首页 > 最新文献

Fungal Biology and Biotechnology最新文献

英文 中文
Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation. 基于真菌菌丝体的材料专利状况分析:关于如何解读当前专利状况的指导报告。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-10 DOI: 10.1186/s40694-024-00177-2
Vera Meyer, Sabine Mengel

Background: Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last.

Results: This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field.

Conclusion: Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.

背景:真菌生物技术和材料科学这两个科学学科之间的合作近来取得了进展,这凸显了真菌菌丝体作为可持续生物材料的可再生资源的潜力,可在不同行业加以利用。由于真菌菌丝体可以通过生物技术从不同的丝状真菌中获得,而且是一种用途非常广泛的材料,因此相关的研究和商业应用应当蓬勃发展。然而,真菌菌丝体材料领域的一些已授权专利却给社会带来了不确定性,即哪些主题受专利保护,保护期预计有多长:因此,本意见书描绘了以真菌菌丝体为基础的材料的专利状况,并特别关注建筑施工、绝缘、包装等技术应用领域。我们概述了已授权专利(73 项)和与已授权专利相关的待决申请(34 项)、主要专利组合(5 个,每个所有者的专利和/或申请数量在 6 至 44 项之间)、专利所有者,并强调了为保护发明而制定的关键权利要求。此外,我们还概述了增加该领域活动的各种方案:该领域的专利发展给人留下的印象是,尽管真菌材料作为可再生和可生物降解的材料具有巨大潜力,但由于专利保护过度而受到阻碍。考虑到需要用可再生生物材料取代目前的石油基材料,可能需要协调努力,加强该领域的工作。
{"title":"Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation.","authors":"Vera Meyer, Sabine Mengel","doi":"10.1186/s40694-024-00177-2","DOIUrl":"10.1186/s40694-024-00177-2","url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last.</p><p><strong>Results: </strong>This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field.</p><p><strong>Conclusion: </strong>Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger. 在黑曲霉基因组整合过程中,NHEJ 和 HDR 可同时发生。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-05 DOI: 10.1186/s40694-024-00180-7
Susanne Fritsche, Aline Reinfurt, Felix Fronek, Matthias G Steiger

Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.

非同源末端连接(NHEJ)和同源定向修复(HDR)是丝状真菌修复 DNA 损伤的两种机制。NHEJ 是快速连接 DNA 双链断裂的主要反应途径,但往往会导致插入或缺失。另一方面,HDR 更为精确,它利用同源 DNA 模板来恢复受损序列。在本研究中,我们评估了基于 HDR 的基因整合系统的效率,该系统是为黑曲霉 pyrG 基因座设计的。在基因整合率达到 91.4% 的同时,我们还发现了一种混合型修复(MTR)机制,即通过 NHEJ 和 HDR 同时修复 Cas9 介导的双链断裂。在 20.3% 的分析转化子中,供体 DNA 在双链断裂的 3' 端通过 NHEJ 进行整合,在 5' 端通过 HDR 进行整合。总之,这些结果证明了基因组整合系统和新型 DNA 修复类型的适用性,并对丝状真菌遗传修饰的多样性产生了影响。
{"title":"NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger.","authors":"Susanne Fritsche, Aline Reinfurt, Felix Fronek, Matthias G Steiger","doi":"10.1186/s40694-024-00180-7","DOIUrl":"10.1186/s40694-024-00180-7","url":null,"abstract":"<p><p>Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste. 利用真菌水凝胶的干凝胶纺丝技术,从食物垃圾中开发可再生纱线。
Q1 Agricultural and Biological Sciences Pub Date : 2024-08-02 DOI: 10.1186/s40694-024-00178-1
Alice Lindh, E R Kanishka B Wijayarathna, Göksu Cinar Ciftci, Samira Syed, Tariq Bashir, Nawar Kadi, Akram Zamani

Background: Renewable materials made using environmentally friendly processes are in high demand as a solution to reduce the pollution created by the fashion industry. In recent years, there has been a growing trend in research on renewable materials focused on bio-based materials derived from fungi.

