724000380-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing fish production in recirculating aquaculture system by integrating a biofloc-worm reactor for protein recovery 在循环水产养殖系统中整合生物絮团-蠕虫反应器以回收蛋白质,从而提高鱼类产量
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-02 DOI: 10.1016/j.wroa.2024.100246

Aquaculture, producing half of global fish production, offers a high-quality protein source for humans. Improving nitrogen use efficiency (NUE) through microbial protein recovery is crucial for increasing fish production and reducing environmental footprint. However, the poor palatability and high moisture content of microbial protein make its utilization challenging. Here, a biofloc-worm reactor was integrated into a recirculating aquaculture system (BW_RAS) for the first time to convert microbial protein into Tubificidae (Oligochaeta) biomass, which was used as direct feed for culturing fish. Batch experiments indicated that an aeration rate of 0.132 m3 L−1 h−1 and a worm density of 0.3 g cm−2 on the carrier were optimal for microbial biomass growth and worm predation, respectively. Compared to the biofloc reactor-based recirculating aquaculture system (B_RAS), the BW_RAS improved water quality, NUE, and fish production by 17.1 % during a 120-day aquaculture period. The abundance of heterotrophic aerobic denitrifier Deinococcus in BW_RAS was one order of magnitude higher than in B_RAS, while heterotrophic bacteria Mycobacterium was more abundant in B_RAS. Denitrifiers cooperated with organic matter degraders and nitrogen assimilation bacteria for protein recovery and gaseous nitrogen loss while competing with predatory bacteria. Function prediction and qPCR indicated greater aerobic respiration, nitrate assimilation, nitrification (AOB-amoA), and denitrification (napA, nirK, nirS, nosZI), but lower fermentation in BWR compared to BR. This study demonstrated that BW_RAS increased microbial protein production and aerobic nitrogen cycling through ongoing worm predation, further enhancing fish production to a commercially viable level.

水产养殖占全球鱼类产量的一半,为人类提供了优质蛋白质来源。通过微生物蛋白回收提高氮利用效率(NUE)对于提高鱼类产量和减少环境足迹至关重要。然而,微生物蛋白适口性差、含水量高,使其利用面临挑战。在这里,我们首次将生物絮团-蠕虫反应器集成到循环水产养殖系统(BW_RAS)中,将微生物蛋白转化为管虫(寡毛目)生物质,并将其作为养殖鱼类的直接饲料。批量实验表明,0.132 m3 L-1 h-1 的通气速率和载体上 0.3 g cm-2 的蠕虫密度分别是微生物生物量生长和蠕虫捕食的最佳条件。与基于生物絮凝反应器的再循环水产养殖系统(B_RAS)相比,BW_RAS 在 120 天的养殖期内水质、净效率和鱼产量提高了 17.1%。BW_RAS 中异养需氧反硝化菌 Deinococcus 的数量比 B_RAS 高一个数量级,而 B_RAS 中异养细菌 Mycobacterium 的数量更多。反硝化菌与有机物降解菌和氮同化菌合作进行蛋白质回收和气态氮损失,同时与捕食菌竞争。功能预测和 qPCR 表明,与 BR 相比,BWR 的有氧呼吸、硝酸同化、硝化(AOB-amoA)和反硝化(napA、nirK、nirS、nosZI)能力更强,但发酵能力较低。这项研究表明,BW_RAS 通过持续的蠕虫捕食增加了微生物蛋白质产量和有氧氮循环,进一步提高了鱼类产量,使其达到商业可行的水平。
{"title":"Increasing fish production in recirculating aquaculture system by integrating a biofloc-worm reactor for protein recovery","authors":"","doi":"10.1016/j.wroa.2024.100246","DOIUrl":"10.1016/j.wroa.2024.100246","url":null,"abstract":"<div><p>Aquaculture, producing half of global fish production, offers a high-quality protein source for humans. Improving nitrogen use efficiency (NUE) through microbial protein recovery is crucial for increasing fish production and reducing environmental footprint. However, the poor palatability and high moisture content of microbial protein make its utilization challenging. Here, a biofloc-worm reactor was integrated into a recirculating aquaculture system (BW_RAS) for the first time to convert microbial protein into Tubificidae (Oligochaeta) biomass, which was used as direct feed for culturing fish. Batch experiments indicated that an aeration rate of 0.132 m<sup>3</sup> <em>L</em><sup>−1</sup> <em>h</em><sup>−1</sup> and a worm density of 0.3 g cm<sup>−2</sup> on the carrier were optimal for microbial biomass growth and worm predation, respectively. Compared to the biofloc reactor-based recirculating aquaculture system (B_RAS), the BW_RAS improved water quality, NUE, and fish production by 17.1 % during a 120-day aquaculture period. The abundance of heterotrophic aerobic denitrifier <em>Deinococcus</em> in BW_RAS was one order of magnitude higher than in B_RAS, while heterotrophic bacteria <em>Mycobacterium</em> was more abundant in B_RAS. Denitrifiers cooperated with organic matter degraders and nitrogen assimilation bacteria for protein recovery and gaseous nitrogen loss while competing with predatory bacteria. Function prediction and qPCR indicated greater aerobic respiration, nitrate assimilation, nitrification (AOB-<em>amoA</em>), and denitrification (<em>napA, nirK, nirS, nosZI</em>), but lower fermentation in BWR compared to BR. This study demonstrated that BW_RAS increased microbial protein production and aerobic nitrogen cycling through ongoing worm predation, further enhancing fish production to a commercially viable level.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000367/pdfft?md5=03789b8d1a27121c8f9a0b57ba65c23f&pid=1-s2.0-S2589914724000367-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Stable and Efficient Nitrogen Removal in Wastewater Treatment Processes Via an Adaptive Neural Network Based Sliding Mode Controller 通过基于自适应神经网络的滑模控制器实现废水处理过程中稳定高效的脱氮效果
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-07-30 DOI: 10.1016/j.wroa.2024.100245

