首页 > 最新文献

Fungal Biology and Biotechnology最新文献

英文 中文
Streptomyces small laccase expressed in Aspergillus Niger as a new addition for the lignocellulose bioconversion toolbox. 在尼日尔黑曲霉中表达的链霉菌小漆酶是木质纤维素生物转化工具箱中的新成员。
Q1 Agricultural and Biological Sciences Pub Date : 2024-09-02 DOI: 10.1186/s40694-024-00181-6
Andika Sidar, Gerben P Voshol, Ahmed El-Masoudi, Erik Vijgenboom, Peter J Punt

Laccases are multi-copper oxidases that are usually composed of three Cu-oxidase domains. Domains one and three house the copper binding sites, and the second domain is involved in forming a substrate-binding cleft. However, Streptomyces species are found to have small laccases (SLAC) that lack one of the three Cu-oxidase domains. This type of SLAC with interesting lignocellulose bioconversion activities has not been reported in Aspergillus niger. In our research, we explored the expression and engineering of the SLAC from Streptomyces leeuwenhoekii C34 in A. niger. Genes encoding two versions of the SLAC were expressed. One encoding the SLAC in its native form and a second encoding the SLAC fused to two N-terminal CBM1 domains. The latter is a configuration also known for specific yeast laccases. Both SLAC variants were functionally expressed in A. niger as shown by in vitro activity assays and proteome analysis. Laccase activity was also analyzed toward bioconversion of lignocellulosic rice straw. From this analysis it was clear that the SLAC activity improved the efficiency of saccharification of lignocellulosic biomass by cellulase enzyme cocktails.

Laccase 是一种多铜氧化酶,通常由三个铜氧化酶结构域组成。第一和第三结构域是铜结合位点,第二结构域参与形成底物结合裂隙。然而,人们发现链霉菌中有一些小型氧化酶(SLAC)缺少三个铜氧化酶结构域中的一个。这种具有有趣的木质纤维素生物转化活性的 SLAC 在黑曲霉中尚未见报道。在我们的研究中,我们探索了黑曲霉中来自 Leeuwenhoekii C34 链霉菌的 SLAC 的表达和工程设计。我们表达了编码两种版本 SLAC 的基因。一个编码原生形式的 SLAC,另一个编码与两个 N 端 CBM1 结构域融合的 SLAC。后者也是已知的特定酵母漆酶的结构。体外活性测定和蛋白质组分析表明,这两种 SLAC 变体都能在黑曲霉中正常表达。此外,还对生物转化木质纤维素稻草的漆酶活性进行了分析。分析结果表明,SLAC 活性提高了纤维素酶鸡尾酒对木质纤维素生物质的糖化效率。
{"title":"Streptomyces small laccase expressed in Aspergillus Niger as a new addition for the lignocellulose bioconversion toolbox.","authors":"Andika Sidar, Gerben P Voshol, Ahmed El-Masoudi, Erik Vijgenboom, Peter J Punt","doi":"10.1186/s40694-024-00181-6","DOIUrl":"10.1186/s40694-024-00181-6","url":null,"abstract":"<p><p>Laccases are multi-copper oxidases that are usually composed of three Cu-oxidase domains. Domains one and three house the copper binding sites, and the second domain is involved in forming a substrate-binding cleft. However, Streptomyces species are found to have small laccases (SLAC) that lack one of the three Cu-oxidase domains. This type of SLAC with interesting lignocellulose bioconversion activities has not been reported in Aspergillus niger. In our research, we explored the expression and engineering of the SLAC from Streptomyces leeuwenhoekii C34 in A. niger. Genes encoding two versions of the SLAC were expressed. One encoding the SLAC in its native form and a second encoding the SLAC fused to two N-terminal CBM1 domains. The latter is a configuration also known for specific yeast laccases. Both SLAC variants were functionally expressed in A. niger as shown by in vitro activity assays and proteome analysis. Laccase activity was also analyzed toward bioconversion of lignocellulosic rice straw. From this analysis it was clear that the SLAC activity improved the efficiency of saccharification of lignocellulosic biomass by cellulase enzyme cocktails.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Border crossings and connections. 过境和连接。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-22 DOI: 10.1186/s40694-024-00182-5
Martin Weinhold