Results: Recently, fungal cell wall material of a chitosan producing fungus has been wet spun to monofilaments. This paper presents a modification for the fungal monofilament spinning process, by the development of a benign method, dry gel spinning, to produce continuous monofilaments and twisted multifilament yarns, from fungal cell wall, that can be used in textile applications. The fungal biomass of Rhizopus delemar, grown using bread waste as a substrate, was subjected to alkali treatment with a dilute sodium hydroxide solution to isolate alkali-insoluble material (AIM), which mainly consists of the fungal cell wall. The treatment of AIM with dilute lactic acid resulted in hydrogel formation. The morphology of the hydrogels was pH dependent, and they exhibited shear thinning viscoelastic behavior. Dry gel spinning of the fungal hydrogels was first conducted using a simple lab-scale syringe pump to inject the hydrogels through a needle to form a monofilament, which was directly placed on a rotating receiver and left to dry at room temperature. The resulting monofilament was used to make twisted multifilament yarns. The process was then improved by incorporating a heated chamber for the quicker drying of the monofilaments (at 30⁰C). Finally, the spinning process was scaled up using a twin-screw microcompounder instead of the syringe pump. The monofilaments were several meters long and reached a tensile strength of 63 MPa with a % elongation at break of 14. When spinning was performed in the heated chamber, the tensile strength increased to 80 MPa and further increased to 103 MPa when a micro-compounder was used for spinning.

Conclusion: The developed dry gel spinning method shows promising results in scalability and demonstrates the potential for renewable material production using fungi. This novel approach produces materials with mechanical properties comparable to those of conventional textile fibers.

背景:采用环保工艺生产的可再生材料作为减少时装业污染的一种解决方案,受到了广泛的关注。近年来,有关可再生材料的研究呈上升趋势,重点研究从真菌中提取的生物基材料:最近,一种生产壳聚糖的真菌细胞壁材料被湿法纺成单丝。本文对真菌单丝纺丝工艺进行了改进,开发了一种良性方法--干凝胶纺丝法,利用真菌细胞壁生产连续单丝和加捻多丝纱线,可用于纺织品应用。以面包废料为基质培养的根瘤菌(Rhizopus delemar)的真菌生物质经过稀氢氧化钠溶液的碱处理,分离出碱不溶物(AIM),其中主要包括真菌细胞壁。用稀乳酸处理 AIM 后形成水凝胶。水凝胶的形态与 pH 值有关,并表现出剪切稀化粘弹性行为。真菌水凝胶的干凝胶纺丝首先使用一个简单的实验室规模注射泵,通过针头注入水凝胶形成单丝,然后直接将其放在旋转接收器上,在室温下静置干燥。得到的单丝可用于制造加捻多丝纱线。随后,为了加快单丝的干燥速度(30⁰C),该工艺又进行了改进,加入了一个加热室。最后,使用双螺杆微成型机取代注射泵,扩大了纺丝工艺的规模。单丝长达数米,拉伸强度达到 63 兆帕,断裂伸长率为 14%。在加热室中纺丝时,拉伸强度增加到 80 兆帕,使用微型压片机纺丝时,拉伸强度进一步增加到 103 兆帕:结论:所开发的干凝胶纺丝方法在可扩展性方面显示出良好的效果,并证明了利用真菌生产可再生材料的潜力。这种新方法生产出的材料具有与传统纺织纤维相当的机械性能。
{"title":"Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste.","authors":"Alice Lindh, E R Kanishka B Wijayarathna, Göksu Cinar Ciftci, Samira Syed, Tariq Bashir, Nawar Kadi, Akram Zamani","doi":"10.1186/s40694-024-00178-1","DOIUrl":"10.1186/s40694-024-00178-1","url":null,"abstract":"<p><strong>Background: </strong>Renewable materials made using environmentally friendly processes are in high demand as a solution to reduce the pollution created by the fashion industry. In recent years, there has been a growing trend in research on renewable materials focused on bio-based materials derived from fungi.</p><p><strong>Results: </strong>Recently, fungal cell wall material of a chitosan producing fungus has been wet spun to monofilaments. This paper presents a modification for the fungal monofilament spinning process, by the development of a benign method, dry gel spinning, to produce continuous monofilaments and twisted multifilament yarns, from fungal cell wall, that can be used in textile applications. The fungal biomass of Rhizopus delemar, grown using bread waste as a substrate, was subjected to alkali treatment with a dilute sodium hydroxide solution to isolate alkali-insoluble material (AIM), which mainly consists of the fungal cell wall. The treatment of AIM with dilute lactic acid resulted in hydrogel formation. The morphology of the hydrogels was pH dependent, and they exhibited shear thinning viscoelastic behavior. Dry gel spinning of the fungal hydrogels was first conducted using a simple lab-scale syringe pump to inject the hydrogels through a needle to form a monofilament, which was directly placed on a rotating receiver and left to dry at room temperature. The resulting monofilament was used to make twisted multifilament yarns. The process was then improved by incorporating a heated chamber for the quicker drying of the monofilaments (at 30⁰C). Finally, the spinning process was scaled up using a twin-screw microcompounder instead of the syringe pump. The monofilaments were several meters long and reached a tensile strength of 63 MPa with a % elongation at break of 14. When spinning was performed in the heated chamber, the tensile strength increased to 80 MPa and further increased to 103 MPa when a micro-compounder was used for spinning.</p><p><strong>Conclusion: </strong>The developed dry gel spinning method shows promising results in scalability and demonstrates the potential for renewable material production using fungi. This novel approach produces materials with mechanical properties comparable to those of conventional textile fibers.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum. 提高 CRISPR/Cas9 介导的柑橘采后病原体数字青霉基因组编辑的效率。
Q1 Agricultural and Biological Sciences Pub Date : 2024-07-13 DOI: 10.1186/s40694-024-00179-0
Carolina Ropero-Pérez, Jose F Marcos, Paloma Manzanares, Sandra Garrigues