Advanced controllers often offer an innovative solution to proper quality control in wastewater treatment processes (WWTPs). However, nonlinearity and uncertain disturbances usually make the conventional control strategies inadequate or impossible for the stable operations of WWTPs. To guarantee the stability of ammonia nitrogen concentration (SNH) control in WWTPs, a direct adaptive neural networks-based sliding mode control (ANNSMC) strategy has been proposed in this article. A sliding mode controller is designed and implemented with the help of an adaptive Neural Network (ANN), named Radial Basis Function Neural Network (RBFNN), which can approach the desired control law accurately. Also, the stability of a system installed with the ANNSMC is analyzed by using the Lyapunov theorem, which ensures system robustness and adaptability. Additionally, to deal with high energy consumption and low treatment efficiency problems in the wastewater denitrification processes, this paper proposes a dual-loop denitrification control strategy and validates it in the Benchmark Simulation Model No.2 (BSM2) platform. The strategy can strengthen the denitrification efficiency by collaborating the SNH with nitrate nitrogen (SNO) concentration in the WWTPs properly. The experimental results demonstrate that the proposed strategy can obtain remarkable stability and robustness, reducing energy consumption effectively compared with other standard and advanced control strategies.

先进的控制器通常能为污水处理工艺(WWTPs)的适当质量控制提供创新解决方案。然而,非线性和不确定干扰通常会使传统控制策略无法满足或无法实现污水处理厂的稳定运行。为了保证污水处理厂氨氮浓度(SNH)控制的稳定性,本文提出了一种基于神经网络的直接自适应滑模控制(ANNSMC)策略。在名为径向基函数神经网络(RBFNN)的自适应神经网络(ANN)的帮助下,设计并实现了一种滑动模式控制器,该控制器可以精确地接近所需的控制法则。此外,还利用 Lyapunov 定理分析了安装 ANNSMC 的系统的稳定性,从而确保系统的鲁棒性和适应性。此外,针对污水脱硝过程中能耗高、处理效率低的问题,本文提出了一种双环脱硝控制策略,并在基准仿真模型 2(BSM2)平台上进行了验证。该策略可通过适当协调污水处理厂中的 SNH 和硝态氮(SNO)浓度来提高脱硝效率。实验结果表明,与其他标准和先进的控制策略相比,所提出的策略具有显著的稳定性和鲁棒性,能有效降低能耗。
{"title":"Towards Stable and Efficient Nitrogen Removal in Wastewater Treatment Processes Via an Adaptive Neural Network Based Sliding Mode Controller","authors":"","doi":"10.1016/j.wroa.2024.100245","DOIUrl":"10.1016/j.wroa.2024.100245","url":null,"abstract":"<div><p>Advanced controllers often offer an innovative solution to proper quality control in wastewater treatment processes (WWTPs). However, nonlinearity and uncertain disturbances usually make the conventional control strategies inadequate or impossible for the stable operations of WWTPs. To guarantee the stability of ammonia nitrogen concentration (<span><math><msub><mi>S</mi><mrow><mi>N</mi><mi>H</mi></mrow></msub></math></span>) control in WWTPs, a direct adaptive neural networks-based sliding mode control (ANNSMC) strategy has been proposed in this article. A sliding mode controller is designed and implemented with the help of an adaptive Neural Network (ANN), named Radial Basis Function Neural Network (RBFNN), which can approach the desired control law accurately. Also, the stability of a system installed with the ANNSMC is analyzed by using the Lyapunov theorem, which ensures system robustness and adaptability. Additionally, to deal with high energy consumption and low treatment efficiency problems in the wastewater denitrification processes, this paper proposes a dual-loop denitrification control strategy and validates it in the Benchmark Simulation Model No.2 (BSM2) platform. The strategy can strengthen the denitrification efficiency by collaborating the <span><math><msub><mi>S</mi><mrow><mi>N</mi><mi>H</mi></mrow></msub></math></span> with nitrate nitrogen (<span><math><msub><mi>S</mi><mrow><mi>N</mi><mi>O</mi></mrow></msub></math></span>) concentration in the WWTPs properly. The experimental results demonstrate that the proposed strategy can obtain remarkable stability and robustness, reducing energy consumption effectively compared with other standard and advanced control strategies.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000355/pdfft?md5=1ce9f584cf8205423e62e081c01ae36d&pid=1-s2.0-S2589914724000355-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perfluoroalkyl functionalized-Au nanoparticle sensor: Employing rate of spectrum shifting for highly selective and sensitive detection of per- and polyfluoroalkyl substances (PFASs) in aqueous environments 全氟烷基功能化金纳米粒子传感器:利用光谱移动速率高选择性、高灵敏度地检测水环境中的全氟和多氟烷基物质 (PFAS)
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-07-28 DOI: 10.1016/j.wroa.2024.100239