From 30 September 2023 to 7 January 2024, the Nobel Prize Museum in Stockholm presented the show Fungi-In Art and Science. For the exhibition, an alliance of scientists, artists, and designers was brought together that overcame all the alleged borders between the disciplines, between the scientific and the creative world. This special exhibition is the starting point to take on a tour where it is about crossing borders and growing connections when working with fungi. My interview partners represent perfectly the different angles from which you can take a look onto the kingdom of fungi. There is the person without previous knowledge but with a profound artistic understanding who got mesmerized by the subject-matter, which he didn't realize it existed before-Karl-Johan Cottman. There is the scientist, being knee-deep in fungi matter who discovered the arts for an extension of her scientific understanding-Vera Meyer. And last but not least there is the person living passionately for the arts who found fungi mesmerizing for both art creation and progressive/sustainable production-Phil Ross. So, there are three threads weaving one fungal fabric. Have fun reading it!

2023 年 9 月 30 日至 2024 年 1 月 7 日,斯德哥尔摩诺贝尔奖博物馆举办了 "真 菌--艺术与科学 "展览。在这次展览中,科学家、艺术家和设计师组成了一个联盟,克服了各学科之间、科学界和创意界之间所有所谓的界限。这次特别展览是我们参观的起点,在这里,我们可以跨越边界,与真菌建立联系。我的采访对象完美地诠释了真菌王国的不同角度。卡尔-约翰-科特曼(Karl-Johan Cottman)是一个没有任何知识但对艺术有着深刻理解的人,他被这个主题深深吸引,而他之前并没有意识到它的存在。还有一位在真菌领域深耕多年的科学家,她发现艺术是她对科学理解的延伸--薇拉-梅耶尔(Vera Meyer)。最后一位是对艺术充满热情的人--菲尔-罗斯,他发现真菌在艺术创作和进步/可持续生产方面都令人着迷。因此,三条线索编织成了一块真菌织物。祝您阅读愉快!
{"title":"Border crossings and connections.","authors":"Martin Weinhold","doi":"10.1186/s40694-024-00182-5","DOIUrl":"10.1186/s40694-024-00182-5","url":null,"abstract":"<p><p>From 30 September 2023 to 7 January 2024, the Nobel Prize Museum in Stockholm presented the show Fungi-In Art and Science. For the exhibition, an alliance of scientists, artists, and designers was brought together that overcame all the alleged borders between the disciplines, between the scientific and the creative world. This special exhibition is the starting point to take on a tour where it is about crossing borders and growing connections when working with fungi. My interview partners represent perfectly the different angles from which you can take a look onto the kingdom of fungi. There is the person without previous knowledge but with a profound artistic understanding who got mesmerized by the subject-matter, which he didn't realize it existed before-Karl-Johan Cottman. There is the scientist, being knee-deep in fungi matter who discovered the arts for an extension of her scientific understanding-Vera Meyer. And last but not least there is the person living passionately for the arts who found fungi mesmerizing for both art creation and progressive/sustainable production-Phil Ross. So, there are three threads weaving one fungal fabric. Have fun reading it!</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation. 基于真菌菌丝体的材料专利状况分析:关于如何解读当前专利状况的指导报告。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-10 DOI: 10.1186/s40694-024-00177-2
Vera Meyer, Sabine Mengel

Background: Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last.

Results: This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field.

Conclusion: Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.

背景:真菌生物技术和材料科学这两个科学学科之间的合作近来取得了进展,这凸显了真菌菌丝体作为可持续生物材料的可再生资源的潜力,可在不同行业加以利用。由于真菌菌丝体可以通过生物技术从不同的丝状真菌中获得,而且是一种用途非常广泛的材料,因此相关的研究和商业应用应当蓬勃发展。然而,真菌菌丝体材料领域的一些已授权专利却给社会带来了不确定性,即哪些主题受专利保护,保护期预计有多长:因此,本意见书描绘了以真菌菌丝体为基础的材料的专利状况,并特别关注建筑施工、绝缘、包装等技术应用领域。我们概述了已授权专利(73 项)和与已授权专利相关的待决申请(34 项)、主要专利组合(5 个,每个所有者的专利和/或申请数量在 6 至 44 项之间)、专利所有者,并强调了为保护发明而制定的关键权利要求。此外,我们还概述了增加该领域活动的各种方案:该领域的专利发展给人留下的印象是,尽管真菌材料作为可再生和可生物降解的材料具有巨大潜力,但由于专利保护过度而受到阻碍。考虑到需要用可再生生物材料取代目前的石油基材料,可能需要协调努力,加强该领域的工作。
{"title":"Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation.","authors":"Vera Meyer, Sabine Mengel","doi":"10.1186/s40694-024-00177-2","DOIUrl":"10.1186/s40694-024-00177-2","url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last.</p><p><strong>Results: </strong>This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field.</p><p><strong>Conclusion: </strong>Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger. 在黑曲霉基因组整合过程中,NHEJ 和 HDR 可同时发生。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-05 DOI: 10.1186/s40694-024-00180-7
Susanne Fritsche, Aline Reinfurt, Felix Fronek, Matthias G Steiger

Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.

非同源末端连接(NHEJ)和同源定向修复(HDR)是丝状真菌修复 DNA 损伤的两种机制。NHEJ 是快速连接 DNA 双链断裂的主要反应途径,但往往会导致插入或缺失。另一方面,HDR 更为精确,它利用同源 DNA 模板来恢复受损序列。在本研究中,我们评估了基于 HDR 的基因整合系统的效率,该系统是为黑曲霉 pyrG 基因座设计的。在基因整合率达到 91.4% 的同时,我们还发现了一种混合型修复(MTR)机制,即通过 NHEJ 和 HDR 同时修复 Cas9 介导的双链断裂。在 20.3% 的分析转化子中,供体 DNA 在双链断裂的 3' 端通过 NHEJ 进行整合,在 5' 端通过 HDR 进行整合。总之,这些结果证明了基因组整合系统和新型 DNA 修复类型的适用性,并对丝状真菌遗传修饰的多样性产生了影响。
{"title":"NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger.","authors":"Susanne Fritsche, Aline Reinfurt, Felix Fronek, Matthias G Steiger","doi":"10.1186/s40694-024-00180-7","DOIUrl":"10.1186/s40694-024-00180-7","url":null,"abstract":"<p><p>Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste. 利用真菌水凝胶的干凝胶纺丝技术,从食物垃圾中开发可再生纱线。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-02 DOI: 10.1186/s40694-024-00178-1
Alice Lindh, E R Kanishka B Wijayarathna, Göksu Cinar Ciftci, Samira Syed, Tariq Bashir, Nawar Kadi, Akram Zamani

Background: Renewable materials made using environmentally friendly processes are in high demand as a solution to reduce the pollution created by the fashion industry. In recent years, there has been a growing trend in research on renewable materials focused on bio-based materials derived from fungi.

Results: Recently, fungal cell wall material of a chitosan producing fungus has been wet spun to monofilaments. This paper presents a modification for the fungal monofilament spinning process, by the development of a benign method, dry gel spinning, to produce continuous monofilaments and twisted multifilament yarns, from fungal cell wall, that can be used in textile applications. The fungal biomass of Rhizopus delemar, grown using bread waste as a substrate, was subjected to alkali treatment with a dilute sodium hydroxide solution to isolate alkali-insoluble material (AIM), which mainly consists of the fungal cell wall. The treatment of AIM with dilute lactic acid resulted in hydrogel formation. The morphology of the hydrogels was pH dependent, and they exhibited shear thinning viscoelastic behavior. Dry gel spinning of the fungal hydrogels was first conducted using a simple lab-scale syringe pump to inject the hydrogels through a needle to form a monofilament, which was directly placed on a rotating receiver and left to dry at room temperature. The resulting monofilament was used to make twisted multifilament yarns. The process was then improved by incorporating a heated chamber for the quicker drying of the monofilaments (at 30⁰C). Finally, the spinning process was scaled up using a twin-screw microcompounder instead of the syringe pump. The monofilaments were several meters long and reached a tensile strength of 63 MPa with a % elongation at break of 14. When spinning was performed in the heated chamber, the tensile strength increased to 80 MPa and further increased to 103 MPa when a micro-compounder was used for spinning.

Conclusion: The developed dry gel spinning method shows promising results in scalability and demonstrates the potential for renewable material production using fungi. This novel approach produces materials with mechanical properties comparable to those of conventional textile fibers.