Background: Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate its practical use.

Results: Increasing the culture time by performing additional culture streaks under selection conditions in a medium that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54-83%. To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no visually associated phenotype and were targeted to confirm the high efficiency of the protocol.

Conclusion: Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via CRISPR/Cas9 is still low.

背景:数字青霉(Penicillium digitatum)是一种植物真菌病原体,会导致采收的柑橘类水果发生绿霉病。由于其经济意义,许多人致力于开发针对这种真菌的基因工程工具。此前,CRISPR/Cas9 技术已通过基于 AMA1 的自我复制质粒实现了无标记基因编辑,但由此产生的效率(10%)限制了其实际应用。在本研究中,我们旨在提高 CRISPR/Cas9 介导的基因编辑在 P. digitatum 中的效率,以促进其实际应用:结果:在促进生长速度较慢的培养基中,通过在选择条件下进行额外的培养,延长培养时间,显著提高了地衣芽孢杆菌的基因编辑效率,最高可达 54-83%。为了证明这一点,我们破坏了五个候选基因,这些基因是根据我们之前的高通量基因表达研究选出的,目的是阐明地肤蝇对抗真菌蛋白 PdAfpB 的转录组反应。其中两个基因会导致视觉表型变化(PDIG_53730/pksP 和 PDIG_54100/arp2),因此可以开始优化方案。其他三个候选基因(PDIG_56860、PDIG_33760/rodA 和 PDIG_68680/dfg5)没有与视觉相关的表型,因此被作为目标基因,以确认该方案的高效性:通过修改选择方法,P. digitatum 的基因组编辑效率从 10% 显著提高到 83%,这证明了 CRISPR/Cas9 系统在这种植物病原真菌中进行基因破坏的可行性。此外,本研究中描述的方法可能有助于提高其他经济相关真菌物种的 CRISPR/Cas9 基因编辑效率,因为通过 CRISPR/Cas9 进行编辑的效率仍然很低。
{"title":"Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum.","authors":"Carolina Ropero-Pérez, Jose F Marcos, Paloma Manzanares, Sandra Garrigues","doi":"10.1186/s40694-024-00179-0","DOIUrl":"10.1186/s40694-024-00179-0","url":null,"abstract":"<p><strong>Background: </strong>Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate its practical use.</p><p><strong>Results: </strong>Increasing the culture time by performing additional culture streaks under selection conditions in a medium that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54-83%. To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no visually associated phenotype and were targeted to confirm the high efficiency of the protocol.</p><p><strong>Conclusion: </strong>Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via CRISPR/Cas9 is still low.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. 关于药用蘑菇台湾樟芝、猪蹄菇和林芝的栽培、生物活性化合物、健康促进因素和临床试验的综述。
Q1 Agricultural and Biological Sciences Pub Date : 2024-07-10 DOI: 10.1186/s40694-024-00176-3
Phoebe Yon Ern Tee, Thiiben Krishnan, Xin Tian Cheong, Snechaa A P Maniam, Chung Yeng Looi, Yin Yin Ooi, Caroline Lin Lin Chua, Shin-Yee Fung, Adeline Yoke Yin Chia

Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.