Per- and polyfluoroalkyl substances (PFASs) are emerging contaminants detected ubiquitously and have negative impacts on human health and ecosystem; thus, developing in-situ sensing technique is important to ensure safety. Herein, we report a novel colorimetric-based sensor with perfluoroalkyl receptor attached to citrate coated gold nanoparticles (Citrate-Au NPs) that can detect several PFASs including perfluorocarboxylates with different chain lengths (PFHxA, PFOA, PFNA, PFDA), perfluorooctanoic sulfonate (PFOS), and perfluorooctanoic phosphonate (PFOPA). The sensor detects PFASs utilizing fluorous interaction between PFASs and the perfluoroalkyl receptor of Citrate-Au NPs in a solution at a fixed salt concentration, inducing changes in nanoparticle dispersity and the solution color. The rate of spectrum shift was linearly dependent on PFASs concentrations. Citrate-Au NPs with size between 29 – 109 nm were synthesized by adjusting citrate/Au molar ratios, and 78 nm showed the best sensitivity to PFOA concentration (with level of detection of 4.96 µM). Citrate-Au NPs only interacted with PFASs with perfluoroalkyl length > 4 and not with non-fluorinated alkyl compound (nonanoic acid). The performance of Citrate-Au NP based sensor was strongly dependent on the chain length of the perfluoroalkyl group and the head functional group; higher sensitivity was observed with longer chain over shorter chain, and with sulfonate functional group over carboxylate and phosphonate. The sensor was tested using real water samples (i.e., tap water, filtered river water), and it was found that the sensor is capable of detecting PFASs in these conditions if calibrated with the corresponding water matrix. While further optimization is needed, this study demonstrated new capability of Citrate-Au NPs based sensor for detection of PFASs in water.

全氟烷基和多氟烷基物质(PFASs)是普遍存在的新兴污染物,对人类健康和生态系统有负面影响;因此,开发原位传感技术对确保安全非常重要。在此,我们报告了一种新型的基于比色法的传感器,该传感器的柠檬酸盐涂层金纳米粒子(Citrate-Au NPs)上附有全氟烷基受体,可检测多种全氟烷烃类物质,包括不同链长的全氟羧酸盐(PFHxA、PFOA、PFNA、PFDA)、全氟辛酸磺酸盐(PFOS)和全氟辛基膦酸盐(PFOPA)。该传感器利用固定盐浓度溶液中的 PFAS 与柠檬酸-金纳米粒子的全氟烷基受体之间的荧光相互作用来检测 PFAS,从而引起纳米粒子分散性和溶液颜色的变化。光谱变化率与全氟辛烷磺酸浓度呈线性关系。通过调整柠檬酸盐/金的摩尔比,合成了尺寸在 29 - 109 nm 之间的柠檬酸盐-金纳米粒子,其中 78 nm 纳米粒子对全氟辛烷磺酸浓度的灵敏度最高(检测水平为 4.96 µM)。柠檬酸盐-金纳米粒子只与全氟烷基长度为 4 的 PFASs 发生作用,而不与非氟烷基化合物(壬酸)发生作用。基于柠檬酸盐-金纳米粒子的传感器的性能与全氟烷基的链长和头部官能团密切相关;长链比短链的灵敏度高,磺酸官能团比羧酸和膦酸官能团的灵敏度高。使用真实水样(如自来水、过滤河水)对传感器进行了测试,结果发现,如果使用相应的水基质进行校准,传感器能够在这些条件下检测出 PFAS。虽然还需要进一步优化,但本研究证明了基于柠檬酸-金氧化物的传感器在检测水中全氟辛烷磺酸方面的新能力。
{"title":"Perfluoroalkyl functionalized-Au nanoparticle sensor: Employing rate of spectrum shifting for highly selective and sensitive detection of per- and polyfluoroalkyl substances (PFASs) in aqueous environments","authors":"","doi":"10.1016/j.wroa.2024.100239","DOIUrl":"10.1016/j.wroa.2024.100239","url":null,"abstract":"<div><p>Per- and polyfluoroalkyl substances (PFASs) are emerging contaminants detected ubiquitously and have negative impacts on human health and ecosystem; thus, developing <em>in-situ</em> sensing technique is important to ensure safety. Herein, we report a novel colorimetric-based sensor with perfluoroalkyl receptor attached to citrate coated gold nanoparticles (Citrate-Au NPs) that can detect several PFASs including perfluorocarboxylates with different chain lengths (PFHxA, PFOA, PFNA, PFDA), perfluorooctanoic sulfonate (PFOS), and perfluorooctanoic phosphonate (PFOPA). The sensor detects PFASs utilizing fluorous interaction between PFASs and the perfluoroalkyl receptor of Citrate-Au NPs in a solution at a fixed salt concentration, inducing changes in nanoparticle dispersity and the solution color. The rate of spectrum shift was linearly dependent on PFASs concentrations. Citrate-Au NPs with size between 29 – 109 nm were synthesized by adjusting citrate/Au molar ratios, and 78 nm showed the best sensitivity to PFOA concentration (with level of detection of 4.96 µM). Citrate-Au NPs only interacted with PFASs with perfluoroalkyl length &gt; 4 and not with non-fluorinated alkyl compound (nonanoic acid). The performance of Citrate-Au NP based sensor was strongly dependent on the chain length of the perfluoroalkyl group and the head functional group; higher sensitivity was observed with longer chain over shorter chain, and with sulfonate functional group over carboxylate and phosphonate. The sensor was tested using real water samples (i.e., tap water, filtered river water), and it was found that the sensor is capable of detecting PFASs in these conditions if calibrated with the corresponding water matrix. While further optimization is needed, this study demonstrated new capability of Citrate-Au NPs based sensor for detection of PFASs in water.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258991472400029X/pdfft?md5=8ac9eb812d5e44d71307e45861d57dbd&pid=1-s2.0-S258991472400029X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High resolution data visualization and machine learning prediction of free chlorine residual in a green building water system 绿色建筑供水系统中游离氯残留量的高分辨率数据可视化和机器学习预测
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-07-26 DOI: 10.1016/j.wroa.2024.100244