背景:采用环保工艺生产的可再生材料作为减少时装业污染的一种解决方案,受到了广泛的关注。近年来,有关可再生材料的研究呈上升趋势,重点研究从真菌中提取的生物基材料:最近,一种生产壳聚糖的真菌细胞壁材料被湿法纺成单丝。本文对真菌单丝纺丝工艺进行了改进,开发了一种良性方法--干凝胶纺丝法,利用真菌细胞壁生产连续单丝和加捻多丝纱线,可用于纺织品应用。以面包废料为基质培养的根瘤菌(Rhizopus delemar)的真菌生物质经过稀氢氧化钠溶液的碱处理,分离出碱不溶物(AIM),其中主要包括真菌细胞壁。用稀乳酸处理 AIM 后形成水凝胶。水凝胶的形态与 pH 值有关,并表现出剪切稀化粘弹性行为。真菌水凝胶的干凝胶纺丝首先使用一个简单的实验室规模注射泵,通过针头注入水凝胶形成单丝,然后直接将其放在旋转接收器上,在室温下静置干燥。得到的单丝可用于制造加捻多丝纱线。随后,为了加快单丝的干燥速度(30⁰C),该工艺又进行了改进,加入了一个加热室。最后,使用双螺杆微成型机取代注射泵,扩大了纺丝工艺的规模。单丝长达数米,拉伸强度达到 63 兆帕,断裂伸长率为 14%。在加热室中纺丝时,拉伸强度增加到 80 兆帕,使用微型压片机纺丝时,拉伸强度进一步增加到 103 兆帕:结论:所开发的干凝胶纺丝方法在可扩展性方面显示出良好的效果,并证明了利用真菌生产可再生材料的潜力。这种新方法生产出的材料具有与传统纺织纤维相当的机械性能。
{"title":"Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste.","authors":"Alice Lindh, E R Kanishka B Wijayarathna, Göksu Cinar Ciftci, Samira Syed, Tariq Bashir, Nawar Kadi, Akram Zamani","doi":"10.1186/s40694-024-00178-1","DOIUrl":"10.1186/s40694-024-00178-1","url":null,"abstract":"<p><strong>Background: </strong>Renewable materials made using environmentally friendly processes are in high demand as a solution to reduce the pollution created by the fashion industry. In recent years, there has been a growing trend in research on renewable materials focused on bio-based materials derived from fungi.</p><p><strong>Results: </strong>Recently, fungal cell wall material of a chitosan producing fungus has been wet spun to monofilaments. This paper presents a modification for the fungal monofilament spinning process, by the development of a benign method, dry gel spinning, to produce continuous monofilaments and twisted multifilament yarns, from fungal cell wall, that can be used in textile applications. The fungal biomass of Rhizopus delemar, grown using bread waste as a substrate, was subjected to alkali treatment with a dilute sodium hydroxide solution to isolate alkali-insoluble material (AIM), which mainly consists of the fungal cell wall. The treatment of AIM with dilute lactic acid resulted in hydrogel formation. The morphology of the hydrogels was pH dependent, and they exhibited shear thinning viscoelastic behavior. Dry gel spinning of the fungal hydrogels was first conducted using a simple lab-scale syringe pump to inject the hydrogels through a needle to form a monofilament, which was directly placed on a rotating receiver and left to dry at room temperature. The resulting monofilament was used to make twisted multifilament yarns. The process was then improved by incorporating a heated chamber for the quicker drying of the monofilaments (at 30⁰C). Finally, the spinning process was scaled up using a twin-screw microcompounder instead of the syringe pump. The monofilaments were several meters long and reached a tensile strength of 63 MPa with a % elongation at break of 14. When spinning was performed in the heated chamber, the tensile strength increased to 80 MPa and further increased to 103 MPa when a micro-compounder was used for spinning.</p><p><strong>Conclusion: </strong>The developed dry gel spinning method shows promising results in scalability and demonstrates the potential for renewable material production using fungi. This novel approach produces materials with mechanical properties comparable to those of conventional textile fibers.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum. 提高 CRISPR/Cas9 介导的柑橘采后病原体数字青霉基因组编辑的效率。
Q1 Agricultural and Biological Sciences Pub Date : 2024-07-13 DOI: 10.1186/s40694-024-00179-0
Carolina Ropero-Pérez, Jose F Marcos, Paloma Manzanares, Sandra Garrigues

Background: Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate its practical use.