几个世纪以来,在中国和许多东亚国家,药用蘑菇,如樟芝、猪苓和林芝,一直被用于传统医药的治疗目的和促进整体健康。现代药理学研究表明,这些药用蘑菇中含有大量生物活性成分(如多糖、三萜类化合物和酚类化合物)及其潜在的治疗特性。由于对促进健康的药用蘑菇的需求不断增加,人们探索了各种栽培方法,以应对过度采收真菌的问题。各种研究提供了药用真菌强大药理特性的证据,包括其抗癌、降血糖、降血脂、抗氧化和抗病毒活性。在这篇综述中,探讨了樟芝、I. obliquus 和 T. linteus 的栽培方法、可用的生物活性成分、治疗特性和潜在用途。
{"title":"A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus.","authors":"Phoebe Yon Ern Tee, Thiiben Krishnan, Xin Tian Cheong, Snechaa A P Maniam, Chung Yeng Looi, Yin Yin Ooi, Caroline Lin Lin Chua, Shin-Yee Fung, Adeline Yoke Yin Chia","doi":"10.1186/s40694-024-00176-3","DOIUrl":"10.1186/s40694-024-00176-3","url":null,"abstract":"<p><p>Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic deletions in Aureobasidium pullulans by an AMA1 plasmid for gRNA and CRISPR/Cas9 expression. 利用 AMA1 质粒在 Aureobasidium pullulans 中进行基因组缺失,以实现 gRNA 和 CRISPR/Cas9 表达。
Q1 Agricultural and Biological Sciences Pub Date : 2024-06-01 DOI: 10.1186/s40694-024-00175-4
Audrey Masi, Klara Wögerbauer, Robert L Mach, Astrid R Mach-Aigner

Background: Aureobasidium pullulans is a generalist polyextremotolerant black yeast fungus. It tolerates temperatures below 0 °C or salt concentrations up to 18%, among other stresses. A. pullulans genome sequencing revealed a high potential for producing bioactive metabolites. Only few molecular tools exist to edit the genome of A. pullulans, hence it is important to make full use of its potential. Two CRISPR/Cas9 methods have been proposed for the protoplast-based transformation of A. pullulans. These methods require the integration of a marker gene into the locus of the gene to be deleted, when the deletion of this gene does not yield a selectable phenotype. We present the adaptation of a plasmid-based CRISPR/Cas9 system developed in Aspergillus niger for A. pullulans to create deletion strains.

Results: The A. niger CRISPR/Cas9 plasmid led to efficient genomic deletions in A. pullulans. In this study, strains with deletions ranging from 30 to 862 bp were obtained by using an AMA1 plasmid-based genome editing strategy.

Conclusion: The CRISPR/Cas9 transformation system presented in this study provides new opportunities for strain engineering of A. pullulans. This system allows expression of Cas9 and antibiotic resistance while being easy to adapt. This strategy could open the path to intensive genomic engineering in A. pullulans.

背景:Aureobasidium pullulans 是一种多极端耐受性黑酵母菌。除其他胁迫外,它还能耐受低于 0 °C 的温度或高达 18% 的盐浓度。A. pullulans 基因组测序显示,它具有产生生物活性代谢物的巨大潜力。目前只有少数分子工具可以编辑 A. pullulans 的基因组,因此充分利用其潜力非常重要。目前已提出两种 CRISPR/Cas9 方法,用于基于原生质体转化 A. pullulans。这些方法需要将标记基因整合到要删除基因的位点上,而该基因的删除不会产生可选择的表型。我们介绍了在黑曲霉中开发的基于质粒的 CRISPR/Cas9 系统对拉氏曲霉的改造,以创建缺失菌株:结果:黑曲霉 CRISPR/Cas9 质粒在拉氏曲霉中实现了高效的基因组缺失。在这项研究中,通过使用基于 AMA1 质粒的基因组编辑策略,获得了缺失范围从 30 到 862 bp 的菌株:本研究提出的 CRISPR/Cas9 转化系统为 A. pullulans 的菌株工程提供了新的机遇。该系统允许表达 Cas9 和抗生素,同时易于改造。该策略可为 A. pullulans 的强化基因组工程开辟道路。
{"title":"Genomic deletions in Aureobasidium pullulans by an AMA1 plasmid for gRNA and CRISPR/Cas9 expression.","authors":"Audrey Masi, Klara Wögerbauer, Robert L Mach, Astrid R Mach-Aigner","doi":"10.1186/s40694-024-00175-4","DOIUrl":"10.1186/s40694-024-00175-4","url":null,"abstract":"<p><strong>Background: </strong>Aureobasidium pullulans is a generalist polyextremotolerant black yeast fungus. It tolerates temperatures below 0 °C or salt concentrations up to 18%, among other stresses. A. pullulans genome sequencing revealed a high potential for producing bioactive metabolites. Only few molecular tools exist to edit the genome of A. pullulans, hence it is important to make full use of its potential. Two CRISPR/Cas9 methods have been proposed for the protoplast-based transformation of A. pullulans. These methods require the integration of a marker gene into the locus of the gene to be deleted, when the deletion of this gene does not yield a selectable phenotype. We present the adaptation of a plasmid-based CRISPR/Cas9 system developed in Aspergillus niger for A. pullulans to create deletion strains.</p><p><strong>Results: </strong>The A. niger CRISPR/Cas9 plasmid led to efficient genomic deletions in A. pullulans. In this study, strains with deletions ranging from 30 to 862 bp were obtained by using an AMA1 plasmid-based genome editing strategy.</p><p><strong>Conclusion: </strong>The CRISPR/Cas9 transformation system presented in this study provides new opportunities for strain engineering of A. pullulans. This system allows expression of Cas9 and antibiotic resistance while being easy to adapt. This strategy could open the path to intensive genomic engineering in A. pullulans.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans. 通过改进表达和纯化方案,实现了白念珠菌抗真菌靶标 Mnt1 的结构表征。
Q1 Agricultural and Biological Sciences Pub Date : 2024-05-07 DOI: 10.1186/s40694-024-00174-5
Patrícia Alves Silva, Amanda Araújo Souza, Gideane Mendes de Oliveira, Marcelo Henrique Soller Ramada, Nahúm Valente Hernández, Héctor Manuel Mora-Montes, Renata Vieira Bueno, Diogo Martins-de-Sa, Sonia Maria de Freitas, Maria Sueli Soares Felipe, João Alexandre Ribeiro Gonçalves Barbosa