People spend most of their time indoors and are exposed to numerous contaminants in the built environment. Water management plans implemented in buildings are designed to manage the risks of preventable diseases caused by drinking water contaminants such as opportunistic pathogens (e.g., Legionella spp.), metals, and disinfection by-products (DBPs). However, specialized training required to implement water management plans and heterogeneity in building characteristics limit their widespread adoption. Implementation of machine learning and artificial intelligence (ML/AI) models in building water settings presents an opportunity for faster, more widespread use of data-driven water quality management approaches. We demonstrate the utility of Random Forest and Long Short-Term Memory (LSTM) ML models for predicting a key public health parameter, free chlorine residual, as a function of data collected from building water quality sensors (ORP, pH, conductivity, and temperature) as well as WiFi signals as a proxy for building occupancy and water usage in a “green” Leadership in Energy and Environmental Design (LEED) commercial and institutional building. The models successfully predicted free chlorine residual declines below 0.2 ppm, a common minimum reference level for public health protection in drinking water distribution systems. The predictions were valid up to 5 min in advance, and in some cases reasonably accurate up to 24 h in advance, presenting opportunities for proactive water quality management as part of a sense-analyze-decide framework. An online data dashboard for visualizing water quality in the building is presented, with the potential to link these approaches for real-time water quality management.

人们大部分时间都在室内度过,会接触到建筑环境中的大量污染物。在建筑物中实施的水管理计划旨在管理由饮用水污染物(如机会性病原体(如军团菌属)、金属和消毒副产物(DBPs))引起的可预防疾病的风险。 然而,实施水管理计划所需的专业培训和建筑物特征的不一致性限制了其广泛采用。在建筑用水环境中实施机器学习和人工智能(ML/AI)模型为更快、更广泛地使用数据驱动的水质管理方法提供了机会。我们展示了随机森林和长短期记忆(LSTM)ML 模型在预测关键公共卫生参数游离氯余量方面的实用性,游离氯余量是建筑水质传感器(ORP、pH 值、电导率和温度)收集的数据以及 WiFi 信号的函数,WiFi 信号是 "绿色 "能源与环境设计先锋(LEED)商业和机构建筑中建筑占用率和用水量的代理变量。这些模型成功预测了游离氯残留量下降到 0.2 ppm 以下的情况,这是饮用水输配系统中保护公众健康的常用最低参考水平。预测结果在提前 5 分钟内有效,在某些情况下提前 24 小时内也相当准确,这为作为 "感知-分析-决定 "框架一部分的前瞻性水质管理提供了机会。此外,还提供了一个在线数据仪表盘,用于可视化建筑物内的水质,并有可能将这些方法与实时水质管理联系起来。
{"title":"High resolution data visualization and machine learning prediction of free chlorine residual in a green building water system","authors":"","doi":"10.1016/j.wroa.2024.100244","DOIUrl":"10.1016/j.wroa.2024.100244","url":null,"abstract":"<div><p>People spend most of their time indoors and are exposed to numerous contaminants in the built environment. Water management plans implemented in buildings are designed to manage the risks of preventable diseases caused by drinking water contaminants such as opportunistic pathogens (e.g., <em>Legionella</em> spp<em>.</em>), metals, and disinfection by-products (DBPs). However, specialized training required to implement water management plans and heterogeneity in building characteristics limit their widespread adoption. Implementation of machine learning and artificial intelligence (ML/AI) models in building water settings presents an opportunity for faster, more widespread use of data-driven water quality management approaches. We demonstrate the utility of Random Forest and Long Short-Term Memory (LSTM) ML models for predicting a key public health parameter, free chlorine residual, as a function of data collected from building water quality sensors (ORP, pH, conductivity, and temperature) as well as WiFi signals as a proxy for building occupancy and water usage in a “green” Leadership in Energy and Environmental Design (LEED) commercial and institutional building. The models successfully predicted free chlorine residual declines below 0.2 ppm, a common minimum reference level for public health protection in drinking water distribution systems. The predictions were valid up to 5 min in advance, and in some cases reasonably accurate up to 24 h in advance, presenting opportunities for proactive water quality management as part of a sense-analyze-decide framework. An online data dashboard for visualizing water quality in the building is presented, with the potential to link these approaches for real-time water quality management.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000343/pdfft?md5=9bbb00daa0ee30e2833e3440fc3a810e&pid=1-s2.0-S2589914724000343-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A maverick: Environmentally relevant concentrations of nonylphenol attenuate the plasmid-mediated conjugative transfer of antibiotic resistance genes 特立独行:与环境相关浓度的壬基酚会减弱质粒介导的抗生素抗性基因的共轭转移
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-07-26 DOI: 10.1016/j.wroa.2024.100241

Given that many organic pollutants have been reported to facilitate the plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs), it was naturally deduced that nonylphenol (NP) can also have this kind of effect. Whereas, this study demonstrates an entirely different result that environmentally relevant concentrations of NP attenuate plasmid-mediated ARGs conjugative transfer (maximum inhibition rate 64 %), further study show that NP exposure had no significant effect on bacterial growth, cell vitality, oxidative stress response, and expression of conjugation-relevant genes, which were reported to closely relate to the conjugative transfer in numerous studies. Conclusively, it was found that the dispersant function of NP impeded the occurrence of cell mating, thus was responsible for the decline of conjugative transfer. This study shows a new perspective on understanding the effect of organic pollutants like NP on the ARGs horizontal dissemination in environment.