Results: Increasing the culture time by performing additional culture streaks under selection conditions in a medium that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54-83%. To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no visually associated phenotype and were targeted to confirm the high efficiency of the protocol.

Conclusion: Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via CRISPR/Cas9 is still low.

背景:数字青霉(Penicillium digitatum)是一种植物真菌病原体,会导致采收的柑橘类水果发生绿霉病。由于其经济意义,许多人致力于开发针对这种真菌的基因工程工具。此前,CRISPR/Cas9 技术已通过基于 AMA1 的自我复制质粒实现了无标记基因编辑,但由此产生的效率(10%)限制了其实际应用。在本研究中,我们旨在提高 CRISPR/Cas9 介导的基因编辑在 P. digitatum 中的效率,以促进其实际应用:结果:在促进生长速度较慢的培养基中,通过在选择条件下进行额外的培养,延长培养时间,显著提高了地衣芽孢杆菌的基因编辑效率,最高可达 54-83%。为了证明这一点,我们破坏了五个候选基因,这些基因是根据我们之前的高通量基因表达研究选出的,目的是阐明地肤蝇对抗真菌蛋白 PdAfpB 的转录组反应。其中两个基因会导致视觉表型变化(PDIG_53730/pksP 和 PDIG_54100/arp2),因此可以开始优化方案。其他三个候选基因(PDIG_56860、PDIG_33760/rodA 和 PDIG_68680/dfg5)没有与视觉相关的表型,因此被作为目标基因,以确认该方案的高效性:通过修改选择方法,P. digitatum 的基因组编辑效率从 10% 显著提高到 83%,这证明了 CRISPR/Cas9 系统在这种植物病原真菌中进行基因破坏的可行性。此外,本研究中描述的方法可能有助于提高其他经济相关真菌物种的 CRISPR/Cas9 基因编辑效率,因为通过 CRISPR/Cas9 进行编辑的效率仍然很低。
{"title":"Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum.","authors":"Carolina Ropero-Pérez, Jose F Marcos, Paloma Manzanares, Sandra Garrigues","doi":"10.1186/s40694-024-00179-0","DOIUrl":"10.1186/s40694-024-00179-0","url":null,"abstract":"<p><strong>Background: </strong>Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate its practical use.</p><p><strong>Results: </strong>Increasing the culture time by performing additional culture streaks under selection conditions in a medium that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54-83%. To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no visually associated phenotype and were targeted to confirm the high efficiency of the protocol.</p><p><strong>Conclusion: </strong>Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via CRISPR/Cas9 is still low.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. 关于药用蘑菇台湾樟芝、猪蹄菇和林芝的栽培、生物活性化合物、健康促进因素和临床试验的综述。
Q1 Agricultural and Biological Sciences Pub Date : 2024-07-10 DOI: 10.1186/s40694-024-00176-3
Phoebe Yon Ern Tee, Thiiben Krishnan, Xin Tian Cheong, Snechaa A P Maniam, Chung Yeng Looi, Yin Yin Ooi, Caroline Lin Lin Chua, Shin-Yee Fung, Adeline Yoke Yin Chia

Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.

几个世纪以来,在中国和许多东亚国家,药用蘑菇,如樟芝、猪苓和林芝,一直被用于传统医药的治疗目的和促进整体健康。现代药理学研究表明,这些药用蘑菇中含有大量生物活性成分(如多糖、三萜类化合物和酚类化合物)及其潜在的治疗特性。由于对促进健康的药用蘑菇的需求不断增加,人们探索了各种栽培方法,以应对过度采收真菌的问题。各种研究提供了药用真菌强大药理特性的证据,包括其抗癌、降血糖、降血脂、抗氧化和抗病毒活性。在这篇综述中,探讨了樟芝、I. obliquus 和 T. linteus 的栽培方法、可用的生物活性成分、治疗特性和潜在用途。
{"title":"A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus.","authors":"Phoebe Yon Ern Tee, Thiiben Krishnan, Xin Tian Cheong, Snechaa A P Maniam, Chung Yeng Looi, Yin Yin Ooi, Caroline Lin Lin Chua, Shin-Yee Fung, Adeline Yoke Yin Chia","doi":"10.1186/s40694-024-00176-3","DOIUrl":"10.1186/s40694-024-00176-3","url":null,"abstract":"<p><p>Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic deletions in Aureobasidium pullulans by an AMA1 plasmid for gRNA and CRISPR/Cas9 expression. 利用 AMA1 质粒在 Aureobasidium pullulans 中进行基因组缺失,以实现 gRNA 和 CRISPR/Cas9 表达。
Q1 Agricultural and Biological Sciences Pub Date : 2024-06-01 DOI: 10.1186/s40694-024-00175-4
Audrey Masi, Klara Wögerbauer, Robert L Mach, Astrid R Mach-Aigner