Background: Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking.

Results: We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and β-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports.

Conclusions: The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.

背景:白色念珠菌是世界上最常见的真菌之一。Mnt1 是一种甘露基转移酶,参与白念珠菌的细胞壁生物生成和生物膜生长。细胞壁在致病过程中发挥关键作用,而生物膜的生长则与细胞外基质对药物的封存有关。因此,以 CaMnt1 为靶点的抗真菌药物会影响真菌的发育,并有可能使念珠菌对药物治疗产生敏感性。尽管CaMnt1非常重要,但它尚未被高标准纯化,也缺乏其生物物理特性:结果:我们描述了一种利用甲醇诱导在 Komagataella phaffii 中获得高产率重组 CaMnt1 的新方案。通过 MALDI-TOF/TOF 质谱确认了纯化蛋白的身份。远紫外圆二色性光谱(CD)表明,在 pH 值为 7.0 时,CaMnt1 的二级结构符合由 α-螺旋和 β-片形成的蛋白质。荧光光谱结果表明,CaMnt1 的三级结构与 pH 值有关,在 pH 值为 7.0 时,荧光发射强度更大。利用我们的分子建模方案,我们首次描绘了 CaMnt1 与其两种底物结合的三元复合物,从而确定了参与底物特异性和催化反应的残基。我们的结果证实了 Tyr209 在受体糖的亲核攻击过程中稳定形成类似氧羰基离子的中间体的假设,这与其他报道提出的双重位移机制相反:本文介绍的方法可大幅提高在瓶生酵母中表达的重组 CaMnt1 的产量。此外,真菌甘露糖基转移酶的结构特征也为开发新的抗真菌药物提供了新思路。
{"title":"An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans.","authors":"Patrícia Alves Silva, Amanda Araújo Souza, Gideane Mendes de Oliveira, Marcelo Henrique Soller Ramada, Nahúm Valente Hernández, Héctor Manuel Mora-Montes, Renata Vieira Bueno, Diogo Martins-de-Sa, Sonia Maria de Freitas, Maria Sueli Soares Felipe, João Alexandre Ribeiro Gonçalves Barbosa","doi":"10.1186/s40694-024-00174-5","DOIUrl":"10.1186/s40694-024-00174-5","url":null,"abstract":"<p><strong>Background: </strong>Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking.</p><p><strong>Results: </strong>We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and β-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports.</p><p><strong>Conclusions: </strong>The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic regulation of L-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis. 墨西哥茜草菌 L-色氨酸代谢的遗传调控支持茜草素的生物合成。
Q1 Agricultural and Biological Sciences Pub Date : 2024-04-25 DOI: 10.1186/s40694-024-00173-6
P. Seibold, Sebastian Dörner, Janis Fricke, T. Schäfer, Christine Beemelmanns, Dirk Hoffmeister
{"title":"Genetic regulation of L-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis.","authors":"P. Seibold, Sebastian Dörner, Janis Fricke, T. Schäfer, Christine Beemelmanns, Dirk Hoffmeister","doi":"10.1186/s40694-024-00173-6","DOIUrl":"https://doi.org/10.1186/s40694-024-00173-6","url":null,"abstract":"","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"2 7","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking down barriers: comprehensive functional analysis of the Aspergillus niger chitin synthase repertoire. 打破障碍:黑曲霉几丁质合成酶复合物的综合功能分析。
Q1 Agricultural and Biological Sciences Pub Date : 2024-03-11 DOI: 10.1186/s40694-024-00172-7
Lars Barthel, Timothy Cairns, Sven Duda, Henri Müller, Birgit Dobbert, Sascha Jung, Heiko Briesen, Vera Meyer