据报道,许多有机污染物都能促进质粒介导的抗生素抗性基因(ARGs)的共轭转移,因此自然推断壬基酚(NP)也能产生这种作用。这项研究得出了完全不同的结果,即环境相关浓度的壬基酚会减弱质粒介导的 ARGs 共轭转移(最大抑制率为 64%),而进一步的研究表明,接触壬基酚对细菌的生长、细胞活力、氧化应激反应和共轭相关基因的表达没有显著影响,而这些在许多研究中都被报道与共轭转移密切相关。研究最终发现,NP 的分散剂功能阻碍了细胞交配的发生,因此是共轭转移下降的原因。这项研究为了解 NP 等有机污染物对 ARGs 在环境中水平传播的影响提供了一个新的视角。
{"title":"A maverick: Environmentally relevant concentrations of nonylphenol attenuate the plasmid-mediated conjugative transfer of antibiotic resistance genes","authors":"","doi":"10.1016/j.wroa.2024.100241","DOIUrl":"10.1016/j.wroa.2024.100241","url":null,"abstract":"<div><p>Given that many organic pollutants have been reported to facilitate the plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs), it was naturally deduced that nonylphenol (NP) can also have this kind of effect. Whereas, this study demonstrates an entirely different result that environmentally relevant concentrations of NP attenuate plasmid-mediated ARGs conjugative transfer (maximum inhibition rate 64 %), further study show that NP exposure had no significant effect on bacterial growth, cell vitality, oxidative stress response, and expression of conjugation-relevant genes, which were reported to closely relate to the conjugative transfer in numerous studies. Conclusively, it was found that the dispersant function of NP impeded the occurrence of cell mating, thus was responsible for the decline of conjugative transfer. This study shows a new perspective on understanding the effect of organic pollutants like NP on the ARGs horizontal dissemination in environment.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000318/pdfft?md5=825587c1d724f818a79ffb6684271469&pid=1-s2.0-S2589914724000318-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon footprint analysis of wastewater treatment processes coupled with sludge in situ reduction 结合污泥原位减量的废水处理工艺的碳足迹分析
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-07-25 DOI: 10.1016/j.wroa.2024.100243

The goal of this study was to assess the impacts or benefits of sludge in situ reduction (SIR) within wastewater treatment processes with relation to global warming potential in wastewater treatment plants, with a comprehensive consideration of wastewater and sludge treatment. The anaerobic side-stream reactor (ASSR) and the sludge process reduction activated sludge (SPRAS), two typical SIR technologies, were used to compare the carbon footprint analysis results with the conventional anaerobic - anoxic - oxic (AAO) process. Compared to the AAO, the ASSR with a typical sludge reduction efficiency (SRE) of 30 % increased greenhouse gas (GHG) emissions by 1.1 - 1.7 %, while the SPRAS with a SRE of 74 % reduced GHG emissions by 12.3 - 17.6 %. Electricity consumption (0.025 - 0.027 kg CO2-eq/m3), CO2 emissions (0.016 - 0.059 kg CO2-eq/m3), and N2O emissions (0.009 - 0.023 kg CO2-eq/m3) for the removal of secondary substrates released from sludge decay in the SIR processes were the major contributor to the increased GHG emissions from the wastewater treatment system. By lowering sludge production and the organic matter content in the sludge, the SIR processes significantly decreased the carbon footprints associated with sludge treatment and disposal. The threshold SREs of the ASSR for GHG reduction were 27.7 % and 34.6 % for the advanced dewatering - sanitary landfill and conventional dewatering - drying-incinerating routes, respectively. Overall, the SPRAS process could be considered as a cost-effective and sustainable low-carbon SIR technology for wastewater treatment.

本研究的目的是评估污泥原位减量(SIR)在废水处理工艺中对废水处理厂全球变暖潜能值的影响或益处,并对废水和污泥处理进行综合考虑。厌氧侧流反应器(ASSR)和污泥工艺减量活性污泥(SPRAS)是两种典型的 SIR 技术,碳足迹分析结果与传统的厌氧-缺氧-缺氧(AAO)工艺进行了比较。与 AAO 相比,典型污泥减量效率(SRE)为 30% 的 ASSR 增加了 1.1 - 1.7% 的温室气体(GHG)排放量,而 SRE 为 74% 的 SPRAS 则减少了 12.3 - 17.6% 的温室气体排放量。SIR 工艺中去除污泥腐烂释放的二次基质所消耗的电力(0.025 - 0.027 kg CO2-eq/m3)、二氧化碳排放量(0.016 - 0.059 kg CO2-eq/m3)和一氧化二氮排放量(0.009 - 0.023 kg CO2-eq/m3)是污水处理系统温室气体排放量增加的主要原因。通过降低污泥产量和污泥中的有机物含量,SIR 工艺显著减少了与污泥处理和处置相关的碳足迹。对于高级脱水-卫生填埋和传统脱水-干燥-焚烧路线,ASSR 的温室气体减排阈值 SRE 分别为 27.7% 和 34.6%。总体而言,SPRAS 工艺可被视为一种成本效益高且可持续的低碳 SIR 废水处理技术。
{"title":"Carbon footprint analysis of wastewater treatment processes coupled with sludge in situ reduction","authors":"","doi":"10.1016/j.wroa.2024.100243","DOIUrl":"10.1016/j.wroa.2024.100243","url":null,"abstract":"<div><p>The goal of this study was to assess the impacts or benefits of sludge in situ reduction (SIR) within wastewater treatment processes with relation to global warming potential in wastewater treatment plants, with a comprehensive consideration of wastewater and sludge treatment. The anaerobic side-stream reactor (ASSR) and the sludge process reduction activated sludge (SPRAS), two typical SIR technologies, were used to compare the carbon footprint analysis results with the conventional anaerobic - anoxic - oxic (AAO) process. Compared to the AAO, the ASSR with a typical sludge reduction efficiency (SRE) of 30 % increased greenhouse gas (GHG) emissions by 1.1 - 1.7 %, while the SPRAS with a SRE of 74 % reduced GHG emissions by 12.3 - 17.6 %. Electricity consumption (0.025 - 0.027 kg CO<sub>2-eq</sub>/m<sup>3</sup>), CO<sub>2</sub> emissions (0.016 - 0.059 kg CO<sub>2-eq</sub>/m<sup>3</sup>), and N<sub>2</sub>O emissions (0.009 - 0.023 kg CO<sub>2-eq</sub>/m<sup>3</sup>) for the removal of secondary substrates released from sludge decay in the SIR processes were the major contributor to the increased GHG emissions from the wastewater treatment system. By lowering sludge production and the organic matter content in the sludge, the SIR processes significantly decreased the carbon footprints associated with sludge treatment and disposal. The threshold SREs of the ASSR for GHG reduction were 27.7 % and 34.6 % for the advanced dewatering - sanitary landfill and conventional dewatering - drying-incinerating routes, respectively. Overall, the SPRAS process could be considered as a cost-effective and sustainable low-carbon SIR technology for wastewater treatment.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000331/pdfft?md5=2de9b0c83b367b3abb143647d9212f29&pid=1-s2.0-S2589914724000331-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadrupling the capacity of post aerobic digestion treating anaerobically digested sludge using a moving-bed biofilm (MBBR) configuration 利用移动床生物膜(MBBR)配置将好氧消化后处理厌氧消化污泥的能力提高四倍
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-07-23 DOI: 10.1016/j.wroa.2024.100240