Background: Aureobasidium pullulans is a generalist polyextremotolerant black yeast fungus. It tolerates temperatures below 0 °C or salt concentrations up to 18%, among other stresses. A. pullulans genome sequencing revealed a high potential for producing bioactive metabolites. Only few molecular tools exist to edit the genome of A. pullulans, hence it is important to make full use of its potential. Two CRISPR/Cas9 methods have been proposed for the protoplast-based transformation of A. pullulans. These methods require the integration of a marker gene into the locus of the gene to be deleted, when the deletion of this gene does not yield a selectable phenotype. We present the adaptation of a plasmid-based CRISPR/Cas9 system developed in Aspergillus niger for A. pullulans to create deletion strains.

Results: The A. niger CRISPR/Cas9 plasmid led to efficient genomic deletions in A. pullulans. In this study, strains with deletions ranging from 30 to 862 bp were obtained by using an AMA1 plasmid-based genome editing strategy.

Conclusion: The CRISPR/Cas9 transformation system presented in this study provides new opportunities for strain engineering of A. pullulans. This system allows expression of Cas9 and antibiotic resistance while being easy to adapt. This strategy could open the path to intensive genomic engineering in A. pullulans.

背景:Aureobasidium pullulans 是一种多极端耐受性黑酵母菌。除其他胁迫外,它还能耐受低于 0 °C 的温度或高达 18% 的盐浓度。A. pullulans 基因组测序显示,它具有产生生物活性代谢物的巨大潜力。目前只有少数分子工具可以编辑 A. pullulans 的基因组,因此充分利用其潜力非常重要。目前已提出两种 CRISPR/Cas9 方法,用于基于原生质体转化 A. pullulans。这些方法需要将标记基因整合到要删除基因的位点上,而该基因的删除不会产生可选择的表型。我们介绍了在黑曲霉中开发的基于质粒的 CRISPR/Cas9 系统对拉氏曲霉的改造,以创建缺失菌株:结果:黑曲霉 CRISPR/Cas9 质粒在拉氏曲霉中实现了高效的基因组缺失。在这项研究中,通过使用基于 AMA1 质粒的基因组编辑策略,获得了缺失范围从 30 到 862 bp 的菌株:本研究提出的 CRISPR/Cas9 转化系统为 A. pullulans 的菌株工程提供了新的机遇。该系统允许表达 Cas9 和抗生素,同时易于改造。该策略可为 A. pullulans 的强化基因组工程开辟道路。
{"title":"Genomic deletions in Aureobasidium pullulans by an AMA1 plasmid for gRNA and CRISPR/Cas9 expression.","authors":"Audrey Masi, Klara Wögerbauer, Robert L Mach, Astrid R Mach-Aigner","doi":"10.1186/s40694-024-00175-4","DOIUrl":"10.1186/s40694-024-00175-4","url":null,"abstract":"<p><strong>Background: </strong>Aureobasidium pullulans is a generalist polyextremotolerant black yeast fungus. It tolerates temperatures below 0 °C or salt concentrations up to 18%, among other stresses. A. pullulans genome sequencing revealed a high potential for producing bioactive metabolites. Only few molecular tools exist to edit the genome of A. pullulans, hence it is important to make full use of its potential. Two CRISPR/Cas9 methods have been proposed for the protoplast-based transformation of A. pullulans. These methods require the integration of a marker gene into the locus of the gene to be deleted, when the deletion of this gene does not yield a selectable phenotype. We present the adaptation of a plasmid-based CRISPR/Cas9 system developed in Aspergillus niger for A. pullulans to create deletion strains.</p><p><strong>Results: </strong>The A. niger CRISPR/Cas9 plasmid led to efficient genomic deletions in A. pullulans. In this study, strains with deletions ranging from 30 to 862 bp were obtained by using an AMA1 plasmid-based genome editing strategy.</p><p><strong>Conclusion: </strong>The CRISPR/Cas9 transformation system presented in this study provides new opportunities for strain engineering of A. pullulans. This system allows expression of Cas9 and antibiotic resistance while being easy to adapt. This strategy could open the path to intensive genomic engineering in A. pullulans.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans. 通过改进表达和纯化方案,实现了白念珠菌抗真菌靶标 Mnt1 的结构表征。
Q1 Agricultural and Biological Sciences Pub Date : 2024-05-07 DOI: 10.1186/s40694-024-00174-5
Patrícia Alves Silva, Amanda Araújo Souza, Gideane Mendes de Oliveira, Marcelo Henrique Soller Ramada, Nahúm Valente Hernández, Héctor Manuel Mora-Montes, Renata Vieira Bueno, Diogo Martins-de-Sa, Sonia Maria de Freitas, Maria Sueli Soares Felipe, João Alexandre Ribeiro Gonçalves Barbosa