Background: Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes. However, systematic functional analysis of the full chitin synthase catalogue in a given species is rare. This greatly limits fundamental understanding and potential applications of manipulating chitin synthesis across the fungal kingdom.

Results: In this study, we conducted in silico profiling and subsequently deleted all predicted chitin synthase encoding genes in the multipurpose cell factory Aspergillus niger. Phylogenetic analysis suggested nine chitin synthases evolved as three distinct groups. Transcript profiling and co-expression network construction revealed remarkably independent expression, strongly supporting specific role(s) for the respective chitin synthases. Deletion mutants confirmed all genes were dispensable for germination, yet impacted colony spore titres, chitin content at hyphal septa, and internal architecture of submerged fungal pellets. We were also able to assign specific roles to individual chitin synthases, including those impacting colony radial growth rates (ChsE, ChsF), lateral cell wall chitin content (CsmA), chemical genetic interactions with a secreted antifungal protein (CsmA, CsmB, ChsE, ChsF), resistance to therapeutics (ChsE), and those that modulated pellet diameter in liquid culture (ChsA, ChsB). From an applied perspective, we show chsF deletion increases total protein in culture supernatant over threefold compared to the control strain, indicating engineering filamentous fungal chitin content is a high priority yet underexplored strategy for strain optimization.

Conclusion: This study has conducted extensive analysis for the full chitin synthase encoding gene repertoire of A. niger. For the first time we reveal both redundant and non-redundant functional roles of chitin synthases in this fungus. Our data shed light on the complex, multifaceted, and dynamic role of chitin in fungal growth, morphology, survival, and secretion, thus improving fundamental understanding and opening new avenues for biotechnological applications in fungi.