Wastewater treatment plants produce large amounts of sludge requiring stabilization before safe disposal. Traditional biological stabilization approaches are cost-effective but generally require either an extended retention time (10–40 days), or elevated temperatures (40–80 °C) for effective pathogens inactivation. This study overcomes these limitations via a novel acidic aerobic digestion process, leveraging an acid-tolerant ammonia-oxidizing bacterium (AOB) Candidatus Nitrosoglobus. To retain this novel but slowly growing AOB, we proposed the first-ever application of a classical wastewater configuration—moving bed biofilm reactor (MBBR)—for sludge treatment. The AOB in biofilm maintains acidic pH and high nitrite levels in sludge, generating free nitrous acid in situ to expedite sludge stabilization. This process was tested in two laboratory-scale aerobic digesters processing full-scale anaerobically digested sludge. At an ambient temperature of 20 °C, pathogens were reduced to levels well below the threshold specified for the highest stabilization level (Class A), within a retention time of 3.5 days. A high volatile solids reduction of 27.4 ± 5.2% was achieved. Through drastically accelerating stabilization and enhancing reduction, this process substantially saves capital and operational costs for sludge disposal.

污水处理厂会产生大量污泥,需要在安全处置前对其进行稳定处理。传统的生物稳定化方法具有成本效益,但通常需要较长的停留时间(10-40 天)或较高的温度(40-80 °C)才能有效灭活病原体。本研究利用一种耐酸的氨氧化细菌(AOB)Candidatus Nitrosoglobus,通过新型酸性好氧消化工艺克服了这些限制。为了保留这种新颖但生长缓慢的氨氧化细菌,我们首次提出将经典废水配置--移动床生物膜反应器(MBBR)--应用于污泥处理。生物膜中的 AOB 可保持污泥中酸性 pH 值和高亚硝酸盐水平,在原位产生游离亚硝酸,从而加速污泥稳定。该工艺在两个实验室规模的好氧消化器中进行了测试,处理的是全规模厌氧消化污泥。在 20 °C 的环境温度下,病原体在 3.5 天的停留时间内被减少到远低于最高稳定级别(A 级)规定的阈值。挥发性固体减少率高达 27.4 ± 5.2%。通过大幅加快稳定化和提高减量效果,该工艺大大节省了污泥处置的资本和运营成本。
{"title":"Quadrupling the capacity of post aerobic digestion treating anaerobically digested sludge using a moving-bed biofilm (MBBR) configuration","authors":"","doi":"10.1016/j.wroa.2024.100240","DOIUrl":"10.1016/j.wroa.2024.100240","url":null,"abstract":"<div><p>Wastewater treatment plants produce large amounts of sludge requiring stabilization before safe disposal. Traditional biological stabilization approaches are cost-effective but generally require either an extended retention time (10–40 days), or elevated temperatures (40–80 °C) for effective pathogens inactivation. This study overcomes these limitations via a novel acidic aerobic digestion process, leveraging an acid-tolerant ammonia-oxidizing bacterium (AOB) <em>Candidatus</em> Nitrosoglobus. To retain this novel but slowly growing AOB, we proposed the first-ever application of a classical wastewater configuration—moving bed biofilm reactor (MBBR)—for sludge treatment. The AOB in biofilm maintains acidic pH and high nitrite levels in sludge, generating free nitrous acid in situ to expedite sludge stabilization. This process was tested in two laboratory-scale aerobic digesters processing full-scale anaerobically digested sludge. At an ambient temperature of 20 °C, pathogens were reduced to levels well below the threshold specified for the highest stabilization level (Class A), within a retention time of 3.5 days. A high volatile solids reduction of 27.4 ± 5.2% was achieved. Through drastically accelerating stabilization and enhancing reduction, this process substantially saves capital and operational costs for sludge disposal.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000306/pdfft?md5=40ed91b99cf87da03a8c29e628fdcd57&pid=1-s2.0-S2589914724000306-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unexpectedly high antibacterial ability of water in copper pot with tiny amount of plant leaves 铜盆中的水与极少量植物叶片的抗菌能力出乎意料地高
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-07-16 DOI: 10.1016/j.wroa.2024.100238