Background: Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking.

Results: We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and β-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports.

Conclusions: The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.

背景:白色念珠菌是世界上最常见的真菌之一。Mnt1 是一种甘露基转移酶,参与白念珠菌的细胞壁生物生成和生物膜生长。细胞壁在致病过程中发挥关键作用,而生物膜的生长则与细胞外基质对药物的封存有关。因此,以 CaMnt1 为靶点的抗真菌药物会影响真菌的发育,并有可能使念珠菌对药物治疗产生敏感性。尽管CaMnt1非常重要,但它尚未被高标准纯化,也缺乏其生物物理特性:结果:我们描述了一种利用甲醇诱导在 Komagataella phaffii 中获得高产率重组 CaMnt1 的新方案。通过 MALDI-TOF/TOF 质谱确认了纯化蛋白的身份。远紫外圆二色性光谱(CD)表明,在 pH 值为 7.0 时,CaMnt1 的二级结构符合由 α-螺旋和 β-片形成的蛋白质。荧光光谱结果表明,CaMnt1 的三级结构与 pH 值有关,在 pH 值为 7.0 时,荧光发射强度更大。利用我们的分子建模方案,我们首次描绘了 CaMnt1 与其两种底物结合的三元复合物,从而确定了参与底物特异性和催化反应的残基。我们的结果证实了 Tyr209 在受体糖的亲核攻击过程中稳定形成类似氧羰基离子的中间体的假设,这与其他报道提出的双重位移机制相反:本文介绍的方法可大幅提高在瓶生酵母中表达的重组 CaMnt1 的产量。此外,真菌甘露糖基转移酶的结构特征也为开发新的抗真菌药物提供了新思路。
{"title":"An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans.","authors":"Patrícia Alves Silva, Amanda Araújo Souza, Gideane Mendes de Oliveira, Marcelo Henrique Soller Ramada, Nahúm Valente Hernández, Héctor Manuel Mora-Montes, Renata Vieira Bueno, Diogo Martins-de-Sa, Sonia Maria de Freitas, Maria Sueli Soares Felipe, João Alexandre Ribeiro Gonçalves Barbosa","doi":"10.1186/s40694-024-00174-5","DOIUrl":"10.1186/s40694-024-00174-5","url":null,"abstract":"<p><strong>Background: </strong>Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking.</p><p><strong>Results: </strong>We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and β-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports.</p><p><strong>Conclusions: </strong>The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic regulation of L-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis. 墨西哥茜草菌 L-色氨酸代谢的遗传调控支持茜草素的生物合成。
Q1 Agricultural and Biological Sciences Pub Date : 2024-04-25 DOI: 10.1186/s40694-024-00173-6
P. Seibold, Sebastian Dörner, Janis Fricke, T. Schäfer, Christine Beemelmanns, Dirk Hoffmeister
{"title":"Genetic regulation of L-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis.","authors":"P. Seibold, Sebastian Dörner, Janis Fricke, T. Schäfer, Christine Beemelmanns, Dirk Hoffmeister","doi":"10.1186/s40694-024-00173-6","DOIUrl":"https://doi.org/10.1186/s40694-024-00173-6","url":null,"abstract":"","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"2 7","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fungal Biology and Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1