背景:真菌王国的成员都是异养真核生物,细胞壁中含有几丁质。这种聚合物对细胞壁的硬度以及最终的细胞形状至关重要。大多数真菌基因组都包含许多假定的几丁质合成酶编码基因。然而,对特定物种的全部几丁质合成酶目录进行系统的功能分析却很少见。这极大地限制了对整个真菌王国几丁质合成的基本理解和潜在应用:在这项研究中,我们对多功能细胞工厂黑曲霉进行了硅分析,随后删除了所有预测的几丁质合成酶编码基因。系统进化分析表明,九种几丁质合成酶进化为三个不同的组。转录剖析和共表达网络的构建显示了明显的独立表达,有力地支持了各自几丁质合成酶的特定作用。缺失突变体证实,所有基因对萌发都是不可或缺的,但却会影响菌落孢子滴度、头层隔膜的几丁质含量以及沉水真菌颗粒的内部结构。我们还能确定单个几丁质合成酶的特定作用,包括影响菌落径向生长速率(ChsE、ChsF)、侧细胞壁几丁质含量(CsmA)、与分泌型抗真菌蛋白的化学基因相互作用(CsmA、CsmB、ChsE、ChsF)、对治疗药物的抗性(ChsE),以及调节液体培养中菌团直径的合成酶(ChsA、ChsB)。从应用的角度来看,我们发现与对照菌株相比,chsF 基因缺失会使培养上清液中的总蛋白增加三倍以上,这表明丝状真菌几丁质含量工程学是菌株优化的一个优先级很高但尚未得到充分开发的策略:本研究对黑僵菌的全部几丁质合成酶编码基因进行了广泛分析。我们首次揭示了几丁质合成酶在该真菌中的冗余和非冗余功能作用。我们的数据揭示了几丁质在真菌生长、形态、生存和分泌过程中复杂、多面和动态的作用,从而提高了对真菌的基本认识,并为真菌的生物技术应用开辟了新途径。
{"title":"Breaking down barriers: comprehensive functional analysis of the Aspergillus niger chitin synthase repertoire.","authors":"Lars Barthel, Timothy Cairns, Sven Duda, Henri Müller, Birgit Dobbert, Sascha Jung, Heiko Briesen, Vera Meyer","doi":"10.1186/s40694-024-00172-7","DOIUrl":"10.1186/s40694-024-00172-7","url":null,"abstract":"<p><strong>Background: </strong>Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes. However, systematic functional analysis of the full chitin synthase catalogue in a given species is rare. This greatly limits fundamental understanding and potential applications of manipulating chitin synthesis across the fungal kingdom.</p><p><strong>Results: </strong>In this study, we conducted in silico profiling and subsequently deleted all predicted chitin synthase encoding genes in the multipurpose cell factory Aspergillus niger. Phylogenetic analysis suggested nine chitin synthases evolved as three distinct groups. Transcript profiling and co-expression network construction revealed remarkably independent expression, strongly supporting specific role(s) for the respective chitin synthases. Deletion mutants confirmed all genes were dispensable for germination, yet impacted colony spore titres, chitin content at hyphal septa, and internal architecture of submerged fungal pellets. We were also able to assign specific roles to individual chitin synthases, including those impacting colony radial growth rates (ChsE, ChsF), lateral cell wall chitin content (CsmA), chemical genetic interactions with a secreted antifungal protein (CsmA, CsmB, ChsE, ChsF), resistance to therapeutics (ChsE), and those that modulated pellet diameter in liquid culture (ChsA, ChsB). From an applied perspective, we show chsF deletion increases total protein in culture supernatant over threefold compared to the control strain, indicating engineering filamentous fungal chitin content is a high priority yet underexplored strategy for strain optimization.</p><p><strong>Conclusion: </strong>This study has conducted extensive analysis for the full chitin synthase encoding gene repertoire of A. niger. For the first time we reveal both redundant and non-redundant functional roles of chitin synthases in this fungus. Our data shed light on the complex, multifaceted, and dynamic role of chitin in fungal growth, morphology, survival, and secretion, thus improving fundamental understanding and opening new avenues for biotechnological applications in fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and functional characterisation of a locus for target site integration in Fusarium graminearum. 禾本科镰刀菌中靶位点整合基因座的鉴定和功能特性分析
Q1 Agricultural and Biological Sciences Pub Date : 2024-02-26 DOI: 10.1186/s40694-024-00171-8
Martin Darino, Martin Urban, Navneet Kaur, Ana Machado Wood, Mike Grimwade-Mann, Dan Smith, Andrew Beacham, Kim Hammond-Kosack

Background: Fusarium Head Blight (FHB) is a destructive floral disease of different cereal crops. The Ascomycete fungus Fusarium graminearum (Fg) is one of the main causal agents of FHB in wheat and barley. The role(s) in virulence of Fg genes include genetic studies that involve the transformation of the fungus with different expression cassettes. We have observed in several studies where Fg genes functions were characterised that integration of expression cassettes occurred randomly. Random insertion of a cassette may disrupt gene expression and/or protein functions and hence the overall conclusion of the study. Target site integration (TSI) is an approach that consists of identifying a chromosomal region where the cassette can be inserted. The identification of a suitable locus for TSI in Fg would avert the potential risks of ectopic integration.

Results: Here, we identified a highly conserved intergenic region on chromosome 1 suitable for TSI. We named this intergenic region TSI locus 1. We developed an efficient cloning vector system based on the Golden Gate method to clone different expression cassettes for use in combination with TSI locus 1. We present evidence that integrations in the TSI locus 1 affects neither fungal virulence nor fungal growth under different stress conditions. Integrations at the TSI locus 1 resulted in the expression of different gene fusions. In addition, the activities of Fg native promoters were not altered by integration into the TSI locus 1. We have developed a bespoke bioinformatic pipeline to analyse the existence of ectopic integrations, cassette truncations and tandem insertions of the cassette that may occurred during the transformation process. Finally, we established a protocol to study protein secretion in wheat coleoptiles using confocal microscopy and the TSI locus 1.

Conclusion: The TSI locus 1 can be used in Fg and potentially other cereal infecting Fusarium species for diverse studies including promoter activity analysis, protein secretion, protein localisation studies and gene complementation. The bespoke bioinformatic pipeline developed in this work together with PCR amplification of the insert could be an alternative to Southern blotting, the gold standard technique used to identify ectopic integrations, cassette truncations and tandem insertions in fungal transformation.