Water disinfection by copper vessels has been prevalent over thousands of years. Unfortunately, people are still suffering from the bacterial pollution in drinking water. Here we show that, only through steeping with tiny amounts of common plant leaves, the room-temperature water in copper pots has unexpectedly high antibacterial ability. Remarkably, copper ions released from copper pots into water are in concentrations lower than the WHO safety threshold for drinking water, and have effective antibacterial ability when water contains specific leave components (polyphenols and/or lignin). Our computations show that the key to enhance antibacterial ability is the great increase in the proportion of Cu+ induced by aromatic rings in these leave components, which has been demonstrated by our experiments. The findings may disclose the mystery of copper vessels for water disinfection, and more importantly, provide effective antibacterial applications in industries and daily lives, by safely using copper ions together with biocompatible natural substances.

几千年来,使用铜制器皿对水进行消毒的做法一直盛行。遗憾的是,人们仍然饱受饮用水细菌污染之苦。在这里,我们发现,只需用极少量的普通植物叶子浸泡,铜壶中的常温水就具有意想不到的高抗菌能力。值得注意的是,从铜壶中释放到水中的铜离子浓度低于世界卫生组织规定的饮用水安全阈值,而且当水中含有特定的树叶成分(多酚和/或木质素)时,铜壶也具有有效的抗菌能力。我们的计算表明,增强抗菌能力的关键在于这些树叶成分中的芳香环所诱导的 Cu+ 比例的大幅增加,我们的实验也证明了这一点。这些发现可能揭示了铜器用于水消毒的奥秘,更重要的是,通过安全地使用铜离子和生物相容性天然物质,在工业和日常生活中提供了有效的抗菌应用。
{"title":"Unexpectedly high antibacterial ability of water in copper pot with tiny amount of plant leaves","authors":"","doi":"10.1016/j.wroa.2024.100238","DOIUrl":"10.1016/j.wroa.2024.100238","url":null,"abstract":"<div><p>Water disinfection by copper vessels has been prevalent over thousands of years. Unfortunately, people are still suffering from the bacterial pollution in drinking water. Here we show that, only through steeping with tiny amounts of common plant leaves, the room-temperature water in copper pots has unexpectedly high antibacterial ability. Remarkably, copper ions released from copper pots into water are in concentrations lower than the WHO safety threshold for drinking water, and have effective antibacterial ability when water contains specific leave components (polyphenols and/or lignin). Our computations show that the key to enhance antibacterial ability is the great increase in the proportion of Cu<sup>+</sup> induced by aromatic rings in these leave components, which has been demonstrated by our experiments. The findings may disclose the mystery of copper vessels for water disinfection, and more importantly, provide effective antibacterial applications in industries and daily lives, by safely using copper ions together with biocompatible natural substances.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000288/pdfft?md5=78fdaf6596718360d9424d0a61897d31&pid=1-s2.0-S2589914724000288-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141702863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A positive contribution to nitrogen removal by a novel NOB in a full-scale duck wastewater treatment system 新型 NOB 在全规模养鸭废水处理系统中的积极脱氮作用
IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-07-10 DOI: 10.1016/j.wroa.2024.100237

Nitrite-oxidizing bacteria (NOB) are undesirable in the anaerobic ammonium oxidation (anammox)-driven nitrogen removal technologies in the modern wastewater treatment plants (WWTPs). Diverse strategies have been developed to suppress NOB based on their physiological properties that we have understood. But our knowledge of the diversity and mechanisms employed by NOB for survival in the modern WWTPs remains limited. Here, Three NOB species (NOB01–03) were recovered from the metagenomic datasets of a full-scale WWTP treating duck breeding wastewater. Among them, NOB01 and NOB02 were classified as newly identified lineage VII, tentatively named Candidatus (Ca.) Nitrospira NOB01 and Ca. Nitrospira NOB02. Analyses of genomes and in situ transcriptomes revealed that these two novel NOB were active and showed a high metabolic versatility. The transcriptional activity of Ca. Nitrospira could be detected in all tanks with quite different dissolved oxygen (DO) (0.01–5.01 mg/L), illustrating Ca. Nitrospira can survive in fluctuating DO conditions. The much lower Ca. Nitrospira abundance on the anammox bacteria-enriched sponge carrier likely originated from the intensification substrate (NO2) competition from anammox and denitrifying bacteria. In particular, a highlight is that Ca. Nitrospira encoded and treanscribed cyanate hydratase (CynS), amine oxidase, urease (UreC), and copper-containing nitrite reductase (NirK) related to ammonium and NO production, driving NOB to interact with the co-existed AOB and anammox bacteria. Ca. Nitrospira strains NOB01 and NOB02 showed quite different niche preference in the same aerobic tank, which dominanted the NOB communities in activated sludge and biofilm, respectively. In addition to the common rTCA cycle for CO2 fixation, a reductive glycine pathway (RGP) was encoded and transcribed by NOB02 likely for CO2 fixation purpose. Additionally, a 3b group hydrogenase and respiratory nitrate reductase were uniquely encoded and transcribed by NOB02, which likely confer a survival advantage to this strain in the fluctuant activated sludge niche. The discovery of this new genus significantly broadens our understanding of the ecophysiology of NOB. Furthermore, the impressive metabolic versatility of the novel NOB revealed in this study advances our understanding of the survival strategy of NOB and provides valuable insight for suppressing NOB in the anammox-based WWTP.