背景:镰刀菌头枯病(FHB)是一种对不同谷类作物具有破坏性的花叶病。禾本科镰刀菌(Fg)是小麦和大麦头孢疫病的主要病原菌之一。Fg 基因在毒力方面的作用包括用不同的表达盒转化真菌的遗传研究。我们在对 Fg 基因功能进行鉴定的几项研究中发现,表达盒的整合是随机发生的。随机插入基因盒可能会破坏基因表达和/或蛋白质功能,从而影响研究的总体结论。目标位点整合(TSI)是一种确定可插入基因盒的染色体区域的方法。在 Fg 中确定一个适合 TSI 的位点可避免异位整合的潜在风险:结果:我们在 1 号染色体上发现了一个适合 TSI 的高度保守的基因间区。我们将这一基因间区域命名为 TSI 基因座 1。我们开发了一种基于金门法的高效克隆载体系统,用于克隆与 TSI 基因座 1 结合使用的不同表达盒。我们提出的证据表明,在不同的胁迫条件下,TSI 基因座 1 的整合既不会影响真菌的毒力,也不会影响真菌的生长。TSI 基因座 1 的整合导致了不同基因融合体的表达。此外,整合到 TSI 基因座 1 的 Fg 本源启动子的活性也没有改变。我们开发了一个定制的生物信息学管道,以分析在转化过程中可能发生的异位整合、基因盒截断和基因盒串联插入。最后,我们建立了一套方案,利用共聚焦显微镜和 TSI 基因座 1 研究小麦胚芽鞘中的蛋白质分泌:结论:TSI 基因座 1 可用于 Fg 以及可能感染镰刀菌的其他谷物物种的各种研究,包括启动子活性分析、蛋白质分泌、蛋白质定位研究和基因互补。这项工作中开发的定制生物信息学管道以及插入物的 PCR 扩增可替代 Southern 印迹法,后者是用于鉴定真菌转化中异位整合、盒式片段截断和串联插入物的黄金标准技术。
{"title":"Identification and functional characterisation of a locus for target site integration in Fusarium graminearum.","authors":"Martin Darino, Martin Urban, Navneet Kaur, Ana Machado Wood, Mike Grimwade-Mann, Dan Smith, Andrew Beacham, Kim Hammond-Kosack","doi":"10.1186/s40694-024-00171-8","DOIUrl":"10.1186/s40694-024-00171-8","url":null,"abstract":"<p><strong>Background: </strong>Fusarium Head Blight (FHB) is a destructive floral disease of different cereal crops. The Ascomycete fungus Fusarium graminearum (Fg) is one of the main causal agents of FHB in wheat and barley. The role(s) in virulence of Fg genes include genetic studies that involve the transformation of the fungus with different expression cassettes. We have observed in several studies where Fg genes functions were characterised that integration of expression cassettes occurred randomly. Random insertion of a cassette may disrupt gene expression and/or protein functions and hence the overall conclusion of the study. Target site integration (TSI) is an approach that consists of identifying a chromosomal region where the cassette can be inserted. The identification of a suitable locus for TSI in Fg would avert the potential risks of ectopic integration.</p><p><strong>Results: </strong>Here, we identified a highly conserved intergenic region on chromosome 1 suitable for TSI. We named this intergenic region TSI locus 1. We developed an efficient cloning vector system based on the Golden Gate method to clone different expression cassettes for use in combination with TSI locus 1. We present evidence that integrations in the TSI locus 1 affects neither fungal virulence nor fungal growth under different stress conditions. Integrations at the TSI locus 1 resulted in the expression of different gene fusions. In addition, the activities of Fg native promoters were not altered by integration into the TSI locus 1. We have developed a bespoke bioinformatic pipeline to analyse the existence of ectopic integrations, cassette truncations and tandem insertions of the cassette that may occurred during the transformation process. Finally, we established a protocol to study protein secretion in wheat coleoptiles using confocal microscopy and the TSI locus 1.</p><p><strong>Conclusion: </strong>The TSI locus 1 can be used in Fg and potentially other cereal infecting Fusarium species for diverse studies including promoter activity analysis, protein secretion, protein localisation studies and gene complementation. The bespoke bioinformatic pipeline developed in this work together with PCR amplification of the insert could be an alternative to Southern blotting, the gold standard technique used to identify ectopic integrations, cassette truncations and tandem insertions in fungal transformation.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fungal Biology and Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1