亚硝酸盐氧化细菌(NOB)是现代污水处理厂(WWTPs)中厌氧氨氧化(anammox)驱动的脱氮技术中不受欢迎的细菌。根据我们所了解的 NOB 的生理特性,已经开发出了多种抑制 NOB 的策略。但是,我们对 NOB 在现代污水处理厂中生存的多样性和机制的了解仍然有限。本文从处理养鸭废水的大型污水处理厂的元基因组数据集中回收了三个 NOB 物种(NOB01-03)。其中,NOB01 和 NOB02 被归类为新发现的菌系 VII,暂命名为 Candidatus (Ca.) Nitrospira NOB01 和 Ca.Nitrospira NOB02。对基因组和原位转录组的分析表明,这两种新型 NOB 具有很强的活性和代谢多功能性。Ca.在溶解氧(DO)差异很大(0.01-5.01 mg/L)的所有水槽中都能检测到硝化钙梭菌的转录活性,这说明硝化钙梭菌能在变化不定的环境中生存。硝化螺菌可以在溶解氧波动的条件下生存。硝化纤维藻的丰度要低得多。在富含厌氧菌的海绵载体上,亚硝酸钙螺旋体的丰度要低得多,这可能是由于厌氧菌和反硝化细菌的底物(NO2-)竞争加剧所致。特别值得注意的是,Ca.Nitrospira 编码和treanscribed了与氨和氮氧化物产生有关的氰酸酯水解酶(CynS)、胺氧化酶、脲酶(UreC)和含铜亚硝酸盐还原酶(NirK),促使 NOB 与共存的 AOB 和 anammox 细菌相互作用。Ca.硝螺菌株 NOB01 和 NOB02 在同一好氧池中表现出截然不同的生态位偏好,它们分别主导了活性污泥和生物膜中的 NOB 群落。除了用于固定二氧化碳的常见 rTCA 循环外,NOB02 还编码和转录了一种还原性甘氨酸途径(RGP),可能用于固定二氧化碳。此外,NOB02 还编码和转录了一种 3b 组氢化酶和呼吸性硝酸还原酶,这可能会使该菌株在波动的活性污泥生态位中具有生存优势。这一新属的发现极大地拓宽了我们对 NOB 生态生理学的了解。此外,本研究揭示的新型 NOB 令人印象深刻的新陈代谢多功能性也增进了我们对 NOB 生存策略的了解,并为在基于厌氧反应的污水处理厂中抑制 NOB 提供了宝贵的见解。
{"title":"A positive contribution to nitrogen removal by a novel NOB in a full-scale duck wastewater treatment system","authors":"","doi":"10.1016/j.wroa.2024.100237","DOIUrl":"10.1016/j.wroa.2024.100237","url":null,"abstract":"<div><p>Nitrite-oxidizing bacteria (NOB) are undesirable in the anaerobic ammonium oxidation (anammox)-driven nitrogen removal technologies in the modern wastewater treatment plants (WWTPs). Diverse strategies have been developed to suppress NOB based on their physiological properties that we have understood. But our knowledge of the diversity and mechanisms employed by NOB for survival in the modern WWTPs remains limited. Here, Three NOB species (NOB01–03) were recovered from the metagenomic datasets of a full-scale WWTP treating duck breeding wastewater. Among them, NOB01 and NOB02 were classified as newly identified lineage VII, tentatively named <em>Candidatus</em> (<em>Ca.</em>) Nitrospira NOB01 and <em>Ca.</em> Nitrospira NOB02. Analyses of genomes and in situ transcriptomes revealed that these two novel NOB were active and showed a high metabolic versatility. The transcriptional activity of <em>Ca.</em> Nitrospira could be detected in all tanks with quite different dissolved oxygen (DO) (0.01–5.01 mg/L), illustrating <em>Ca.</em> Nitrospira can survive in fluctuating DO conditions. The much lower <em>Ca.</em> Nitrospira abundance on the anammox bacteria-enriched sponge carrier likely originated from the intensification substrate (NO<sub>2</sub><sup>−</sup>) competition from anammox and denitrifying bacteria. In particular, a highlight is that <em>Ca.</em> Nitrospira encoded and treanscribed cyanate hydratase (CynS), amine oxidase, urease (UreC), and copper-containing nitrite reductase (NirK) related to ammonium and NO production, driving NOB to interact with the co-existed AOB and anammox bacteria. <em>Ca.</em> Nitrospira strains NOB01 and NOB02 showed quite different niche preference in the same aerobic tank, which dominanted the NOB communities in activated sludge and biofilm, respectively. In addition to the common rTCA cycle for CO<sub>2</sub> fixation, a reductive glycine pathway (RGP) was encoded and transcribed by NOB02 likely for CO<sub>2</sub> fixation purpose. Additionally, a 3b group hydrogenase and respiratory nitrate reductase were uniquely encoded and transcribed by NOB02, which likely confer a survival advantage to this strain in the fluctuant activated sludge niche. The discovery of this new genus significantly broadens our understanding of the ecophysiology of NOB. Furthermore, the impressive metabolic versatility of the novel NOB revealed in this study advances our understanding of the survival strategy of NOB and provides valuable insight for suppressing NOB in the anammox-based WWTP.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000276/pdfft?md5=04648454e6f8c75310c750db6732638e&pid=1-s2.0-S2589914724000276-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141706652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Water Research X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1